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Abstract

We present a computational methodology for a theory of the lowest octupole excitations applica-

ble to all even-even nuclei beyond the lightest. The theory is the well-known generator-coordinate

extension (GCM) of the Hartree-Fock-Bogoliubov self-consistent mean field theory (HFB). We use

the discrete-basis Hill-Wheeler method (HW) to compute the wave functions with an interaction

from the Gogny family of Hamiltonians. Comparing to the compiled experimental data on octupole

excitations, we find that the performance of the theory depends on the deformation characteristics

of the nucleus. For nondeformed nuclei, the theory reproduces the energies to about ±20 % apart

from an overall scale factor of ≈ 1.6. The performance is somewhat poorer for (quadrupole) de-

formed nuclei, and for both together the dispersion of the scaled energies about the experimental

values is about ±25 %. This compares favorably with the performance of similar theories of the

quadrupole excitations. Nuclei having static octupole deformations in HFB form a special cate-

gory. These nuclei have the smallest measured octupole excitation energies as well as the smallest

predicted energies. However, in these cases the energies are seriously underpredicted by the theory.

We find that a simple two-configuration approximation, the Minimization After Projection method,

(MAP) is almost as accurate as the full HW treatment, provided that the octupole-deformed nuclei

are omitted from the comparison. This article is accompanied by a tabulation of the predicted

octupole excitations for 818 nuclei extending from drip-line to drip-line, computed with several

variants of the Gogny interaction.
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I. INTRODUCTION

The octupole excitations of nuclei have been well-studied theoretically on a case-by-case

basis but there has never been a global study for a fixed Hamiltonian and well-defined

computational methodology. Such studies are important for several reasons. Seeing the

systematic trends, one can better assess the deficiencies in the Hamiltonian or the underlying

theory, which could hopefully lead to improvements on both sides. Also, the predictive power

of the theory with the given Hamiltonians can be measured by the comparison to a large

body of nuclear data. In this work we carry out a study of this kind using the Hartree-Fock-

Bogoliubov (HFB) approximation extended by the Generator Coordinate Method (GCM).

Earlier studies of the octupole degree of freedom using this and similar methods are in Refs.

[1–6]. A competing methodology is based on the quasiparticle random phase approximation;

recent application to octupole modes may be found in Refs. [7–9]. For a general review of

the theory of octupole deformations and collective excitations, see Ref. [10].

A global theory not only needs to treat the consequences of static octupole deformations

in HFB ground states but also to treat the more ordinary situation where the degree of

freedom appears more as a collective vibration of a symmetric HFB ground state. The

latter is typically treated by RPA or QRPA [7–9], but the most of the studies consider a

small body of nuclei chosen by considerations emphasizing one characteristic or another, for

example semi-magic isotope chains. Our study is the first to encompass not only magic and

semi-magic ordinary nuclei, but the quadrupole- and octupole-deformed nuclei as well. This

follows in spirit the studies of the nuclear quadrupole degrees of freedom in Refs. [11, 12].

We mention that our GCM coordinate is a one-dimensional variable labeled by the mass

octupole moment. A two-dimensional treatment of the octupole deformations treating the

quadrupole deformation as a separate degree of freedom is important in the theory of fission

[13], and is likely to play a role in spectroscopy as well [14].

The HFB fields and quasiparticle wave functions are assumed to have the following sym-

metries: time reversal, axial symmetry, and the z -component of isospin. We can only

consider even-even nuclei under these restrictions. The restriction to axial symmetry is

harmless in spherical nuclei, but for deformed nuclei it causes two problems. The first is

that theory only treats the K = 0 excitations of deformed nuclei. As we will see, some

of the identified octupole excitations very likely have nonzero K quantum number. The
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second difficulty that arises with deformed nuclei is that angular momentum is not a good

quantum number of the HFB/GCM wave function. On a practical level, we shall compare

the calculated excitation energies with the spectroscopic 0+ → 3− transitions, assuming that

the rotational inertias can be neglected.

The calculations are carried with Gogny’s form of the interaction in the Hamiltonian.

Specific results for the D1S interaction will be presented below. That interaction has been

well-tested in many HFB calculations and also gives good results in (Q)RPA [15] and GCM

extensions of HFB [16]. Results for other Gogny interactions are provided in the supple-

mentary material accompanying this article.

II. IMPLEMENTING THE GCM

A. GCM

In the GCM, an external field is added to the Hamiltonian to generate a set of mean-field

configurations to be taken as a basis for the HW minimization. We take for the generating

field the mass octupole operator, Q̂3 =
√

4π
7
r3Y 3

0 (r̂) = z3 − 3
2
z(x2 + y2). We label the

solutions of the HFB equations in the presence of the field λQ̂3 by the expectation value of

Q̂3,

〈q|Q̂3|q〉 = q. (1)

For convenience, we will use the nominal value of β3 instead of q in discussing the wave

functions. These are related by the formula q =
√

9/28π(1.2)3A2β3. We also fix the (average)

center-of-mass of the nucleus at the origin with the constraint 〈|ẑ|〉 = 0 to avoid a spurious

octupole moment associated with the position of the nucleus. For each octupole constrained

wave function the quadrupole moment is determined self-consistently to minimize the HFB

energy.

