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Abstract

We compute a model-independent correlation between the difference of neutron-neutron and

proton-proton scattering lengths |ann − aCpp| and the splitting in binding energies between Helium-

3 and tritium nuclei. We use the effective field theory without explicit pions to show that this

correlation relies only on the existence of large scattering lengths in the NN system. Our leading-

order calculation, taken together with experimental values for binding energies and aCpp, yields

ann = −22.9 ± 4.1 fm.
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I. INTRODUCTION

In quantum chromodynamics (QCD) there are two effects that lead to violations of isospin

symmetry. First, the electromagnetic interaction between quarks, and hence that between

protons (p) and neutrons (n), does not respect the symmetry: V em
pp is different from V em

np

and V em
nn . Second, the difference between up and down quark masses (mu,d) means that

isospin symmetry is violated even in the absence of electromagnetic forces. The existence

of md > mu results in, for instance, different nucleon masses mn > mp, which has profound

consequences for nucleosynthesis in the early universe, and nuclear physics in general [1]. A

better understanding of isospin-symmetry breaking is therefore of deep interest to nuclear

physics, and nuclear physicists. There has been much recent progress in this direction, with

experiments at TRIUMF and IUCF exploring novel signatures of the violation of isospin

symmetry, see Ref. [2] for a review.

The effect of isospin violation is significant in the nucleon-nucleon (NN) scattering lengths.

That is because these scattering lengths are the result of fine tuning between the range and

depth of the nuclear potential, and so small differences in either can lead to appreciable

shifts in the scattering lengths. In a world of an isospin-symmetry-conserving interaction,

both the neutron-neutron (nn) and the proton-proton (pp) channel are degenerate with the

1S0 neutron-proton (np, s) channel, because for two like fermions in a relative S wave, Fermi

statistics allow for a spin-singlet, total spin J = 0 state only. Hence, even relatively weak

isospin-violating interactions could have a significant effect on the nn/pp system.

The values of the proton-proton and neutron-proton scattering lengths, aCpp, anp,s are quite

well established, see Table I. For charged particles, aCpp is observable as the leading-order (LO)

parameter in a generalized effective-range expansion that includes the effects of the non-zero

Coulomb repulsion in the asymptotic states. In contrast, pp phase shifts, and hence the pp

scattering length, obtained exclusively from the strong part of the pp interaction retain a

residual dependence on the specific model for this short-range force, i.e., they are dependent

upon the renormalization scale and scheme [3–6].

Experiment reveals the differences between aCpp, anp,s, and ann, and thus that charge

independence and charge symmetry are both broken. Charge independence is associated

with an arbitrary rotation in isospin space while charge symmetry is conserved if a rotation

about π in isospin space leaves observables invariant (see, e.g. [2]). Current data allows for a
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relatively accurate extraction of np and pp scattering lengths, compared to the nn parameter

where the uncertainty is about two orders of magnitude larger (see Tab. I). For a recent,

thorough review of the status of experiments see Ref. [7]. Direct measurements are on the

horizon [8], but until now constraints on ann come from final-state interactions. However,

conflicting values for ann have resulted from attempts to follow this avenue in different

few-nucleon reactions—indeed, conflicting values have resulted from different experiments

investigating final-state interactions in n+ d → n+ n + p.

To extract ann accurately from this three-body deuteron-breakup experiment, the outgo-

ing particles should predominantly be in a state of very low neutron-neutron relative mo-

mentum. Furthermore, the proton’s effect on the detected neutron pair should be minimal.

This condition is satisfied for a large separation of the scattered pair from the proton which

remains at rest in the lab frame after the collision. This takes place in the nn quasi-free

scattering (QFS) kinematics. The cross sections corresponding to this and the analogous

np-QFS configuration constitute the experimental input for the subsequent extraction of

ann. Currently, there are two data sets from which an identical theoretical method extracts

conflicting values for ann. One setup records kinematical information of one neutron and

the proton [9, 10] yielding ann = −16.1± 0.4 fm, while the other detects all three outgoing

nucleons [11, 12] and produces ann = −18.7 ± 0.7 fm. The theoretical model employs the

CD-Bonn [13] NN potential and the charge-independent TM [14] three-nucleon interaction.

Recently, the sensitivity of theoretical predictions for the nn QFS cross section was investi-

gated [15]. There it was shown that the nn-QFS cross section has a stronger dependence on

rnn relative to changes in ann —after all, both experiments deal with small yet non-zero nn

energies, and so rnn would be expected to play some role. Ref. [15] found values of ann and

rnn that plausibly fit both sets and would resolve the discrepancy, albeit at the expense of

introducing appreciable charge-symmetry breaking in the nucleon-nucleon effective ranges.

In view of these complications another way to “measure” ann would be of great interest.

Here the effective field theory without explicit pions, EFT( 6π), is used to show that the

difference of nn and pp scattering lengths, ∆(a) := ann − aCpp, is correlated with the trition-

Helium-3 binding-energy difference, ∆(3) := B(t)−B(3He). This correlation has been known

for many years within the context of models of the NN interaction. See, e.g. Refs. [16–20],

and Ref. [21], which contains a review of work up until 1990. However, in these works

various models, each of which produce a specific ann, were used to compute ∆(3). The
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possibility of mapping out the general relationship and using the result to constrain ann was

not explored. Here we develop the correlation between ∆(a) and ∆(3) within a leading-

order EFT( 6π) calculation, which shows that this correlation stems solely from the existence

of large scattering lengths in the NN system. We give an indication of how higher-order

corrections can be expected to impact our result, and hence derive a constraint on ann,

using the value of aCpp given in Table I.

In general, for systems where the scattering length a, is much larger than the range of the

interaction R, an effective field theory based on the scale separation R ≪ |a| can be used

to derive model-independent results [22–27]. In nuclear physics this is EFT( 6π), and it is an

expansion in R/a, with a given by the numbers in Table I. EFT( 6π) can be used to derive

“universal” results that rely only on the existence of large scattering lengths. It has been

used to compute triton (B(t)), Helium-4 (B(α)), and Helium-6 binding energies [28–30]. At

leading order in the R/a expansion there are three parameters in the EFT that then yield

predictions for all other observables in systems with A ≤ 4: these can be taken to be the

spin-singlet and spin-triplet NN scattering lengths, and the binding energy of the three-

nucleon system. At next-to-leading order (NLO) in the R/a expansion the NN effective

ranges enter the problem, with all other low-energy NN parameters only affecting answers

beyond NLO [31–34]. This specifies the general EFT prescription of fitting a minimal set of

LECs to observables in order to make predictions for all other observables correlated to the

input set.

