This is the accepted manuscript made available via CHORUS. The article has been published as:

States built on the 10^{+} isomers in 118,120,122,124Sn

Phys. Rev. C **84**, 054310 — Published 16 November 2011

DOI: 10.1103/PhysRevC.84.054310
The high-spin structure above the previously known 10^+ isomers of the 118,120,122,124Sn isotopes was studied via prompt γ-ray spectroscopy. All isotopes were populated as fragments following the fission of much heavier compound nuclei formed in three fusion-fission reactions. 118,120,122,124Sn were also independently populated and studied as evaporation residues in the 124Sn$(n,x\gamma)$ reactions, with $x = 3, 5, 7$. Transitions above the previously known 10^+ isomers were observed for the first time and the corresponding level schemes above these isomers were established up to 6646-, 5673-, 5386-, and 5952-keV excitation energy for 118,120,122,124Sn, respectively. The experimental results are compared with predictions from shell-model calculations.

PACS numbers: PACS number(s): 23.20.Lv, 27.60.+j, 25.40.-h, 28.20.-v

I. INTRODUCTION

The tin isotopic chain, with thirty one semi-magic isotopes between the two double-magic isotopes of 100Sn and 132Sn, has been a testing ground for models and methods in nuclear structure for many decades [1, 2]. Along this chain the collectivity is expected to be highest around mid-shell, i.e. in 116Sn. However, recent expanded shell model calculations indicate a slightly shifted shallow maximum in the transition probability values around 118,120,122Sn [3], closer to recent experimental findings [2], and attributed to the inhibiting effect that the $s_{1/2}$ orbital has on collectivity, when located near the Fermi level in this region [2]. The study of high-spin states in 118,120,122,124Sn merits additional attention since these isotopes are located near the middle of the shell that spans the tin isotopic chain.

The level schemes of the Sn isotopes include mostly neutron excitations across the subshells between the shell gaps at $N = 50$ and $N = 82$ because of the closed proton shell at $Z = 50$. For $N > 64$ these include single-particle and hole excitations in the $h_{11/2}$ neutron orbital, as well as in the close-lying $d_{3/2}$ and $s_{1/2}$ orbitals. The short-range repulsive character of the nucleon-nucleon interaction leads to a small level spacing between the highest-spin levels of multiplets, where the wave functions do not reach maximum overlap due to the Pauli principle, producing several isomeric states. Candidates for the 10^+ isomeric states are known in all even-mass Sn isotopes in the $A = 122$ mass region, as summarized in Refs. [4, 5], and a (15^-), 220(30) ns isomer was observed in 128Sn recently [6]. Lower spin, 7^- and 5^- isomers have also been identified.

In 118,120,122,124Sn isomers have been previously observed at 3108-, 2902-, 2766-, and 2657-keV excitation energy, and with 2.5-, 6.26-, 62-, and 45-µs half lives [7–11], respectively. The 10^+ spin-parity assignments of these isomers remain tentative, except perhaps in the case of 118Sn where the most recent published level scheme in Ref. [8] includes the 10^+ spin-parity assignment without parentheses. Nothing was known about the structure above these isomers before the present work. (10^+) isomers are also known in the heavier even-mass Sn isotopes [4, 5] with limited spectroscopic information available above the (10^+) isomer only in the case of 128Sn [6]. The lack of information on
high-spin states above the isomers in these isotopes is mainly due to their \(\mu s \) half-lives and to the increasing lack with increasing mass number of suitable stable beam-target combinations to populate high-spin states in these isotopes as evaporation residues in heavy-ion fusion reactions. High-spin states in the off-yrast intruder deformed band of \(^{118}\text{Sn}\), whose deexcitation by-passes the known isomers in this isotope, have been recently reported [8].

An alternative way to study high-spin states in \(^{118,120,122,124}\text{Sn}\) would be the prompt \(\gamma \)-ray spectroscopy of fission fragments in fusion-fission reactions of much heavier nuclei. Such methods have been used several times to collect information on high-spin states of stable nuclei or nuclei near the line of stability (see, for instance, Ref. [12]). \(^{118,120,122,124}\text{Sn}\) can be populated as fission fragments in such reactions and the structure above their isomers can be studied by establishing \(\gamma \)-ray coincidences between transitions feeding the isomers and previously known transitions in the complementary fission fragments. This method was used here together with the population of \(^{118,120,122}\text{Sn}\) in \((n, xn)\) reactions on stable \(^{124}\text{Sn}\). The same approach was also applied in studying high-spin states above the \(11/2^-\) isomer in \(^{135}\text{Xe}\) [13] populated in the \((n, 2n)\) evaporation channel and as a fission fragment. The \(^{124}\text{Sn}(n, n')\) reaction channel only populated states below \(10\mu \) in \(^{124}\text{Sn}\) with sufficient intensity to be experimentally observed.