The GCM wave function is constructed by combining the configurations |q〉 to build a

correlated wave function |σ〉. This is expressed formally in the GCM as an integral over

configurations

|σ〉 =
ˆ

dq fσ(q)|q〉. (2)

The function f in Eq. (2) is to be determined by applying the variational principle to the
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expression

E =
〈σ|H|σ〉
〈σ|σ〉 . (3)

While Eqs. (2) and (3) define the GCM formally, further approximations are required to

arrive at a well-defined computational methodology. One way common in the literature is

to keep the formal integral Eq. (2) and use the Gaussian overlap approximation to calculate

the matrix elements in Eq. (3), as was done in Ref. [12] to map the quadrupole deformation

onto a collective Hamiltonian, and in Ref. [17] for the octupole degree of freedom. A quite

different way is the discrete basis Hill-Wheeler method, first carried out for the octupole

excitations in Ref. [1]. This method, which we will follow here, approximates the integral

using a discrete set of configurations. The minimization of the GCM energy is equivalent to

solving the matrix eigenvalue equation

∑

j

〈qi|H|qj〉cj = E〈qi|qj〉cj . (4)

The states will have good parity if the basis is reflection symmetric, i.e. if both | − qi〉 and

|qi〉 are in the basis.

For either method one needs the overlap integrals between configurations 〈q|q′〉, the ma-

trix elements of the Hamiltonian 〈q|H|q′〉 and the matrix elements of one-body operators

such as 〈q|Q̂3|q′〉. The basic overlap integral is computed with the Onishi formula[18]. The

matrix elements of one-body and two-body operators are then evaluated using the gener-

alized Wick’s theorem[19]. Unfortunately, the Gogny interaction cannot be expressed in

this way due to its ρ1/3(~r) density dependence. This gives rise to well-known ambiguities

in treating the interaction as a Hamiltonian in a multiconfiguration space. Of the various

prescriptions available, we use the "mixed density" method. Here the ρ in the ρ1/3 factor is

replaced by ρqq′(~r) given by

ρqq′(~r) =
〈q|ρ̂(~r)|q′〉

〈q|q′〉 (5)

and the resulting ~r-dependent interaction is evaluated in the usual way. The mixed-density

prescription was introduced in Ref [20] and first applied to parity-projected HFB as "Pre-

scription 2" in Ref [3]. It is consistent with the mean field limit and is a scalar under

symmetry transformations [21]. Another prescription which seems plausible at first sight

is to use the projected density for ρ1/3. However, this gives unphysical results for octupole

deformations[22].
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While the configurations |q〉 constructed with the octupole constraint have mixed parity,

the HW solutions restore the parity quantum number, as was discussed above. In effect, the

parity projection needed to calculate spectroscopic properties can be obtained from the HW

minimization without any extra effort. However, as a practical matter, it is easier to define

the parity operator in the harmonic oscillator basis and use it to construct | − q〉 from |q〉
thus avoiding a separate HFB minimization for the −q configuration.

The HW states of interest are the lowest lying even- and odd-parity states of the spectrum,

which we call |e〉 and |o〉. Taking them to be normalized, the energies of ground state Ee,

the odd parity state Eo, and the excitation energy difference E3 are given by

Ee = 〈e|H|e〉; Eo = 〈o|H|o〉; E3 = Eo −Ee (6)

We follow the usual procedure to solve the matrix equation Eq. (4), using if necessary the

singular value decomposition of the overlap matrix to avoid difficulties with an overcomplete

space.

One first diagonalizes the overlap matrix and transforms all of the matrices to the diago-

nalized basis. Often there will be vectors which very small norms and the basis is truncated

to exclude them when the norms are less than a certain value nmin. The Hamiltonian is

diagonalized in this basis, called the collective space, to give the HW energies. The eigen-

vectors of the Hamiltonian are used to calculate matrix elements of other operators between

energy eigenstates.

The main problem with the discrete Hill-Wheeler method is that the calculated values

cannot be considered reliable unless both the range of deformations has been fully covered

and that the singular value decomposition has been set to a robust truncation. For most

of the nuclei, we shall take as a basis the set of β3 from -0.5 to +0.5 in steps of 0.025. For

lighter nuclei, the range is extended from -1.2 to +1.2. The calculations are carried out as a

function of the dimension Nbasis of the singular-value truncation. There is generally a broad

range of Nbasis for which the excitation energies have converged to some value; we take the

value on this plateau as the HW result. An example is shown in detail in the next section.

The computation of the HW starting matrices is not trivial, requiring N(N+1)/2 Hamil-

tonian matrix elements for a basis size N . While this is not an important issue here, if one

were to attempt GCM calculations in more than one variable, the number of states Nbasis

could be large. It is therefore of interest to investigate the accuracy of simpler approximations
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using fewer configurations. One of the simplest treatments is to take two configurations, |qe〉
and |qo〉, for the even-parity and odd-parity state, respectively. The values of q are chosen

to minimize the projected energies of the configuration. We follow Ref. [11] calling this

the Minimization After Projection (MAP) procedure. The deformations and energies at the

minima are denoted β3p, Ep and β3m, Em for the two projected states. The MAP excitation

energy is defined as

EMAP
3 = Em − Ep (7)

One last general point of the computational procedure needs to be mentioned. While

the individual HFB configurations are constructed with the desired proton and neutron

particle numbers, the mixed configurations in the HW wave function may have slightly

different expectation values of N and Z. The energy depends strongly on 〈N〉 and 〈Z〉,
and changes must be corrected for. We do this by adding to the HW Hamiltonian the term

λp(Ẑ − Z) + λn(N̂ −N), where λp,n are the nucleus’ chemical potentials at β3p [20].