In particular, EFT( 6π) provides a map from an input set, e.g., the scattering length

anp,t, to a correlated set, whose elements, e.g., the deuteron binding energy B(d), are pre-

dicted with known theoretical uncertainty. However, even if this set of correlations is well

mapped out in the A-body system there appears to be no rigorous way to determine a

priori whether A+ 1-body observables will also be correlated with the A-body input quan-

tities. For example, the triton binding energy B(t) is not correlated with the np singlet

and triplet scattering lengths {anp,s, anp,t} [28], while the binding energy of the α particle

is correlated with {anp,s, anp,t, B(t)} [29]. For B(t), a strong sensitivity to short-distance

structure—parameterized, for instance, by a momentum-space cutoff Λ—is found, while the

dependence of B(α) on Λ is parametrically small once the value of B(t) is fixed. This latter

phenomenon, known as the Tjon line [35], allows for a prediction of the α-particle binding

energy once that of the triton is known.
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However, once it has been established that a higher-A observable is a member of the

set of correlated quantities, we may use that observable to constrain properties of smaller

subsystems. This prescription is used here, where we consider the binding energy difference

∆(3), which would be zero if isospin were an exact symmetry of nature. We therefore

exploit another feature of the EFT, namely the absence of a qualitative hierarchy amongst

low-energy observables in their role as input to fix the LECs. Thus, our interaction will take

{anp,s, B(d), aCpp, B(t), B(3He)} (A ≤ 3) as input, and we will obtain the scattering length

ann (A = 2) as output. Analogously, the Tjon line could be used to predict a range of B(t)

values which are consistent with B(α).

Our calculation of ∆(3) considers isospin violation from Coulomb interactions, and from

the difference in NN scattering lengths. Experimentally, ∆(3) is known to be 764 keV [62].

Note that we do not claim that our leading-order EFT( 6π) calculation of the individual tri-

nucleon binding energies is this accurate, but we are examining a binding-energy difference

that would be zero in the symmetry limit, and so a leading-order calculation of the difference

already provides a useful constraint on |ann − aCpp|. In pursuing such a calculation we are,

though, implicitly assuming that any isospin-violating component of the three-nucleon force

in EFT( 6π) enters only at sub-leading orders. We will present evidence that supports this

assumption.

The history of analyses of the impact of charge-independence breaking (CIB) and charge-

symmetry breaking (CSB) on ann − aCpp and the trinucleon binding-energy splitting is a rich

one (see e.g. [21] for a review of most of the investigations predating the advent of EFT

methods in few-nucleon theory). Today, modern high-precision nucleon-nucleon force mod-

els predict a trinucleon binding-energy difference, ∆(3), in good agreement with experiment:

∆(3, AV18+UIX) = 756(1) keV [19] and ∆(3, AV18) = 762(9) keV [20]. Even though the in-

dividual binding energies of the triton and Helium-3 receive significant contributions from

a three-nucleon interaction (TNI) in these models, ∆(3) is driven by the difference in the

nucleon-nucleon scattering lengths—at least once electromagnetic effects are properly ac-

counted for. Isospin-violating TNIs were considered in the framework of chiral perturbation

theory in Refs. [36, 37], and the leading-order isospin-violating TNI was found to contribute

approximately 5 keV to ∆(3) [36].

A recent LO analysis of ∆(3) in EFT( 6π) included the Coulomb interaction nonperturba-

tively. With ann and aCpp as input, a value of ∆(3) = 0.82 MeV was predicted using Faddeev
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methods and the dibaryon formalism [38]. In Ref. [39], the authors applied EFT( 6π) at LO,

NLO, and N2LO to predict proton-deuteron scattering- and bound-state observables. Their

comprehensive analysis demonstrates the usefulness of the EFT prescription in low-energy

pd scattering and in the Helium-3 bound state, since an order-by-order decrease of the theo-

retical uncertainty is obtained. In Ref. [39] too, ann and aCpp were used to fit the low-energy

constants of the EFT. Neither of these EFT( 6π) analyses included an isospin-violating TNI.

The article continues with an introduction of EFT( 6π) as the theory underlying the in-

teraction potential. Next, a section on the numerical method of a refined version of the

resonating group method (RGM), used to solve the few-body problem, precedes the pre-

sentation of the results. The results section includes subsections discussing the uncertainty

estimates due to suppressed higher-order long- and short-range interactions, and the limit-

ing (hypothetical) case of ann → aCpp. We then offer our conclusions, before assessing the

numerical stability of the refined RGM in an appendix.

II. INPUT: EFT(6π) WITH LEADING-ORDER COULOMB INTERACTIONS

AND ISOSPIN VIOLATION

The effective field theory without explicit pions (EFT( 6π)) at leading order in the ex-

pansion parameter Q/M is defined by the Langrangean (derived from the pionful theory

of [40])

L(CI) = N †

(

i∂0 +
~∇2

2mN

)

N − CS

2
(N †N)(N †N)

−CT

2
(N †σiN) · (N †σiN)− C3NI

2
(N †N)(N †τiN)(N †τiN) , (1)

where the six-nucleon contact term renormalizes the S = 1/2 nucleon-deuteron channel

(see, e.g. [28]). The (iso)spin matrices (~τ )~σ, with indices specifying the Cartesian compo-

nent, project onto spin singlet and triplet with the respective low-energy constant, CS,T .