II. EXPERIMENTAL RESULTS

The beam for the three fusion-fission experiments, henceforth referred to as Experiments I, II and III, in this work was provided by the 88-Inch Cyclotron Facility at Lawrence Berkeley National Laboratory. The Gammasphere array was used to detect “prompt”-time coincidences between \(\gamma \) rays in all cases with the width of the time overlap allowed between coincidences in the data acquisition trigger being \(\sim 100 \mu \text{s} \). In Experiment I, Gammasphere comprised 92 Compton-suppressed large volume HPGe detectors, while in Experiments II and III the number of Ge detectors was 100.

In Experiment I a \(^{197}\text{Pb}\) compound nucleus (CN) was formed in the \(^{24}\text{Mg} + ^{173}\text{Yb}\) reaction at 134.5 MeV. The target consisted of 1 mg/cm\(^2\) isotopically enriched \(^{173}\text{Yb}\), evaporated on a 7 mg/cm\(^2\) gold backing (reactions of the beam in the backing produce a \(^{221}\text{Pa}\) CN). In Experiment II a \(^{199}\text{Tl}\) CN was formed in the \(^{23}\text{Na} + ^{176}\text{Yb}\) reaction at a beam energy of 129 MeV. The target consisted of approximately 1 mg/cm\(^2\) isotopically enriched \(^{176}\text{Yb}\) on a 10 mg/cm\(^2\) Au backing (reactions of the beam in the backing produce a \(^{220}\text{Th}\) CN). In Experiment III a \(^{220}\text{Th}\) compound nucleus was populated in the \(^{18}\text{O} + ^{208}\text{Pb}\) reaction at 91 MeV and the target was 45 mg/cm\(^2\) in areal density. About \(2.3 \times 10^9\) triples, \(10^9\) quadruples, and \(2.5 \times 10^9\) quadruples, were collected in Experiments I, II and III, respectively. Symmetrized, three-dimensional cubes were constructed to investigate the coincidence relationships between the \(\gamma \) rays. Additional information for Experiments I, II and III can be found in Refs. [14–16].

The \(^{124}\text{Sn}(n, xn)\) measurement described in this work, henceforth referred to as Experiment IV, was performed at the Los Alamos Neutron Science Center Weapons Neutron Research (LANSCE/WNR) facility [17]. The \(\gamma \) rays were produced in the bombardment by neutrons of a 1 g \(^{124}\text{Sn}\) foil, 97.9% isotopically enriched and \(\sim 0.1 \text{ cm thick}, \) and were observed with the GEANIE spectrometer [18, 19]. GEANIE is located \(20.34\text{ m from the WNR spallation neutron source on the 60R (60\text{o}-Right) flight path. The neutrons were produced in a }\)\(^{238}\text{U}\) spallation target driven by an 800-MeV proton beam. The beam time structure in the present experiment consisted of \(590\mu s\)-long “macropulses”, with each macropulse containing subnanosecond-wide “micropulses”, spaced every 1.8 \(\mu \text{s} \). The energy of the neutrons was determined using the time-of-flight technique. GEANIE is comprised of 11 Compton-suppressed planar Ge detectors (low-energy photon spectrometers - LEPS), 9 Compton-suppressed coaxial Ge detectors and 6 unsuppressed coaxial Ge detectors. A total of \(\sim 6 \times 10^8 \) \(\gamma \) singles and higher-fold data were recorded.