B. HFB

The constrained HFB calculations were carried out using the code HFBaxial written by

one of us (L.M.R.). It uses a harmonic oscillator basis specified by the length parameters

bz and b⊥ of the oscillator potential and the number of shells Nosc in the basis. For the

calculations reported here we have taken a fixed spherical basis for all nuclei with oscillator

length parameters bz = b⊥ = 2.1 fm. The number of oscillator shells included in the basis

is 10,12, and 14 for nuclei in the ranges Z = [8, 50], [52, 82], and [84, 100] respectively. This

is more than enough to provide converged results for energy differences. We report on the

results for the D1S Gogny interaction in sections below. More detailed results for the D1S

as well as for other interactions of the Gogny form are given in the supplemental material

[23].

III. EXAMPLES

In this section we will go through the details for four examples illustrating the application

to a spherical nucleus, 208Pb, a well-deformed nucleus, 158Gd, the nucleus 226Ra whose HFB

ground state has a static octupole deformation, and a light nucleus having a very large
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Figure 1: Energy of 208Pb as a function of octupole deformation β3. Open circles: HFB energy of

constrained configurations ; Solid squares: energy Ee of the even-parity projected wave function;

Solid circles: the odd-parity projected energy Eo. See the Appendix for explanation of the fitted

lines.

transitional octupole moment, 20Ne. A summary of the results for these nuclei is given in

Table II at the end of this Section.

A. 208Pb

The nucleus 208Pb is a paradigm for a doubly magic nucleus. It is one of the very few

nuclei whose first excited state has Jπ = 3− quantum numbers. The excitation energy is

2.62 MeV and the transition rate is strongly collective with a strength of B(E3, ↑) = 0.611

e2b3 or 34 Weisskopf units[24]. For the theory, we first shown HFB and projected energies

of the GCM configurations in Fig. 1. Note that the negative parity energy Eo is well defined

in the limit β3 → 0 [3].

The minimum energy projected configurations, ie. the MAP states, are at β3p ≈ 0.0375

and β3m ≈ 0.075. One sees that the energy of the ground state is lower by projecting from

a nonzero β3; the associated correlation energy has the order of magnitude of one MeV. The

MAP approximation to the excitation energy E3 is given by the difference of the minima of
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Figure 2: Excitation energy E3 in 208Pb as a function of the configuration space choice. Solid

circles: HW using the singular value decomposition to keep Nbasis states; solid square: HW with

the two MAP states; open square: Energy difference of the two MAP states.

the plus- and minus-projected energy curves, which is about 4.2 MeV.

To see how the GCM calculated E3 depends on the basis, we show it in Fig. 2 as a

function of Nbasis. The difference of MAP energies is the open square, and solid circles show

the results with various truncations. The full basis set is comprised of the 41 configurations

between β3 = −0.5 to β3 = +0.5 in steps of 0.025. The truncation is carried out by the

singular-value decomposition.

One sees that the energy has converged at about Nbasis ≈ 14 and the numerics remain

stable up to much larger values. The converged energy, 4.0 MeV, is fairly close to the

difference of MAP energies. In fact, one can do even better in the 4-dimensional space

allowing the MAP configurations to mix. This is shown as the solid square in the figure.

We note that our excitation energy of 4.0 MeV is close to the value found in Ref. [2] using

the GCM/HW method but with the Skyrme SLy4 interaction.

We see here that the MAP could be a very useful simplification, but its validity depends

on the circumstances. It is also instructive to examine the GCM/HW wave function and

compare it with MAP. These are shown in Fig. 3, for both the ground state and the odd-
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Figure 3: Wave function amplitudes. See text for explanation.

parity excited state. The wave function amplitudes are formally defined by the integral

gσ(β3) =

ˆ

dβ ′

3N 1/2(β3, β
′

3)fσ(β
′

3) (8)

where f is normalized 1 =
´

dβ3 dβ
′

3N (β3, β
′

3)fσ(β
′

3)fσ(β3). The above relation establishes

the connection between the standard GCM amplitudes f with the amplitudes g enter-

ing the expansion of the GCM wave functions in terms of orthogonal states |q〉orth =
´

dq′N−1/2(q, q′)|q′〉. The square root of the norm overlap is defined by the relation
´

dq′′N 1/2(q, q′′)N 1/2(q′′, q′) = N (q, q′). The ground and excited state wave functions can be

distinguished by the amplitude at β3 = 0, which is finite for the even-parity ground state and

zero for the odd-parity excited state. The HW wave function and the MAP approximation

are shown as solid and dashed lines, respectively. It is clear that the MAP configuration is

a good approximation to the full wave function of both the ground and excited states, for

this particular nucleus.

More insight into the collective physics of the octupole degree of freedom can be obtained

comparing with simple models of the excitation (See Appendix). If the configuration energies

and interactions can be treated as quadratic functions of the deformation coordinate, and the

matrix elements between different configurations can be treated by the GOA, the GCM/HW

reduces to the RPA and is exact. The line through the HFB energy curve in Fig. 1 is a

quadratic fit that reproduces well the computed energy. Also, the energy of the even-parity

projected configuration follows well the predicted dependence according to the GOA, Eq.