The two-nucleon amplitude derived from this Lagrange density matches the effective range

expansion. The description is appropriate if the typical momentum exchange Q between

interacting nucleons of mass mN is small relative to the high-energy scale M ≈ mπ. For

Q >∼ mπ, this theory is not applicable as is uses the neutron and proton Pauli spinors

N = (|p, s = 1/2〉 , |n, s = 1/2〉) as degrees of freedom—nothing else. The interaction in
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Eq. (1) is charge independent and does not discriminate between neutron-neutron (nn),

proton-proton (pp), and proton-neutron (pn) pairs in the 1S0 NN channel. For a compre-

hensive analysis of systems including at least two charged protons at low energies, the effect

of the electromagnetic force cannot be neglected. This is apparent in the measured difference

between the pp and np 1S0 scattering lengths, aCpp = −7.8063± 0.0026 fm [41] compared to

anp,s = −23.748± 0.009 fm [42], where Eq. (1) yields aCpp = anp,s.

Electromagnetic interactions are considered canonically by promoting the Lagrangean

Eq. (1) to a local gauge theory, invariant under local U(1) transformations. Using Coulomb

gauge ~∇· ~A = 0, the contributions of the gauge fields Aµ to the pp amplitude can be split into

a part which scales as α/Q2, resulting from the part of the covariant derivative proportional

to N †eA0N (“Coulomb photons”), and others which are either suppressed by powers of

Q/M or at least m−2
N

(“transverse photons”). Here, this estimate justifies the usage of the

Coulomb potential resulting from the “exchange” of one Coulomb photon to account for the

electromagnetic interaction at low energies.

Without charge-independence-breaking (CIB) mechanisms stemming from a broken flavor

SU(2) symmetry in the u-d quark sector, i.e., mu 6= md, the np and nn 1S0 channels would

still be degenerate. To refine the analysis, the lowest-order contribution from this asymmetry

is included. The dominating terms are expected to be of lowest-mass dimension while a

dependence on the direction of the isovector is now admissible in order to distinguish nn, pp,

and np vertices. In a hierarchy of isospin-violating interactions [43, 44], those contact terms

which are expected to scale as ǫQ0 with ǫ = md−mu

md+mu
≈ 1

3
should be subleading compared to

the Coulomb potential. We include both the Coulomb potential, and these isospin-violating

short-range operators, in our calculation, allowing us to formulate a model-independent

assessment of which ann values are consistent with the experimental tri-nucleon binding

energy splitting ∆(3), the singlet(triplet) np S-wave scattering lengths anp,s(t), and a
C
pp.

The subsequent analysis is therefore based on the Lagrangean (1), including pieces ob-

tained by the minimal substitution ∂0 → ∂0 + ieA0, combined with explicit CSB terms:

L(CSB) = −C
nn
S

2

(

n†n
) (

n†n
)

− Cpp
S

2

(

p†p
) (

p†p
)

. (2)

The tree-level diagrams corresponding to the interactions in Eq. (2) define the isospin-
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violating part of the potential

V̂ (CSB) =
A
∑

i<j

[

(

e2

4|~r(i)− ~r(j)| + Cpp
S fΛ(~rij)

)

(1 + τ3(i)) (1 + τ3(j))

+Cnn
S (1− τ3(i)) (1− τ3(j)) fΛ(~rij)

]1

4
(1− ~σ(i) · ~σ(j)) (3)

in coordinate representation with fΛ(~rij) :=
(

Λ3

8π3/2

)

e−
Λ2

4
~r2ij . Meanwhile, the isospin-

conserving piece of the potential, which stems from Eq. (1), is:

V̂ (CI) =

A
∑

i<j

fΛ(~rij) [CS + CT ~σ(i) · ~σ(j)] +
A
∑

i<j<k

cyclic

fΛ(~rij) · fΛ(~rjk)C3NI ~τi · ~τj . (4)

These operators V̂ (CSB), V̂ (CI), are used in the Schrödinger equation and originate from

the momentum-independent vertices via a Gaussian regulator of the non-separable form

fΛ(~p, ~p′) = e−(~p−
~p′)

2
/Λ2

, which Fourier transforms into a Gaussian depending on the relative

coordinate. From this non-relativistic equation of motion, variational approximations to the

bound and scattering states of the two- and three-nucleon systems are obtained. In solving

the equation of motion, the potential is iterated.

The iteration of the unregulated (Λ → ∞) interaction ∼ C2 := CS+CT in the 3S1 channel

yields a np total isospin T = 0 amplitude [45]:

T T=0,np(p) =

[

1

C2

−
∫

d3q

(2π)3
1

E + iǫ− q2/mN

]−1

(5)

where p =
√
mNE is the relative momentum of the np pair in the c.m. frame and ǫ is

a positive infinitesimal. C2 can then be chosen in order to obtain the real bound state

(deuteron) in that channel:

T T=0,np(p) =
4π

mN

1

γ + ip
, (6)

where we have chosen to ignore terms which are suppressed by p2/Λ in the denominator,

although these pieces will be present in the denominator for any finite Λ, and will thus pro-

duce a non-zero, positive [46], and cutoff-dependent effective range. The binding momentum

is denoted here as γ =
√

mNB(d).

Similarly, the iteration of either C1 := CS − 3CT or C1+Cnn
S produces the virtual bound

states in the np and nn systems:

T T=1,np/nn(p) =
4π

mN

1
1

anp/nn
+ ip

, (7)
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under the same conditions as in Eq. (6). The isospin-violating terms account for the dif-

ference in the scattering length of nn, relative to np. Without the Cnn
S counterterm, the

spin-singlet nn and np channel would be degenerate: ann = anp,s.

The case in the proton channel is different, due to the presence of the Coulomb interaction

there. The computation of pp scattering was carried out to LO in EFT( 6π) for S-wave NN

scattering in Ref. [4, 47]. Our presentation of pp scattering rests on that treatment. The

final result is [48]

T = TNC + TCoul, (8)

with TCoul the amplitude for scattering due to the Coulomb potential alone. TNC encodes

the purely strong scattering and the Coulomb-nuclear interference:

TNC = C2
η exp(2iσ0(η))

1
1

C1+Cpp
S

− J0(p)
. (9)

Here C2
η is the Sommerfeld factor:

C2
η =

2πη

e2πη − 1
, (10)

and the Coulomb parameter η := mNα
2p

, with σl(η) = argΓ(l+1+ iη) (Γ is the Euler gamma

function). In Eq. (9) J0(p) is the Coulomb-modified bubble, depicted in Fig. 1. If computed

in PDS [23] at a renormalization scale µ, its finite part is:

Jfinite
0 (p) = −αm

2
N

4π

[

H(η)− ln

(

µ
√
π

αmN

)

− 1 +
3

2
CE

]

− µmN

4π
, (11)

once divergences in D = 4 and D = 3 have been dropped. In Eq. (11), the function

H(η) = ψ(iη) +
1

2iη
− ln(iη), (12)

with ψ the derivative of the Euler Gamma function, Euler’s constant CE = 0.5772(...), and

α = e2/4π (see also [49–52]).