III. EXPERIMENTAL RESULTS

Partial level schemes of \(^{118,120,122,124}\text{Sn}\) as obtained in the present work are shown in Fig. 1. All transitions and levels above the \((10^+\)\) isomers in Fig. 1 are observed for the first time. A summary of all other previously-known states and transitions of \(^{118}\text{Sn}\) is given in Ref. [7], where the spin-parity assignment of the 3108-keV isomer is quoted as \(9^+, 10^+\). The level scheme of \(^{118}\text{Sn}\) was recently enriched with the results in Ref. [8], where a firm \(10^+\) spin-parity assignment for the isomer is proposed. Thus, \(10^+\) spin-parity assignment for this isomer is adopted in Fig. 1. Summaries for \(^{120,122,124}\text{Sn}\) are given in Refs. [9–11]. The placement of the transitions in Fig. 1 is based on their established coincidence relationships in Experiments I, II and III, and on their intensity, also quoted in Fig. 1 for each transition, relative to the lowest transitions in all level schemes. For \(^{118}\text{Sn}\) the relative intensities quoted are those from Experiment I, whereas for \(^{120,122,124}\text{Sn}\) the quoted relative intensities were obtained in Experiment III. The assignment of the structures built on the \((10^+)\) isomers in Fig. 1 to each isotope is based on establishing coincidences between each of the 1237.8-, 1190.1-, 1103.3-, and 1046.8-keV transitions and previously-known transitions belonging...
to complementary fission fragments in experiments I, II and III, as well as determining the neutron excitation functions for the 1237.8-, 1190.1-, and 1103.3-keV transitions in Experiment IV, as described below.

A. Experiments I, II and III

The compound nucleus in Experiment III (\(^{226}\text{Th}\)) is the heaviest and the most neutron rich (\(N/Z = 1.51\)) among the three experiments. The compound nuclei in Experiments I and II are of similar mass with those in Experiment II more neutron rich than in Experiment I. The transitions assigned to \(^{118}\text{Sn}\) in Fig. 1 were observed in Experiments I and II with similar strength, but not observed in Experiment III. The sequence assigned to \(^{120}\text{Sn}\) in Fig. 1 was observed in all three experiments; however, it is stronger in Experiment III. The sequence assigned to \(^{122}\text{Sn}\) in Fig. 1 is observed strongly in Experiment III and is very weak in Experiment II. Finally, the sequence assigned to \(^{124}\text{Sn}\) in Fig. 1 is observed in Experiment III only. These observations are in accordance with the assignment of the sequence on the left in Fig. 1 to the lightest isotope and the rest of the sequences from left to right in Fig. 1 to isotopes with increasing mass. Consequently, the spectra shown below for \(^{118}\text{Sn}\) originate from Experiments I and II, whereas for \(^{120,122,124}\text{Sn}\) the spectra shown originate from Experiment III.

In order to identify candidates for transitions above the \((10^+\, \text{iso})\) isomers, the patterns of intensities for the fragments that are complementary to \(^{118,120,122,124}\text{Sn}\) in all three experiments were determined. In Fig. 2.a the double gate from Experiment I on the previously known 1229.7-keV, \(2^+_1 \rightarrow 0^+_1\), and 1050.7-keV, \(4^+_1 \rightarrow 2^+_1\), transitions of \(^{118}\text{Sn}\) [7] is displayed; the 132.3-, 221.7-, 254.9- (lies under the stronger 253.7-keV peak), 824.7-, 978.0-, and 1641.0-keV transitions belonging to the complementary \(^{95,96,97}\text{Nb}\) [12, 20] fragments are present in this spectrum. In Fig. 2.b, the double gate on the candidates above the \(10^+\) isomer, the 1237.8- and 585.5-keV transitions from Fig. 1, displays a similar intensity pattern for the same complementary fragments. All transitions assigned to \(^{118}\text{Sn}\) in Fig. 1 can be seen in the spectrum in Fig. 2.b, except, of course, for the transitions that form the double gate. All previously-known transitions of \(^{118}\text{Sn}\) present in Fig. 2.a are not seen in Fig. 2.b, and vice versa, suggesting that the transitions in Fig. 2.b lie above an isomer with half life much larger than the \(\sim 100 \, \text{ns}\) time-window, as is the case for the \(2.5-\mu\text{s}\) isomer in \(^{118}\text{Sn}\). Similar spectra were obtained in Experiment II. \(^{118}\text{Sn}\) was populated in the 6\(n, 7n\), and 8\(n\) channels in both experiments.