(16). This is shown as the line through the even-parity projected energies in the figure.

Thus two of the conditions are met to reduce the GCM/HW theory to an RPA of a single

collective state.
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Figure 4: Energy of 158Gd as a function of octupole deformation β3. Open circles: HFB energy of

constrained configurations ; Solid squares: energy Ee of the even-parity projected wave function;

Solid circles: the odd-parity projected energy Eo. The line along the HFB values is the function

Eq = E0+K1β
2
3 with K1 = 48.8 MeV fitted to the values β3 ≤ 0.05. The line along the Ee values is

the fit motivated by the Gaussian overlap approximation, Ee = Eq −K2β
2/(1.0 + exp(αβ2)), with

K2 and α fitted.

B. 158Gd

Our example of a strongly deformed nucleus is 158Gd. It has a 3− excited state at 1.04 MeV

with a transition strength B(E3 ↑) = 0.12 e2b3. The energies from the GCM calculation

are shown in Fig. 4. Overall, the energy curves look quite similar to those for 208Pb. The

HFB curve is also well fit by a quadratic dependence on β3 but the curvature here is much

shallower. The projected energy function Ee(β3) also has a similar shape to the curve for

208Pb, and can be fitted by the same functional form, Eq. (14). The ratio of MAP minimum

points is found to be β3p/β3m ≈ 2, similar to the situation for 208Pb. The excitation energy

E3 comes out to about 1.7 MeV, much smaller than the 208Pb value. This is to be expected

in view of the softer HFB curve. The correlation energy of the ground state, E0 − Ee, is

similar to the 208Pb value, about one MeV.

Experimentally, the situation is complicated by the deformation and the splitting of the
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octupole strength into different K-bands. There are three negative parity bands known

experimentally at low energy. There is a K = 1− with an 1− state at 977 keV, a K = 0−

with the 1− state at 1263 keV and finally a K = 2− with a 2− state at 1793 keV. Our

excitation energy of 1.7 MeV should be compared with the 1263 keV of the 1− state of

the K = 0− band. The theoretical value is stretched by a factor 1.4 with respect to the

experimental value (see discussion below). Note that the measured octupole transition at

1.04 MeV is not relevant for the comparison because it corresponds to a different K value.

C. 226Ra

226Ra has the lowest 3− excitation energy of any nucleus in the compilation of Ref [25],

E3 = 320 keV. It also has the highest transition strength in the compilation, W (E3) = 54

Weisskopf units[24]. On the theory side, the nucleus is predicted to deform both in the

quadrupole (β2 ≈ 0.3) and the octupole degrees of freedom. The HFB/GCM energy curve,

shown in Fig. 5, has a minimum at β3 ≈ 0.13.

This nucleus is very interesting for our survey, not only because of the static octupole

deformation, but because the theory is seen to fail badly if the large amplitude fluctuations

are not properly accounted for. The predicted excitation energies for different treatments

of the GCM configurations are shown in Table I. The most naive theory (top line) would

ignore the GCM construction and simply take the HFB minimum and project from that.

The overlap 〈−q|q〉 at the HFB minimum is essentially zero and the E3 comes out less than

1 keV. In the next approximation we consider (second line), we take the single configuration

that gives the MAP ground state. Here the deformation is much closer to zero. However,

the E3 calculated as the difference between the even and odd projected states is now far too

large, 1.7 MeV. Of course in the full MAP approximation we should take the configurations

at different β3 for odd and even projections. This is done in line 3 of the Table, and now

the E3 has the correct order of magnitude. Adding more configurations, the valued do not

change much on an absolute MeV scale, but on a relative scale there is a considerable change.

The most complete HW treatment, on the bottom line, underpredicts the energy by a factor

of ≈ 2.

We also show the HW and MAP wave functions in Fig. 3. It is clear that the full wave

functions are far from harmonic and that the MAP approximation fails badly.
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Figure 5: Energy of 226Ra as a function of octupole deformation β3 as in Figs. 1,4g. A very similar

plot is shown in Fig. 3 of Ref. [3].

Nq β3 Ee (MeV) Eo (MeV) E3 (MeV)

1 0.15 -1722.63 -1722.63 0.00

1 0.05 -1722.71 -1721.01 1.7

2 0.05, 0.15 -1723.43 0.37

3 0.05, 0.1, 0.15 -1723.45 0.31

4 0.025, 0.075, 0.125, 0.175 -1723.53 0.22

12 [-0.5,0.5] 0.16

Table I: Calculated energies of 226Ra with various choices of the configuration set.

D. 20Ne

20Ne illustrates some differences that one sees in treating light nuclei by the GCM/HW,

first studied by this method in Ref. [1]. Due to the incipient alpha clustering, the equi-

librium octupole deformation of the projected configurations can be very large. The HFB

and projected energies are shown in Fig. 6. Note that the HFB energy deviates from a

quadratic dependence on the deformation, and looks almost linear at large β3. Fig. 7 shows

the density distribution at the two projected minima. One sees a compact localized density,
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Figure 6: Energy of 20Ne as a function of octupole deformation β3 as in Figs. 1,4,5.
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Figure 7: Nucleon density distribution in 20Ne at β3p (left) and β3m (right).

suggestive of an alpha particle, outside a nearly spherical core. Since the alpha emission

threshold is rather low in this nucleus, one should expect a softness in with respect to the

generator coordinate corresponding to alpha cluster separation. In a multipole representa-

tion, this requires changing both the quadrupole and the octupole deformation. This is in

fact what occurs in our GCM wave functions. Fig. 8 shows their deformations in the two

multipolarities. The coupling of the multipolarities can cause problems, however. We will
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Figure 8: Deformation of the octupole-constrained HFB configurations for 16O and 20Ne.

come back to this in the Appendix, referring to the coupling in 16O, also shown on the figure.