The denominator in Eq. (9) can be matched to the modified effective-range expansion:

TNC = −C2
η

4π

mN

exp(2iσ0)

− 1
aCpp

+ 1
2
r0p2 − αmNH(η)

. (13)

This expression for T encodes the fact that the spherical Bessel functions, the asymptotic

solutions for the np/nn system, are now replaced by Coulomb functions [48]. When this

matching is performed at leading order (r0 = 0) we find that

1

C1 + Cpp
S

=
mN

4πaCpp
+
αm2

N

4π

[

ln

(

µ
√
π

αmN

)

+ 1− 3

2
CE

]

− µmN

4π
. (14)

9



= + + +
. . .

FIG. 1: A diagrammatic definition of the Coulomb bubble J0. The solid lines are nucleons, and the

dashed lines represent exchanges of static Coulomb photons. The shaded blob is the amplitude for

a pair of protons interacting via a zero-range contact interaction (gray circular vertex), propagating

in the static Coulomb field, and finally interacting strongly again at zero separation.

To produce the experimentally observed aCpp the combination C1 +Cpp
S is fitted to the value

listed in Table I. Strictly speaking, the aCpp listed there is extracted from data using an

effective-range expansion that considers a refined version of the Coulomb potential and

vacuum-polarization effects [41]. However, here we have a long-range part of the pp potential

consisting only of the Coulomb interaction. The uncertainty due to higher-order long-range

interaction effects, such as vacuum polarization, is included below in the overall theoretical

error estimate.

Regardless of this detail though, we see that aCpp can be obtained from the pp amplitude

in a manner that is independent of the renormalization scale µ. In contrast, attempting to

“switch off” Coulomb interactions and compute the effect obtained solely from the strong

interaction, C1+C
pp
S , yields a result that, within PDS, is dependent upon the renormalization

scale µ. C1 + Cpp
S contains a lnµ piece, and there is no corresponding lnµ piece of the

Coulomb-less loop function to cancel that. Our calculation is not done using PDS, but

instead with a Gaussian regulator, yielding approximately a lnΛ dependence of the Cpp
S that

reproduces aCpp (the ln Λ dependence is seen explicitly with a sharp momentum cutoff [4]).

But, in any case, this cutoff/renormalization-scale dependence renders quoting a “strong pp

scattering length” a questionable exercise [5, 6]—at least in the absence of an agreed upon

choice for the regularization and renormalization scheme and scale. Therefore, in what

follows we quote all results in terms of aCpp, which is a physical observable, and as such is

independent of these choices.

In practice, the equation

(

A
∑

i=1

~∇2
i

2mN

+ V̂Coulomb + V̂ (CS,T , C
nn,pp
S , C3NI)

)

|ψ〉 = E|ψ〉 (15)
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is solved for two-body scattering (E > 0 , A = 2) and three-body bound states (E < 0 , A =

3, see Sec. III below). In total, five LECs are fitted to low-energy data according to Table I.

Again, it is the sum C1 + Cnn
S that controls the nn channel, not just Cnn

S !

Isospin-violating interactions at the quark level imply furthermore a mass difference be-

tween the neutron and the proton. This consequence is a higher-order effect in our counting,

as it is not enhanced by the fine-tuning in the NN system. Hence, it is not accounted for

in the calculation below, where throughout mn = mp =: mN = 1
2
(938.211+ 939.505) MeV is

used. In sec. IVB, the contribution of this mass difference to ∆(3) is included in the error

assessment.

III. THE RESONATING-GROUP METHOD

For the solution of the two- and three-body problem the variational Resonating Group

Method (RGM) is employed. In the following, the RGM is introduced by the specific example

of the variational space used for the triton calculation of this work.

The ground state is expanded in two different variational bases which differ in the angular-

momentum coupling scheme between the spin- and coordinate-space components of the wave

function. First, the ansatz for the three-body state in the “LSJ-scheme” (total angular

momentum J and parity π), used here in Jacobi-coordinate space (~ρ1, ~ρ2), reads

∣

∣ψ(~ρ1, ~ρ2), J = 1/2, π = +
〉

LS
= f1(~ρ1, ~ρ2)|d− n〉+ f2(~ρ1, ~ρ2)|d− − n〉+ f3(~ρ1, ~ρ2)|(nn)− p〉 ,

(16)

namely, a linear combination of all possible two-fragment substructures within the triton:

deuteron (d), spin-singlet deuteron (d−), and dineutron (nn). Thus, the coupling schemes of

the spin (S) and isospin (T) angular momenta are fixed, e.g.,

|d− n〉 =
[

[

|n, ms1〉 ⊗ |p, ms2〉
]1

⊗ |n, ms3〉
]

1
2
mS

·
[

[

|n, mt1 = −1

2
〉 ⊗ |p, mt2 =

1

2
〉
]0

⊗ |n, mt3 = −1

2
〉
]

1
2
mT

. (17)

The square brackets are shorthand for a basis where the irreducible representations are

labeled by quantum numbers corresponding to (S+S ′)2 for two general tensor operators with

spherical components m(m′),
[

Sm ⊗ S ′m′
]JM

=
∑

m,m′(SmS ′m′|JM)SmS ′m′

(see e.g. [53]).
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The coordinate-space wave functions fi are expanded in a Gaussian basis of dimension Di:

fi =

Di
∑

j=1

cij exp(−γij1 ~ρ 2
1 − γij2 ~ρ

2
2 ) · [Y0 (~ρ1)⊗ Y0 (~ρ2)]

L=0 . (18)

Here the two solid harmonics [53] are both chosen to correspond to relative angular momen-

tum zero. As in the Faddeev approach of [28, 38, 39] with LO EFT( 6π), the dynamics in

the variable ~ρ1 are affected by S-wave NN interactions only (the ~ρ1 coordinate parameter-

izes the two-nucleon fragment, for instance, the relative coordinate between a proton and

a neutron in a deuteron-neutron configuration). As the lowest-lying bound state will occur

for an angular momentum on the second coordinate, e.g., between the center of mass of a

deuteron cluster and the remaining neutron, which is zero as well, the total orbital angular

momentum is also zero (L = 0). The impact of higher angular momenta on the solution for

the 3N bound state is assessed in Appendix A.