Spectra for Experiments III are shown in Figs. 3 and 4. The double gate on the previously known 1171.3-keV, \(2^+_1 \rightarrow 0^+_1\); and 1023.0-keV, \(4^+_1 \rightarrow 2^+_1\), transitions of \(^{120}\text{Sn}\) [9] is shown in Fig. 3.a; the 212.1-, 351.6-, 411.6-, 497.6-, and 1222.7-keV transitions belonging to the complementary \(^{96,99,100}\text{Zr}\) [21–23] fragments are present in this spectrum. The double gate on the 1190.1- and 556.4-keV transitions from Fig. 1 is shown in Fig. 3.b. Exactly the same previously-known transitions from the Zr complementary fragments and with similar intensity patterns are present in both spectra, suggesting assignment of the 1190.1- and 556.4-keV transitions to \(^{120}\text{Sn}\). All transitions assigned to \(^{120}\text{Sn}\) in Fig. 1 can be seen in the spectrum in Fig. 3.b, except for the transitions that form the double gate. All previously-known transitions of \(^{120}\text{Sn}\) present in Fig. 3.a are not seen in Fig. 3.b, and vice versa, suggesting that the transitions in Fig. 3.b lie above an isomer with half life much larger than the \(\sim 100 \, \text{ns}\) time-window, as is the case for the \(6.26-\mu\text{s}\) isomer in \(^{120}\text{Sn}\). Transitions from the \(^{98,99,100}\text{Zr}\) [21–23] fission fragments are observed in Fig. 3, hence, \(^{120}\text{Sn}\) is populated in the 8\(n, 7n\), and 6\(n\) neutron-emitting channels, respectively. The double gates on the previously known 1140.5-keV, \(2^+_1 \rightarrow 0^+_1\); and 1001.5-keV, \(4^+_1 \rightarrow 2^+_1\), transitions of \(^{122}\text{Sn}\) [10], and on the 1103.3- and 1030.3-keV transitions in Fig. 1 are shown in Fig. 4.a and 4.b, and exhibit similar intensity patterns for the corresponding \(^{96,97,98,100}\text{Zr}\) [21, 24–26] fragments. In Fig. 4.c the double gate on the previously known 1131.7-keV, \(2^+_1 \rightarrow 0^+_1\); and 970.0-keV, \(4^+_1 \rightarrow 2^+_1\), transitions of \(^{124}\text{Sn}\) [11] is shown. The \(^{98}\text{Zr}\) [21] 1222.7-keV, \(2^+_1 \rightarrow 0^+_1\) transition is the strongest with significant population of \(^{96}\text{Zr}\) [24] (1750.4-keV, \(2^+_1 \rightarrow 0^+_1\), transition) and presence of weaker transitions from the odd-mass \(^{95,97}\text{Zr}\) [24, 25, 27] complementary fragments. In Fig. 4.d, the double gate on the candidate transitions above the \((10^+)\) isomer in \(^{124}\text{Sn}\), the 1046.8- and 995.8-keV transitions from Fig. 1, displays a similar intensity pattern for the corresponding fragments.

The actual sequence of identification of the Sn 556.4-, 585.5-, 995.8-, 1030.3-, 1046.8-, 1103.3-, 1190.1-, and 1237.8-keV transitions during the analysis of the data in Experiments I, II and III is the following. First, the 1046.8-, 1030.3-, 1190.1- and 1237.8-keV transitions were observed in double gates on previously-known transitions of complementary fission fragments (see, for example, Fig. 5). Then the 556.4-, 585.5-, 995.8-, and 1030.3-keV transitions were identified in double gates between the 1046.8-, 1103.3-, 1190.1- or 1237.8-keV transitions and previously-known transitions of complementary fission fragments. Last, the coincidence relationship of the transitions was established together with the rest of the partial level schemes in Fig. 1.

In Experiment III only one compound nucleus (\(^{226}\text{Th}\)) is formed; hence, the assignment of the transitions to a tin isotope, after their observation in the Zr gates is unique and straightforward. On the contrary, in Experiments I and II, reactions of the beam with the targets form the \(^{197}\text{Pb}\) and \(^{199}\text{Tl}\) CN, respectively, and reactions of the beam in the backing form the compound nuclei \(^{221}\text{Pa}\) and \(^{229}\text{Th}\), respectively. Potential assignment of the 1237.8- and 585.5-keV
transitions to a niobium isotope, which would be the complementary fragment with respect to the 197Pb and 199Tl CN, can be safely ruled out. For a specific Nb isotope the neutron-emitting channels would be different in the two reactions, e.g., if 97Nb [12] is the complementary fragment, that would imply $8n, 7n, 6n$ neutron-emitting channels in Experiment II (199Tl CN), with respect to the 94,95,96Zr complementary fragments, and only $6n, 5n, 4n$ neutron-emitting channels in Experiment I (197Pb CN), with respect to the 95,96,97Nb complementary fragments. However, seeing at most 6 neutrons is lower than the usual number of neutrons observed in both reactions. In addition, and most important, the neutron excitation function for the 1237.8-keV transition was obtained in Experiment IV and supports independently the assignment of the transition to a tin isotope, as discussed below.