In table II the results for all the examples considered are collected. For the B(E3)

transition probabilities two formulas are used depending on the quadrupole deformation

(see next section).

Nucleus E3 (MeV) W (E3)

Exp. Present Other Theory Eq. Exp.

20Ne 5.6 6.7 5.2a 12 (11) 13

208Pb 2.6 4.0 4.0b 53 (12) 34

158Gd 1.04 1.93 11.6 (11) 12

226Ra 0.32 0.16 43 (11) 54

Table II: Summary of results for the four examples discussed in the text. References for column 4,

other theory: a) [1]; b) [2].

IV. SYSTEMATICS

We have applied the HFB/GCM/HW theory across the chart of nuclides including 818

nuclei between 8 ≤ Z ≤ 110. About 6% of them are octupole deformed in the HFB ground
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Figure 9: Chart of the nuclides showing those calculated in the present study. Those in black

have static octupole deformations in HFB. Except for the nuclei near N ∼ Z ∼ 40, the nucleon

numbers correspond well to the numbers 56, 88, and 136 listed in Ref. [10] as especially favorable

for octupole deformation.

state. The nuclei are shown in Fig. 9. Favorable conditions for static octupole deformation

occur when a high-j intruder orbital is close to an opposite-parity orbital with three units

less of orbital angular momentum near the Fermi energy[10], which happens for Z and N

values around 36, 56, 88, and 134. The regions around Ba and Ra are well-known in earlier

studies. We also find static deformations near 80Zr and near Z ≈ N ≈ 56 (for this region,

see also Ref. [5]. There are also calculations in the literature reporting static octupole

deformations in other regions as well[26, 27]. In any case, the HFB deformation is not an

observable. Physically, one can only measure excitation energies and transitions strength.

These are compared with experiment in the two subsections following.

A. Excitation energies

We now compare theory with the experimental data from the review by Kibédi and

Spear [25]. The excitation energies of the 284 tabulated nuclei with Z ≥ 8 are shown in Fig.

10, plotted as a function of A. The data show a strong overall A-dependence as well as shell-

related fluctuations. The line shows a fit to the smooth trend in A with the phenomenological

parameterization E(A) = 103/A0.85 MeV. The most pronounced fluctuation about the trend

is the rise and sudden drop near A = 208; the drop to low values is due to the extreme softness
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Figure 10: Octupole excitation energies as a function of mass number A. Circles: experiment;

triangles: theory.

in the octupole mode. The theoretical energies, shown as triangles, replicate the overall trend

with A and the dramatic fluctuation at A ∼ 208. However, overall the theoretical energies

are too high, particularly in the light nuclei.

A more detailed comparison of theory and experiment may be seen on the scatter plot

Fig. 11. For excitation energies above 1 MeV, the theoretical values track the experimental

but scaled by a factor. Around 1 MeV and below the theoretical values become closer to

experiment. The lowest energy measured excitations are in the Ra isotopes, where the

theoretical HFB wave functions have static octupole deformations. The theory reproduces

the low energies to several hundred keV on an absolute energy scale, but does not do well

on the logarithmic energy scale shown in the figure.

We also make some quantitative assessment of the performance of the theory, which should

be useful in the future for comparing with other theories. We use the same performance

measures as was used to assess theories of quadrupole excitations[11, 12], namely to compare

ratios of theoretical to experimental quantities on a logarithmic scale. In terms of RE =

log(E(th)/E(exp)) we determine the average value

R̄E = 〈RE〉 (9)

and the dispersion about the average,

σE = 〈(RE − R̄E)
2〉1/2. (10)
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cles are excitations with measured B(E3) strengths; open circles are other identified octupole

transitions[25].

The results are shown in Table III. The first line shows the comparison taking the full

HW treatment on the theoretical side and the full data set on the experimental side. One

sees that the predicted energy is systematically too high, by a factor of e0.44 ≈ 1.6. This

is similar to the situation with the quadrupole excitations. There the understanding is

that the wave function is missing components that would be included in collective theories

using Thouless-Valatin inertial parameters. There may be other reasons for the systematic

overprediction here that we will come back to in Sect. V. The dispersion in the values is

σE ≈ 0.4, corresponding to errors in the ratio of theory to experiment of −30% to +50%.