The relative size of the variational parameters cij then determines the overlap of the cor-

responding configuration with the triton, and hence the significance of a certain combination

of width parameters γij1,2 for the grouping i. The triton ground state, for example, is found

to have the largest overlap with the d-n grouping. To this configuration, parameters γ1

that resemble the spatial extent of the deuteron and γ2 that place the neutron at a farther

distance, contribute most. For the other two groupings, i = 2, 3, the two-body fragment is

unbound. In consequence, basis vectors with smaller widths γ1, i.e., broader spatial extent,

become important.

In the basis (16), the individual spin- and orbital angular momenta are coupled separately

to their total S and L before they combine to total J . This coupling scheme is different

from the one used in [39]. The RGM ansatz used for two-fragment scattering resembles that

calculation:

∣

∣ψ(~ρ1, ~ρ2), J = 1/2, π = +
〉

ch
=

[

f1,lrel ⊗
[

|d〉 ⊗ |n〉
]Sch

]J

+

[

f2,lrel ⊗
[

|d−〉 ⊗ |n〉
]Sch

]J

,

(19)

with fi,lrel =
∑Dr

j=1 cije
−γ2

ij~ρ
2
2Ylrel (~ρ2) and a two-fragment wave function determined within the

same framework. Now, the deuteron’s J = 1 is combined with the neutron to a channel spin

Sch which couples to the relative orbital angular momentum lrel
here
= 0 to the total J . With

the two-fragment wave function fixed, the variational parameters cij determine the relative

importance of the components and the expansion of the coordinate-space wave function of
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TABLE I: Data input for the LECs which specify the interaction Eq. (3). The values were fitted

nonperturbatively with the RGM and include the Coulomb potential’s contribution. Four sets of

LECs corresponding to Λ = 400, 800, 1600 MeV were adopted. The two sets for Λ = 400 MeV

correspond to different input data.

channel low-energy constants (LEC) constraining observable

(np) 1S0 C1 anp,s = −23.748 ± 0.009 fm [42]

(np) 3S1 C2 anp,t = 5.4194 ± 0.002 fm

B(d) = 2.224575± 0.000009 MeV [54]

(pp) 1S0 C1 + Cpp
S aCpp = −7.8063 ± 0.0026 fm [41]

(npp) 2S1 C1 + Cpp
S , CS , CT , C3NI B(3He) = 7.718109± 0.000010 MeV

(nnp) 2S1 C1 + Cnn
S , CS , CT , C3NI B(t) = 8.481855± 0.000013 MeV

the third particle relative to the center of mass of the pair. This resembles the usage of

the various dibaryon propagators ∆
ij(AB)
d(t) for the deuteron (1S0) channel (see [28, 39]) in

the Faddeev approach, and the corresponding projection to deuteron-neutron (for example)

relative angular momentum zero. The expansion parameters cij of the triton in both the

LS and the channel basis are obtained by solving the generalized Eigenvalueproblem for a

Hamiltonian incorporating the potential of Eq. (3), i.e. Eq. (15).

IV. RESULTS

Here, to obtain a result for ann different from the values of the other two-nucleon scattering

lengths, the triton binding energy B(t) is used as input for Cnn
S . The triton constitutes

the next larger system where an interaction between two neutrons is observable. If there

are no additional three-nucleon operators which affect low-energy modes and break isospin

symmetry then B(t) and ann are correlated, and therefore ∆(3) is correlated with ∆(a). An

interaction given by Eq. (3) with B(t) as input for Cnn
S will then predict ann within our

uncertainty bounds.

The results presented in Fig. 2 are RGM solutions to the Schrödinger equation with an

interaction given in Eq. (3) and LECs constrained by the conditions defined in Table I. The

correlation as shown there is obtained by a variation of Cnn
S . The predictions for ann of

13



four interactions, each containing different short-distance physics (see below), inferred from

the intersection of the computed correlation line with the experimental value for ∆(3) :=

B(t)− B(3He), suggest

lim
Λ→∞

ann(Λ) ≈ −20.8 fm. (20)

An assessment of whether the chosen set of input quantities and leading-order calculation

are such that this prediction discriminates between the two conflicting measurements of ann:

ann = −18.7±0.7 fm [11, 12] and ann = −16.1±0.4 fm [9, 10] occupies much of the rest of this

section. If both data points are consistent with the LO prediction (20) within the uncertainty

of that calculation, a higher-order analysis is needed before any conclusion can be drawn.

That theoretical uncertainty results from two expansions and their respective truncation.

The error from expanding the wave function in a finite-dimensional variational space (see

above) is discussed in Appendix A and is found to be ±1.5 keV there. In Subsections IVA

and IVB the effect of omitted higher-order interactions in the expansion of the Lagrangean

shall be analyzed. The additional contributions result from the broken isospin symmetry

of the underlying theory in both the strong and the electromagnetic sector. The omitted

effects in the EFT are divided here into short-range parts, which all occur in the strong part

of the charge-symmetry breaking Hamiltonian, and long-range effects, the most important

of which are electromagnetic interactions beyond Coulomb repulsion and the impact of the

neutron-proton mass difference on ∆(3).