B. Experiment IV

The assignment of the 1103.3-, 1190.1- and 1237.8-keV transitions to 122Sn, 120Sn, and 118Sn, respectively, was deduced independently in the (n,xn) experiment, where the excitation functions for these transitions were obtained versus incident neutron energy. Examples of typical excitation functions obtained for previously known transitions of $^{117-123}$Sn [7, 9, 10, 28-31] in Experiment IV are shown in Figs. 6, 7 and 8. As shown in Fig. 6, a typical excitation function for a transition of 122Sn [the $(n,2n)$ reaction channel] peaks at incident neutron energies between 10- and 20-MeV, that of 122Sn [the $(n,3n)$ reaction channel] peaks at higher incident neutron energies (between 20- and 30-MeV) due to the additional incident neutron energy that is required for emission of the third neutron, and so on.

The excitation function for the 1103.3-keV transition is shown in Fig. 6 and exhibits the typical characteristics of a transition in the 124Sn$(n,3n)$ reaction channel. Namely, it peaks between 20- and 30-MeV neutron energies, has a higher neutron energy threshold than the excitation function of the 1140.5-keV, $2^+ \rightarrow 0^+$ transition of 122Sn, and peaks at a lower neutron energy from the excitation function of the transition from the immediately higher neutron channel (1151-keV, $(15/2^-) \rightarrow 11/2^-$ transition of 123Sn, the $(n,4n)$ reaction channel). Hence, the characteristics of the excitation function for the 1103.3-keV transition in Fig. 6 confirm its assignment to 122Sn. All other transitions in Fig. 1 above the 1103.3-keV transition are much weaker; most likely they are emitted from higher-spin states, and were not observed in Experiment IV. Similarly, in Fig. 7, a typical excitation function for a transition of 120Sn [the $(n,5n)$ reaction channel] peaks at neutron energies between 40- and 50-MeV, and the excitation function for the 1190.1-keV transition exhibits the typical characteristics of such a transition confirming the assignment to 120Sn. In order to keep the same time resolution in the time-of-flight technique used in Experiment IV, the neutron-energy bins become wider at higher neutron energies, as can be seen from comparison of Figs. 6, 7, and 8. Hence, the neutron energy resolution becomes worse with increasing neutron energy in these figures. The excitation function for the 1229.7-keV, $2^+_1 \rightarrow 0^+_1$ transition of 118Sn in Fig. 8, peaks at \sim70 MeV neutron energy whereas that for the 1278.2-keV, $15/2^- \rightarrow 11/2^-$ transition of 117Sn peaks at $E_n \sim$90 MeV. The excitation function for the 1237.8-keV transition lies in between these two excitation functions, suggesting origin from the $(n,7n)$ reaction channel, i.e., assignment to 118Sn. A similar excitation function, but with larger errors due to poor statistics, was obtained also for the 585.5-keV transition.

Spin and parity assignments of all levels reported in this work are difficult to deduce experimentally due to the lack of directional correlation information for the fission products in Experiments I, II, and III, and insufficient statistics in Experiment IV. The only experimental conclusion is that the 3869-keV level of 122Sn and the 4092-keV level of 120Sn in Fig. 1 are likely high-spin states since the excitation functions for the 1103.3- and 1190.1-keV transitions...
in Figs. 6 and 7 peak at a higher neutron energy and have a higher neutron-energy threshold compared to the excitation functions of the 1140.5- and 1171.3-keV, $2^+_1 \rightarrow 0^+_1$ transitions of 122Sn and 120Sn, respectively. Although in Experiment IV the energy resolution becomes worse with increasing neutron energy, in Fig. 8 the neutron excitation function of the 1237.8-keV transition compared to that of the 1229.7-keV, $2^+_1 \rightarrow 0^+_1$ transition of 118Sn, supports a high-spin assignment to the 4346-keV level of 118Sn.