This is larger than the global dispersion found for the GCM-based theories of quadrupole

excitations. However, we saw in Fig. 11 that there are differences in the nuclear structure

that are responsible for the variable performance of the theory. Most importantly, the nuclei

with calculated static octupole deformations should be treated separately. Taking out these

nuclei, the dispersion decreases dramatically, as shown on the second line of the Table. A

further distinction can be made between well-deformed and other nuclei, spherical and soft,

respect to ordinary quadrupole deformations. A good theoretical indicator for deformed

nuclei is the ratio of 4+ to 2+ excitation energies, called R42. The values are available for
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the Gogny D1S interaction from the global study[12], and we use them to set the condition

R42 > 2.9 to define the set of well-deformed nuclei. The results are shown in the third

and fourth rows of the table. One sees that the dispersion becomes even narrower for the

nuclei in the nondeformed set. Thus, we can claim that the HFB/GCM/HW methodology

is quite successful for nondeformed nuclei, when allowing for the overall scale factor. On

the other hand, the deformed set is significantly poorer, with the average predicted energies

higher and a larger dispersion. A possible cause of this poorer performance could be the

misidentification of transitions in deformed nuclei. We have assumed here that all transitions

are associated with the axially symmetric octupole operator (K = 0). As discussed in the

next section, it is clear that some of the measured energies are for transitions with K 6= 0

(see also the 158Gd example). Since all the K values in spherical nuclei are degenerate, this

would explain the better overall agreement there.

HW MAP

Selection Number R̄e σe R̄e σe

all 284 0.45 0.40

β3 = 0 277 0.55 0.23 0.59 0.22

β3 = 0, def. 59 0.62 0.32 0.75 0.26

β3 = 0, sph. 196 0.52 0.19 0.53 0.17

Table III: Performance of the HW theory for excitation energies compared to the experimental

data tabulated in Ref. [25]. The performance measures rE and σE are given in Eq. (9) and (10) of

the text. The performance of MAP is shown as well on lines 2-4 for subsets of nuclei selected by

deformation criteria.

B. Transition strengths

The octupole transition strength is computed from the proton octupole transition matrix

element 〈o|Q̂3
1+tz
2

|e〉. In a strongly deformed nucleus, the excitation is in a K = 0 odd-parity

band and the spectroscopic matrix element from the 3− state in the band is given by

B(E3, 3− → 0+) =
e2

4π
〈o|Q̂3

1 + tz
2

|e〉2. (11)
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This formula was used in Ref. [3] to estimate the octupole transition strengths in Ra isotopes

and other possible octupole-deformed nuclei. On the other hand, if the state |e〉 is spherical,

then the excitation induced by Q3 gives a state |o〉 that has good angular momentum and

the transition strength can be calculated directly as

B(E3, 3− → 0+) =
7e2

4π
〈o|Q̂3

1 + tz
2

|e〉2. (12)

Notice that this is a factor of 7 larger than Eq. (11). The reason for the difference is that

Eq. (12) gives a total octupole transition strength, while Eq.(11) only gives the transition

strength for the K = 0 components.

Besides these limiting cases, there are soft nuclei which should fall in between. Thus, it

is imperative to restore good angular for the theory to have a global applicability. While

angular momentum projection has been carried out in the past[28–30], it is beyond the scope

of this article. Instead, we examine here the range of predicted values using a theoretical

marker of the deformation to distinguish nuclei falling in the different categories. Fig. 12

shows the ratios of theoretical to experimental B(E3) values, using the experimental data

set from Ref. [25] and Eq. (11) for the theory. The data is plotted as a function of the

quantity R42, the ratio of the lowest 4+ to 2+ excitation energies. Values around 2 or less are

characteristic of spherical nuclei, while strongly deformed nuclei have R42 ≥ 3. We take the

values for R42 from the spectroscopic calculations of Ref. [12], based on HFB/GCM with

the same Gogny D1S interaction used for the theory here. The plot show a lot of scatter,

but one can see two groups of nuclei, the left hand representing deformed nuclei. There is a

trend visible in the B(E3) ratios consistent with the above discussion.

To make the analysis more quantitative, we examine the logarithmic averages R̄ dividing

the nuclei into two groups according to R42. The results are shown in Table IV. Since we

use Eq. (11) to determine R, we should find R̄ = 0 for the first row of the Table. In fact, the

average is about 40 % high. For the second row, if all the nuclei were spherical, the strength

should be a factor of 7 larger. This implies that the R̄ calculated with the deformed formula

should give a value 0.33 − log(7) = −1.6. The value found, -0.99, shows that there is an

important effect of the deformation but that it is too simplistic to assume that these nuclei

are all spherical.

We note that the enhancement of the B(E3) for the less deformed nuclei is evident in the

projected calculations for 16O ([28]) and Pb isotopes near A = 208 ([30]). Also, in Ref. [31]
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Figure 12: Ratio of theoretical octupole transition strength to experimental, with the theoretical

strength obtained using Eq. (11). The horizontal axis is the ratio R42 from the theory of Ref. [12].

Experimental B(E3) values are from Ref. [25].

Selection Number R̄ σ

Deformed, R42 > 2.9 41 0.34 0.5

Other, R42 < 2.9 112 -0.99 0.7

Table IV: Ratio of theoretical to experimental B(E3) strengths. The second column is the number

of nuclei in the data set.

the authors remark on a strong disagreement between theory and experiment for 96Zr. This

is the case if one uses Eq. (11), but that nucleus is spherical according to the R42 criterion

and Eq. (12) gives a satisfactory agreement. We note also that 96Zr was predicted to be

unstable with respect to octupole deformations in Ref. [32].

It is of interest to examine the nuclei that deviate most strongly from the theory. In Fig.