A. Theoretical uncertainty I (short-range)

In this subsection the effect of omitted higher-order NN operators in the Lagrangean

which correspond to strong interactions will be assessed. These operators must violate

charge symmetry, or they will not contribute to ∆(3). They become relevant for modes with

momenta of order mπ. In this bound-state calculation these high-energy modes can only

affect observables through loops. Their effects are assessed here in two ways. First, by a

change in the regulator parameter Λ; specifically, Λ = 400, 800, 1600 MeV and thereby three

different short-range potentials are used. Second, by a change from anp,t to B(d) as input for

C2, which demonstrates how imposing renormalization conditions at different characteristic

momenta changes the output predictions.

The LEC values corresponding to these four different cases (Λ = 400, 800, 1600 MeV,
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pp scattering lengths at LO in EFT(6π). Correlation lines correspond to regulator values 400 MeV,

800 MeV, and 1.6 GeV. For Λ = 700 MeV, the correlations overlap with the displayed lines and

are not shown.

anp,t instead of B(d) as input) are different because each set represents a different model

for the short-distance part of the interaction. The substitution anp,t → B(d) was made for

Λ = 700 MeV only, and did not result in a significant shift of the correlation line. All

four sets of LECs reproduce, by construction, the same long-distance behavior, as given

by the specific input data, within higher-order uncertainty. The difference in predictions

derived from the four potentials is thus the uncertainty due to permitted variations in the

short-distance physics. This sets a lower bound for the theoretical uncertainty.

Our assumption that three-nucleon forces do not contribute to B(t)−B(3He) at leading

order is supported by the absence of any significant cutoff variation in our result for this

observable. This cutoff dependence is quantified by the width of the correlation band shown

in Fig. 2. Naive dimensional analysis suggests that the three-nucleon contribution to this

binding-energy difference should be less than that of CSB two-nucleon operators, and the
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results found here do nothing to contradict that view. Similar conclusions have recently been

reached by other authors [39]. Of course, naive dimensional analysis is strongly violated in

EFT( 6π) in the isospin-symmetric sector, with the TNI being of leading order there. Thus a

power counting for isospin-violating operators in EFT( 6π), e.g. along the lines laid out for

sub-leading isospin-symmetric forces in Ref. [60], remains an interesting open problem.

The following brief discussion explains the choice of Λ = 1600 MeV as an upper bound

for the cutoff. Λ is not increased further because of the corresponding increase in the

unrenormalized three-nucleon binding energy. A diverging three-body ground-state energy

is the result of a two-body interaction whose range is decreased and strength increased to

fit anp,s and anp,t (Thomas effect). The discrepancy in the binding energy with and without

a three-nucleon force—introduced to properly renormalize one three-nucleon bound-state

energy to that of the triton—increases in consequence, with more bound states entering the

spectrum at specific cutoff values. In Fig. 3 the relevant part of the three-nucleon spectrum

that is obtained without a TNI is shown as a function of the regulator. The NN interaction

fits C1,2 to the singlet and triplet np scattering lengths for each Λ, and a new “Efimov”

trimer is found to enter around Λ = 750 MeV. The three-body force has then either to be

strong enough to lift a very deeply bound three-body state (solid gray line in Fig. 3) to the

experimental triton energy while unbinding the other states, or it must pull the shallowest

of those states (dashed gray line in Fig. 3) to the triton level. In either case the variational

basis must be refined, either to expand states of considerably larger binding energy, or to

treat excited states accurately. Convergence for either case requires a larger RGM space

compared to the one where only one three-body state is bound, and bound with an energy

already of the same order of magnitude as that of the triton.

For the three representative cutoff values used to obtain Fig. 2, the three-body parameter

was always adjusted to elevate the ground state to the triton level, because this repulsive

force pushes all the shallow states that are not typically resolved by the RGM basis above

the d−n threshold.(In the qualitative analysis of the previous paragraph, whose results were

shown in Fig.3, a small space was chosen that expands only one of the shallow states, EV2

in Fig. 3.) The long-distance properties of the three-body state are correctly reproduced by

this basis, as witnessed by the fact that the d − n threshold approaches its predicted value

of B(d) = 1/(a2np,tmN) ≈ 1.41 MeV for Λ → ∞. (The value here is the correct one, given

that anp,t is taken as input. Slightly different thresholds will be found at any finite Λ, since
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in that case higher-order terms in the effective-range expansion are not zero.)

Bearing this limitation in mind, the graph in Fig. 2 allows the theoretical uncertainty at

this order to be estimated as the maximal ann difference at the experimental binding-energy

splitting:

δshort =
1

2
|ann(800 MeV)− ann(1.6 GeV)| ≈ 2 fm. (21)

Accordingly, we identify the mean value of all regulator-dependent ann values with the

EFT( 6π) prediction. We stress that this choice is somewhat arbitrary and does not coincide

with the choice made in [30] for the average charge radius of the triton. For that radius, the

EFT( 6π) prediction was taken to be an extremal value calculated for the smallest employed

cutoff. That choice was made because another LO calculation predicting the triton charge

radius [55] showed that the variation of cutoff and input data in [30] was not reflecting

the total LO uncertainty. In fact, both here and in [30] we take the mean of all available

EFT( 6π) predictions for the observable of interest (here, ann and in [30] the triton charge

radius), regardless of the numerical method used to obtain them. The LO uncertainty is

then given as half the difference between the minimum and maximum value predicted for

that observable. This seems a sensible general prescription for defining central values, and
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uncertainties due to short-distance physics, in EFT( 6π) calculations.
Here, only the ann = −18.7 fm data point lies within this uncertainty range. This

result, however, does not yet allow for the conclusion that the smaller datum is inconsistent

with the input data, {anp,s, B(d), B(3He), aCpp}. Only if the uncertainty due to long-range

contributions does not add to δshort an amount that would increase the total uncertainty to

eventually include the second data point, can such a discrimination be made.

B. Theoretical uncertainty II (long-range)

As a cutoff variation assesses only the dependence on short-distance structure, an estimate

of the theoretical uncertainty is incomplete without considering effects sensitive to low-

momentum modes. Above it was argued why the long-distance part of the interaction can

be approximated by the Coulomb potential. It is shown here that uncertainties from thereby

omitted higher-order interactions, which are not assessed by the Λ variation considered in

the previous subsection, are sufficiently small to render only one experimental data point

for ann consistent with the input observables.