IV. DISCUSSION

The low-lying states of Sn isotopes are predominantly formed by neutron excitations corresponding to spherical configurations. Above $N > 64$, where the neutron $d_5/2$ and $g_{7/2}$ orbitals are filled, isomers with 5^- and 7^- spin-parities, attributed to the neutron $h_{11/2}s_{1/2}$ and $h_{11/2}d_{3/2}$ configurations, respectively, are important in the moderate spin part of the level schemes. At higher spins, (10^+_1) isomers have been observed in the $^{116-130}$Sn isotopes [4, 5, 7–11, 32–35] with a maximum half-life at 122Sn due to the half-filled $h_{11/2}$ neutron orbital. The 10^+_1 states may be interpreted to arise from the neutron $h_{11/2}^2$ configuration and their excitation energy drops smoothly with mass number. They have been studied with various methods including deep inelastic reactions on Sn isotopes [36, 37], light-ion reactions on Cd isotopes [38], as well as the β-decay of In isotopes [39]. In Fig. 9 the systematics of the (10^+_1) and (12^+_1) states in the even-mass $^{116-130}$Sn isotopes [6–11, 32–35] are summarized. The (12^+_1) states are seen to behave smoothly with mass number following the lower (10^+_1) states.

In the shell model calculations in Ref. [40] a pair of 11^+ and 12^+ states are predicted above the 10^+_1 isomers in all even-mass tin isotopes from 114Sn to 126Sn with excitation energies that decrease smoothly with mass number. In these isotopes the 11^+ and 12^+ states have the same structure, namely $2^+_1 \otimes 10^+_1$, the difference in their excitation energy is very small, and the 11^+ state is predicted to become off-yраст for 120Sn and heavier tin isotopes. The rest of the members of the $2^+_1 \otimes 10^+_1$ multiplet are expected to be at high excitation energies and are off-yраст states. Indeed, the 11^+ and 12^+ states in neighboring 116Sn are reported at 4702- and 4882-keV excitation energy [32], only 180 keV apart, and in excellent agreement with the shell model predictions. The energy difference between these states is predicted to become even smaller in $^{118, 120, 122, 124}$Sn. Hence, the population of the 11^+ states in the production of $^{118, 120, 122, 124}$Sn as fission fragments is expected to be very weak, with the bulk of intensity following the yраст line via the 12^+ states. The tentative 12^+ spin-parity assignments in the present work for the 4346-, 4092-, 3869-, and 3703-keV states in $^{118, 120, 122, 124}$Sn, respectively, are in excellent agreement with the shell model calculations.

In Table I the energies of the $(12^+_1) \rightarrow (10^+_1)$ transitions relative to the $2^+_1 \rightarrow 0^+_1$ transitions are summarized for the $N > 64$ even-mass Sn isotopes. The ratios of these transition energies are large (~1) suggesting collectivity similar to that of the 2^+ states. In the simplest shell model above $N = 64$, where the $d_5/2$ and $g_{7/2}$ neutron orbitals are filled, neutrons in the $h_{11/2}$ orbital will become more important in the wave function of the 2^+_1 state, since only $(d_{5/2})^2$ and $d_{5/2}s_{1/2}$ configurations can also contribute to 2^+ excitations. That the $12^+_1 \rightarrow 10^+_1$ transition energies are essentially identical to the $2^+_1 \rightarrow 0^+_1$ energies suggests little blocking of the quadrupole collectivity when two neutrons are aligned to form the 10^+_1 state.

The calculations of Ref. [40] predict that the wave functions of the 2^+_1 states up to 130Sn are very complicated, with sizeable contributions from the $g_{7/2}$ and $d_{5/2}$ neutrons, with at most 60% (amplitude <0.8) of the wave function coming from $(h_{11/2})^2$ for $A > 122$. The tentative assignment of the $12^+_1 \rightarrow 10^+_1$ transition in 128Sn [6] shows that probably the trend of increased collectivity above the 10^+_1 Sn isomers persists for $A > 124$.