12 there is a group of three outlier nuclei in the upper right-hand corner. The nuclei are 170Er

and its neighbors. In these cases, the experimental transitions are likely to be to excited

states with K 6= 0. The lowest 1− excitation in 170Er at 1.26 MeV has a K = 1− character,

and the first K = 0− is higher by 0.6 MeV. There are some studies in the literature in which

the K-dependence of the octupole excitation is examined[4, 33, 34]. In Ref. [33, 34] the

K = 0− bands were found to be higher in energy than other K values.

The other glaring anomaly is the nucleus 64Zn at R42 ≈ 2.4, which has a grossly under-
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predicted B(E3). It turns out that the quadrupole deformation of this nucleus changes sign

as β3 is increased. The ground state at β3 = 0 is oblate, but it switches to another minimum

with a prolate shape at moderate values of β3. The very small predicted B(E3) is due to

the small overlap between the oblate and prolate configurations. Clearly, the GCM must

include explicitly both quadrupole and octupole degrees of freedom to properly treat this

nucleus. A few other nuclei with similar Z values show the same behavior. We note that

the B(E3) comes out much closer to experiment if both even and odd states are taken from

configurations having the same sign of quadrupole moment.

V. DISCUSSION

We have demonstrated that a global theory of the octupole degree of freedom can be

constructed using the HFB/GCM/HW methodology. The theory reproduces the secular

trend of the excitations, the effects of an incipient static octupole deformation, and the

most visible shell effects. However, the theory has obvious deficiencies. Most notably, we

require a overall scaling factor of 1.6 to make quantitative comparison with experiment. It

is urgent to understand what physics is needed to make predictions on an absolute energy

scale. There are several possible reasons for the absolute errors. One is the Hamiltonian

itself. Besides the Gogny interaction, there have been calculations with the BCP interaction,

interactions from the Skyrme family and from relativistic mean-field theory. Ref. [17] found

that the D1S Gogny interaction and the BCP interaction gave significant differences in the

odd-parity excitations of Ra isotopes. The Gogny interaction is guided by nuclear Hartree-

Fock theory, and one of the characteristics is a nucleon effective mass less than the physical

mass. This implies that single-particle excitation energies will be higher than for a non-

interacting system, and these effects could carry over to the collective excitations as well.

We note that the calculation of the 208Pb in Ref. [2] using a Skyrme interaction with a

similar effective mass to D1S agrees with our results. However, the Relativistic Mean Field

Hamiltonian also has a small effective mass, but excellent agreement was obtained for E3 in

an isotone chain by (Q)RPA [9].

This brings up another source of systematic error in the GCM/HW, the restriction of

the degrees of freedom in the excitation to a single variable. It is well-known in the theory

of quadrupole excitations that time-odd components must be included in the wave func-
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tion to obtain good moments of inertia[38]. For large amplitude deformations, this can

be achieved by self-consistent cranking. When no time-odd components are allowed in the

angular momentum projected (AMP) GCM calculation the excitation energy is stretched

with respect to standard cranking calculations by a factor of around 1.4. This correction

factor is compatible with the discrepancies observed between our results and the experiment

in the case of 158Gd as well as with the overall 1.6 factor for the negative parity excitation

energies discussed previously. The single-operator approximation is also problematic due to

the fragmentation of octupole strength in the full spectrum. Roughly speaking, the octupole

strength has two important branches: the low collective excitation that is under study here,

and the high-lying excitation characterized as 3h̄ω in the harmonic oscillator model. Our

generating field introduces amplitudes of both into the constrained wave function.

More generally, one can introduce methods that would reduce to (Q)RPA in the small

amplitude limit. The raises the question of how well (Q)RPA would perform in a global

context. As shown in the Appendix, for a large fraction of nuclei the GCM/HW methodology

is essentially equivalent to (Q)RPA in a single collective variable. For these nuclei, the

(Q)RPA is justified and is very likely to give lower excitation energies.

The interaction of the octupole with the quadrupole degree of freedom is an interesting

problem that appears in several contexts in our study. First, the HFB static quadrupole

deformation of many nuclei invalidates a spectroscopic interpretation of the observables for

the physical angular momentum eigenstates of the system. We saw this most directly in the

discussion of the B(E3) transition strengths. The solution is to carry out angular momentum

projection. Another aspect missing from our study is the inclusion of K 6= 0 excitations in

deformed nuclei. This has been done in HFB-BCS in Ref. [4, 33, 39] and in HFB in Ref.

[34]. Since K 6= 0 bands can fall below the K = 0 octupole excitation band, it is essential

for a complete theory of the octupole excitations in deformed nuclei. We note that collective

models can be constructed that provide formulas relating the quadrupole excitation energies

to the octupole energies, and octupole energies to the B(E3) transition strengths [35, 36].

The interaction between quadrupole and octupole degrees of freedom might also play a role

in parity-violating transitions [37].

Some aspects of the quadrupole-octupole mixing may require a two-dimensional GCM to

describe properly. It was clear in the light nuclei that octupole and quadrupole deformations

are strongly coupled in forming alpha-clusters. Also we found that the severe problem
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describing the B(E3) in 64Zn could be traced to the coupling. We note that the two-

dimensional GCM has been implemented in the past. In Refs. [14] the coupled GCM was

applied to the complex spectroscopy of the nucleus 194Pb. Also, the microscopic theory of

asymmetric fission[13] requires at least a two-dimensional GCM.