For this purpose, ∆(a) is treated as a function of ∆(3), i.e., an interpolation of the

dependence whose graph is shown in Fig. 2 is inverted. Furthermore, the assumption that

higher-order interactions will yield a correlation line which might be shifted but is identical

in shape compared to the ones shown is made. Then, the error in ∆(a) introduced by the

suppressed terms who contribute to ∆(3) a correction ∆c(3) that can be approximated via

δlong ≈
∂∆(a) (∆(3))

∂ (∆(3))

∣

∣

∣

∣

∣

∆(3)=0.756 MeV

·∆c(3) . (22)

The two long-distance effects we must consider are:

1. The difference in the nucleon kinetic energy due to non-equal neutron and proton

masses. Parametrically we estimate the size of this effect to be:

〈 p2

2mN
− p2

2mn
〉 ≈ (mn −mp)〈

p2

2m2
N

〉. (23)

Taking 〈 p2

2mp
〉 ∼ B(t) we find:

∆c(3;mn −mp) ∼ (mn −mp)
B(t)

mN
∼ 10 keV. (24)

This is in good agreement with the value from Ref. [36], ∆c(3;mn −mp) = 14 keV.
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2. The electromagnetic interaction between nucleon magnetic moments, between the cur-

rents associated with moving protons, and due to vacuum polarization. Those effects

were calculated numerically to increase the mass difference by less than 30 keV (see

e.g. [56] where the various contributions where calculated with the AV18/IL2 model).

Furthermore, the corrections to the Coulomb potential due to the proton’s finite size

have to be accounted for. In fact, these turn out to be the largest of the higher-order

electromagnetic effects, since they modify the Coulomb energy by a fractional amount

∼ r2p/R
2, where R is the typical distance scale which dominates the Coulomb energy.

Putting in rp ≈ 0.85 fm, R ≈ 2.5 fm we might expect up to a 10% effect. Numerical

evaluations [18] however suggest a somewhat smaller number, reducing the mass dif-

ference by about 33 keV. Importantly, the finite proton size decreases the impact of

the electromagnetic interaction on the binding energy (thus increasing B(3He)) while

the other effects listed above increase it (and so decrease B(3He)). Thus, each class

of correction could individually induce an error of order 30 keV in our LO binding

energy calculation, but they work in opposite directions, such that we can confidently

say that their combined effect will not produce more than a 28 keV shift in ∆(3).

Combining these two higher-order effects linearly with the 2 keV RGM uncertainty (see

Appendix A) we find a potential higher-order correction due to long-distance effects which

could be as large as ∆c(3) = 44 keV. Employing Eq. (22), this produces an uncertainty of

δlong = 2.1 fm. (25)

The combined theoretical uncertainty in ∆(a) due to higher-order long- and short-range

interactions is then, conservatively, taken to be

δLO = δlong + δshort = 4.1 fm. (26)

The central value for ann between the maximum adopted at Λ → ∞ (see eq. (20)) and the

minimal prediction at Λ = 800 MeV is −22.9 fm. EFT( 6π) thus yields, at leading order, a

neutron-neutron scattering length of

ann (EFT( 6π)) = −22.9± 4.1 fm. (27)

Hence, the datum ann = −18.7 ± 0.7 fm is consistent with the input data set

{anp,s, aCpp, B(d, t,3He)} while the other datum ann = −16.1± 0.4 fm is inconsistent.
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C. The limit ann → aCpp

The interactions which generate ann and aCpp are different: the short-range part is of the

same structure but different in strength. In the nn case it is solely responsible for ann,

whereas, for pp, it complements the Coulomb force to yield aCpp. It is therefore not obvious

that for Cnn
S such that ann ≈ aCpp, the triton will be bound by the same amount as 3He is.

Calculation at ∆(a) = 0 (i.e. ann = aCpp) results in

∆(3) = −0.11± 0.1 MeV, (28)

i.e., two three-body systems of equal binding energy. The bound states result from the same

short-range np interaction, but a purely short-range force between the like pair in the triton,

and a combination of a similar short-range counter term plus the Coulomb interaction in

Helium-3. The resultant approximate degeneracy in the binding energies is a reflection of

the fairly small characteristic momenta. Comparing the nn and pp phase shifts resulting

from interactions with ∆(a) ≈ 0 at Λ = 1.6 GeV (Fig. 4), the nn interaction is found

less repulsive than the pp one below Ec.m. ≈ 0.65 MeV, equal around 0.65 MeV, and more

repulsive for Ec.m.
>∼ 0.65 MeV. If bound states receive significant contributions from modes

with kc.m.
<∼
√

mN(2 MeV) =: pbalance ≈ 45 MeV, then the difference in Vnn and Vpp is

näıvely expected to balance, yielding approximately the same binding energies, as we see in

Eq. (28), since ann ≈ aCpp produces ∆(3) ≈ 0. In fact, this analysis implies a momentum

distribution amongst the nucleons within the triton bound state which is dominated by

momenta markedly smaller than the conventional estimate: ptyp :=
√

2 · 2/3mN · B(t) ≈
100 MeV—at least as far as the momenta pertinent to the binding-energy difference ∆(3)

are concerned.

Furthermore, the reasoning implies that more deeply bound mirror nuclei will exhibit

a larger difference in their binding energies, even though the respective two-body scatter-

ing lengths are equal. In a world where not only ∆(a) = 0 but additionally B(3He) ≫
B(3He,exp), the uncharged mirror image would be not as deeply bound, B(t) ≪ B(3He),

as a result of the stronger repulsion of the uncharged ‘neutrons’ as compared to protons at

relative momenta greater than about 20 MeV.