V. SUMMARY

In summary, the level schemes above the previously known (10^+_1) isomers of $^{118, 120, 122, 124}$Sn were established up to 6646-, 5673-, 5386-, and 5952-keV excitation energy, respectively. The assignment of new transitions to $^{118, 120, 122, 124}$Sn was deduced from three experiments populating these isotopes as fragments following the fission of much heavier compound nuclei formed in fusion-fission reactions. Confirmation of the assignments came from neutron-induced reactions on 124Sn populating $^{118, 120, 122}$Sn as evaporation residues in the $(n, 7n)$, $(n, 5n)$, and $(n, 3n)$ reaction channels, respectively. The first excited states above the (10^+_1) isomers are most likely the (12^+_1) states the energies of which are seen to behave smoothly with mass number and follow the lower (10^+_1) systematics. Good agreement is observed between the newly identified (12^+_1) level energies in $^{118, 120, 122, 124}$Sn and those predicted by shell-model calculations reported previously in the literature. γ-ray energy ratios indicate collectivity for the 12^+ states similar to that of the 2^+ states.
Acknowledgments

This work has been supported in part by the U.S. Department of Energy under Contract Nos. DE-AC52-06NA25396 (LANL), DE-AC52-07NA27344 (LLNL) and AC03-76SF00098 (LBNL), and by the National Science Foundation (Rutgers). This work has benefitted from use of the LANSCE accelerator facility supported under DOE Contract No. DE-AC52-06NA25396.
TABLE I: Gamma-ray energies of the \((12^+ \rightarrow 10^+)\) transitions and the \(2^+_1 \rightarrow 0^+_1\) transitions, their ratios and energy differences in \(^{116,118,120,122,124,128}\)Sn. Data from Refs. \([6–11, 32]\) and the present work. Values in parentheses are tentative and originate from the tentative assignment of the 1061-keV transition as \((12^+ \rightarrow 10^+)\) in \(^{128}\)Sn \([6]\).

<table>
<thead>
<tr>
<th>Isotope</th>
<th>(E_{\gamma 12}) (keV)</th>
<th>(E_{\gamma 2}) (keV)</th>
<th>(E_{\gamma 12} / E_{\gamma 2})</th>
<th>(E_{\gamma 12} - E_{\gamma 2}) (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{116})Sn</td>
<td>1335.2</td>
<td>1293.5</td>
<td>1.032</td>
<td>41.7</td>
</tr>
<tr>
<td>(^{118})Sn</td>
<td>1237.8</td>
<td>1229.7</td>
<td>1.007</td>
<td>8.1</td>
</tr>
<tr>
<td>(^{120})Sn</td>
<td>1190.1</td>
<td>1171.3</td>
<td>1.016</td>
<td>18.8</td>
</tr>
<tr>
<td>(^{122})Sn</td>
<td>1103.3</td>
<td>1140.5</td>
<td>0.967</td>
<td>-37.2</td>
</tr>
<tr>
<td>(^{124})Sn</td>
<td>1046.8</td>
<td>1131.7</td>
<td>0.925</td>
<td>-84.9</td>
</tr>
<tr>
<td>(^{128})Sn</td>
<td>(1061)</td>
<td>1169</td>
<td>(0.908)</td>
<td>(-108)</td>
</tr>
</tbody>
</table>

FIG. 1: Partial level schemes assigned to 118,120,122,124Sn in the present work. Transition and excitation energies are given in keV. The width of the arrows is representative of the intensity of the transitions which is quoted for each transition. The intensities quoted for 118Sn are from Experiment I and for 120,122,124Sn are from Experiment III. The uncertainty on the γ-ray energies varies from 0.4 keV to 0.9 keV.

FIG. 2: Background subtracted spectra from Experiment I gated on (a) the previously known 1229.7-keV, $2^+ \rightarrow 0^+_1$, and 1050.7-keV, $4^+_1 \rightarrow 2^+_3$, transitions of 118Sn [7], and (b) the 1237.8- and 585.5-keV transitions in Fig. 1. The energies of the transitions are in keV. Transitions associated with the complementary 95,96,97Nb [12, 20] isotopes are indicated. Weak unlabelled peaks in both spectra are most likely contaminants.

FIG. 3: Background subtracted spectra from Experiment III gated on (a) the previously known 1171.3-keV, $2^+ \rightarrow 0^+_1$, and 1023.0-keV, $4^+_1 \rightarrow 2^+_3$, transitions of 120Sn [9], and (b) the 1109.1- and 556.4-keV transitions in Fig. 1. The energies of the transitions are in keV. Transitions associated with the complementary 98,99,100Zr [21–23] isotopes are indicated. Weak unlabelled peaks in both spectra are most likely contaminants.