One last aspect of the theory should be mentioned. We have seen in the examples that

the correlation energy of the ground state associated with the K = 0 octupole excitation

is of the order of one MeV. This can have an important influence on the theory of the

nuclear masses. We plan to investigate the systematics of the correlation energy in a future

publication.
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Appendix: Simplified approximations and limits

It is important to understand the limiting behavior of any computationally demanding

theory, both to check the reliability of the calculations as well as to see whether approxi-

mations are justified that would simplify the calculations. For the GCM/HW methodology,

the theory becomes analytic or nearly so if a few conditions are met. One requirement is

that there be only a single degree of freedom necessary to describe the excitation of the

system. There are simple Hamiltonians that satisfy this condition. Examples are the Lipkin

model[40], [41], where the degree of freedom is the number of particles in the excited orbital,

and the two-particle problem treated in Ref. [42] where the degree of freedom is the center-

of-mass displacement. In the last model and other like it the theory becomes analytic and

reduces to the RPA if the overlap integrals satisfy the Gaussian Overlap Approximation and

the matrix elements of the Hamiltonian reduce to a quadratic functions times the overlap.

In fact the relation to RPA remains even if there are many degrees of freedom in the GCM

[43, 44].

To make the discussion concrete, let us assume that there is a single continuous degree

of freedom q and we can write the overlap integral and the Hamiltonian matrix element as

〈q′|q〉 = e−(q−q′)2/q2
s (13)

〈q′|H|q〉
〈q′|q〉 = E0 +

1

2
v(q + q′)2 − 1

2
w(q − q′)2 (14)

The solution obtained by the Hill-Wheeler construction is identical to the solution of the

RPA equation for the operator Q̂ that generates the GCM states |q〉. The HW wave functions
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have the form of Gaussians in the variable q and the excitation energy is given by

h̄ωRPA = q2s
√
vw. (15)

Let us now compare with the MAP approximation. Here one first calculates projected

energies as a function of q,

〈e|H|e〉
〈e|e〉 = 2vq2

v − we−4(q/qs)2

1 + e−4(q/qs)2
(16)

and
〈o|H|o〉
〈o|o〉 = 2vq2

v + we−4(q/qs)2

1− e−4(q/qs)2
(17)

The energies are then minimized with respect to q. The results for a range of values of

the ratio w/v are given in Table V. The ratios q0/qe are close to
√
3, which may reflect

the harmonic oscillator character of the exact HW wave functions. In the last columns we

compare the MAP excitations energy with the RPA values. They are remarkably close.

w/v qe Ee qo Eo Eo − Ee h̄ωRPA

1.5 0.226 -0.0125 0.390 1.212 1.225 1.225

2.0 0.292 -0.0421 0.509 1.373 1.415 1.414

4.0 0.400 -0.232 0.716 1.782 2.01 2.00

8.0 0.469 -0.721 0.870 2.207 2.93 2.83

Table V: The MAP solution in the harmonic limit. Deformations are in units of qs and energies are

in units of vq2s . The last column shows the (Q)RPA excitation energy, Eq (15).

As a general conclusion, we find that if the MAP conditions are satisfied, the energies

are close to the RPA performed with a single collective variable. For those nuclei, it would

better to extend the space for the calculation using more RPA degrees of freedom than by

going to large amplitudes in a single collective variable.

It would be nice to find a criterion to test for validity of the simplified treatment. The

first condition we can check is the ratio qo/qe. This is graphed in Fig. 13 for the 284 nuclei

tabulated in Ref. [25].

There is a strong peak at β3m/β3p ≈ 1.9. This is slightly higher than the single-mode

(Q)RPA, but still close enough to make a further investigation of the quadratic Hamiltonian
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Figure 13: Ratio of MAP deformations β3p/β3m for nuclei with measured E3 [25].

approximation. There are also wings on the distribution extending from 0.9 (16O) to 3.2

(230U). Excluding the wings below 1.7 and above 2.2, the peak contains 80 % of the measured

nuclei.

To examine the validity of the quadratic approximation, we compared the extracted

coefficients vq2s and wq2s at the two deformations β3p and β3m. If the quadratic approximation

is valid, they should be equal. For example, the values of β3p and β3m at the closest mesh

points are 0.0375 and 0.075, respectively. The values of vβ2
3p and wβ2

3p extracted at that

mesh point are 0.23 MeV and 1.72 MeV, respectively. The corresponding numbers for β3m

are 0.94 MeV and 7.20 MeV, very close to 4 times the values at β3p. This is just what is

expected given β3m/β3p = 2, showing that 208Pb satisfies the conditions for the quadratic

Hamiltonian. With these values for v and w, the RPA energy formula Eq. (15) gives 3.9

MeV, close to the GCM/HW value of 4.0 MeV. The results for the nuclei within the peak of

Fig. 14 is shown as a scatter plot of the ratios. In general, the w term follows a quadratic

dependence very well. The v term can have large deviations, particularly for nuclei that are

soft to octupole deformations. However, for most of the nuclei, the quadratic approximation

is valid to an accuracy far better than needed, given the overall performance of the theory

in non-octupole deformed nuclei at the 25% level in the scaled energies.
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Figure 14: Ratio of MAP deformations β3m/β3p for nuclei with measured E3 [25].
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