FIG. 4: Background subtracted spectra from Experiment III gated on (a) the previously known 1131.7-keV, $2^+ \rightarrow 0^+_1$, and 970.0-keV, $4^+_1 \rightarrow 2^+_3$, transitions of 122Sn [11], (b) the 1046.8- and 995.8-keV transitions in Fig. 1, (c) the previously known 1140.5-keV, $2^+ \rightarrow 0^+_1$, and 1001.5-keV, $4^+_1 \rightarrow 2^+_3$, transitions of 122Sn [10], and (d) the 1103.3- and 1030.3-keV transitions in Fig. 1. The energies of the transitions are in keV. Transitions associated with the complementary 95,96,97,98,100Zr [21, 24–27] isotopes are indicated. Weak unlabelled peaks in both spectra are most likely contaminants.

FIG. 5: Background subtracted spectra from Experiment II gated on previously-known transitions belonging to 94,95,96Zr [24, 27]. The energies of the transitions are in keV. The 1190.1- and 1237.8-keV transitions assigned to 118,120Sn in the present work are indicated together with previously-known transitions of 116Sn [32] (1293.6 keV), 117Sn [28] (1278.2 keV), 118Sn [7] (1229.7 keV), 119Sn [29] (1220 keV), and 120Sn [9] (1171.3 keV). The indicated 1194.4-keV transition is a previously-known transition of 94Zr [24, 27]. Weak unlabelled peaks are most likely contaminants. The neutrons-emitted channels are also indicated for each combination of isotopes with respect to the 220Th CN.

FIG. 6: (Color online) Examples of excitation functions for neutrons with energies up to 55 MeV deduced in Experiment IV for previously known transitions of 121Sn [30] [the (n,4n) reaction channel], 122Sn [10] [the (n,3n) reaction channel], and 123Sn [31] [the (n,2n) reaction channel], as well as the 1103.3-keV transition (filled circles) assigned to 122Sn in the present work. Specifically, the 1151-keV, (15/2−) → 11/2− transition (open triangles) of 121Sn, the 1140.5-keV, 2+ → 0+ transition (open diamonds) of 122Sn, and the 1107-keV, (15/2−) → 11/2− transition (open squares) of 123Sn are shown. Lines connecting symbols are used to guide the eye.

FIG. 7: (Color online) Examples of excitation functions for neutrons with energies up to 75 MeV deduced in Experiment IV for previously known transitions of 119Sn [29] [the (n,6n) reaction channel], 120Sn [9] [the (n,5n) reaction channel], and 121Sn [30] [the (n,4n) reaction channel], as well as the 1190.1-keV transition (filled circles) assigned to 120Sn in the present work. Specifically, the 1220-keV, (15/2−) → 11/2− transition (open triangles) of 118Sn, the 1171.3-keV, 2+ → 0+ transition (open diamonds) of 120Sn, and the 1151-keV, (15/2−) → 11/2− transition (open squares) of 121Sn are shown. Lines connecting symbols are used to guide the eye.

FIG. 8: (Color online) Examples of excitation functions for neutrons with energies up to 180 MeV deduced in Experiment IV for previously known transitions of 117Sn [28] [the (n,8n) reaction channel], 118Sn [7] [the (n,7n) reaction channel], and 119Sn [29] [the (n,6n) reaction channel], as well as the 1237.8-keV transition (filled circles) assigned to 118Sn in the present work. Specifically, the 1278.2-keV, 15/2− → 11/2− transition (open triangles) of 117Sn, the 1220.7-keV, 2+ → 0+ transition (open diamonds) of 118Sn, and the 1220-keV, (15/2−) → 11/2− transition (open squares) of 119Sn are shown. Lines connecting symbols are used to guide the eye.

FIG. 9: Systematics in the even-mass Sn isotopes from A=116 to A=130 of the 10+ and 12+ states. Data from Refs. [6–11, 32–35] and the present work. The excitation energy of the (12+) state in 128Sn is tentative [6].
Figure 2 CK10248 24Oct2011
Figure 4 CK10248 24Oct2011
Figure 5
Excitation function (arb. units)

- 1103 keV assigned to 122Sn
- 1151 keV 121Sn
- 1141 keV 122Sn
- 1107 keV 123Sn

$E_n (MeV)$

Figure 6
Figure 7
Excitation function (arb. units)

Figure 8 CK10248 24Oct2011
Figure 9