This hypothesis is confirmed by the results of a RGM calculation (Fig. 5). A smooth

change of the three-nucleon parameter C3NI increases B(3) but leaves the two-nucleon sector
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invariant, i.e., ann = aCpp ≈ −7.8 fm, anp,s ≈ −23.75 fm, and the deuteron at its physical

binding energy. The result is an increasingly less bound uncharged system relative to its

charged mirror sibling, as conjectured above. In more detail, the triton is found not as deeply

bound (intersection of dashed line with gray band in Fig. 5) as in our world (black band in

Fig. 5) for a TNI producing the physical Helium-3 binding energy. This is a consequence of

the more repulsive nn force at low momenta implied by ∆(a) = 0. Adjusting the TNI to

yield a more deeply bound Helium-3 widens the gap between its ground state and the p− d

breakup threshold because B(d) remains constant. The triton binding energy also increases

in this procedure and is found larger than B(3He) for B(3He) ≈ 12 MeV (∆(3) > 0 as shown

by dashed line in Fig. 5) becoming increasingly less bound relative to B(3He) as B(3He)

increases further. This behavior of B(3He) is in accord with the qualitative discussion

above.

For systems with ptyp much smaller than pbalance the opposite behavior is expected. If we

assume, for the moment, that ann = aCpp, the above reasoning can be used to shed some

light on the situation in the six-body system. In 6He, the two halo neutrons are very weakly

bound together with an α core. Of course, it is possible that 6He would not be bound if

ann were reduced to agree with aCpp. But, even if 6He were bound for this smaller ann, the

momenta in that bound state are low enough that the mirror nucleus 6Be with two ‘halo’
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protons will not be bound. The pp interaction is more repulsive for those low momenta—due

to Coulomb effects. An explicit calculation at an order in EFT( 6π) which generates 6He as

a shallow bound state is required to validate this hypothesis. At present, a leading-order

analysis is not able to reach this level of accuracy.

V. CONCLUSION

The Coulomb energy 〈VC〉 of the three-nucleon system can be computed reliably with

EFT( 6π) wave functions. In Ref. [30] an NLO EFT( 6π) computation gave a value of 660 ±
30 keV for 〈VC〉. In this work we have considered, in addition to Coulomb effects, the

impact of the charge-symmetry-breaking NN operators which produce different (strong) pp

and nn scattering lengths. We carried out the LO EFT( 6π) calculation for three different

cutoffs Λ = 400, 800, and 1600 MeV using the modified renormalization-group method. We

found a robust correlation between B(t) − B(3He) and the difference of scattering lengths

∆(a) := ann−aCpp. The fact that this correlation is largely independent of the short-distance

physics in the NN system indicates that three-nucleon operators do not contribute to this

isospin-violating difference of binding energies at leading order.

From the correlation and the experimental values of the tri-nucleon binding energy dif-

ference and aCpp we infer:

ann = −22.9± 4.1 fm. (29)

The uncertainty here has been assessed by adding linearly estimates of the impact of higher-

order, short-distance operators in the NN system and of neglected long-range effects (e.g.,

magnetic-moment interactions, as well as the nucleon mass difference). “Short-” and “long”-

distance effects of higher order appear to contribute roughly equal amounts to the error bar.

The result (29) is due to operators that are first-order in isospin breaking, and so first-

order perturbation theory with these operators, evaluated between charge-symmetric triton

wave functions, could also have been employed (c.f. Ref. [39]). Here we performed an as-

sessment of isospin violation in the Hamiltonian in which the relevant interactions were

treated non-perturbatively. Such a calculation is more straightforward technically within

the RGM. At the level of accuracy of our calculation, the only operator for which this non-

perturbative/perturbative distinction might make a difference would be the pp Coulomb

potential. But, even there, we anticipate that the second-order piece of the 3He Coulomb
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energy is of the same size as other effects neglected in this calculation.

The constraint on the neutron-neutron scattering length that was obtained here is con-

sistent with the experimental numbers ann = −18.7 ± 0.7 fm (from neutron-deuteron

breakup [11, 12]) and ann = −18.6 ± 0.4 fm (from the π−d capture reaction [58, 59]).

It disagrees at the 1σ level with the value for ann extracted from nd breakup by Huhn et

al. [9, 10], ann = −16.1±0.4 fm. An approximately 20% uncertainty in our ann result occurs

due to the use of LO EFT( 6π). The inference of ann from the binding-energy difference of

3He and 3H will need to be improved if it is to provide information on ann that refines the

results of Refs. [11, 12, 58, 59].

In order to improve the result (29) it will be necessary to compute explicitly higher-order

electromagnetic effects and the impact of the proton-neutron mass difference on the bind-

ing energies. Next-to-leading order and next-to-next-to-leading order triton wave functions

in the charge-symmetric sector [30, 31] should be considered. Analysis along the lines of

Ref. [60, 61] would also be needed so as to determine the order at which charge-symmetry-

breaking three-nucleon operators enter the EFT( 6π) calculation.
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Appendix A: Numerical stability

The RGM is used to fit LECs and for predictions in the two- and three-body sector. In this

section two analyses are presented to estimate the numerical uncertainty: the convergence

of a B(t) calculation with respect to dimension and “quality” of the variational basis for

a given set of LECs, and the dependence of Cpp
S on the parameters used to expand and

regulate Coulomb functions in a Gaussian basis.

In the first scenario, the interaction is specified through five LECs in Eq. (3):

CS,T , C
nn,pp
S , C3NI. Predictions for B(t) will depend on the dimension of the RGM basis,

D = D1 + D2 + D3, and a “wise” choice of width parameters, {γij, j = 1 . . .Di}, for each

grouping i. We consider ourself wise because the widths are chosen to expand an object of
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TABLE II: Uncertainty in the triton binding energy ∆B(t) due to the omission of specific ba-

sis states, e.g., an addition of vectors of the deuteron-neutron grouping with particles in rela-

tive S waves and support from approximately 1/
√

8 fm to infinity will change B(t) by less than

0.0011 MeV.

cluster [sn ⊗ sp]
S12 orbital angular momentum [l1 ⊗ l2]

L
Gaussian ∆B(t) [MeV]

d-n S12 = 1 [0 ⊗ 0]
0

γ1,2 ∈ [0, 8] fm−2 0.0011

d−-n S12 = 0 [0 ⊗ 0]
0

γ1,2 ∈ [0, 8] fm−2 0.0003

[1 ⊗ 1]
0

0.0003

[2 ⊗ 2]
0

0.0003

limited size, which is estimated by the deuteron and triton binding energies to be described

within a central potential whose range is set by the regulator cutoff Λ. A larger Λ relates to

a shorter-range interaction, mandating larger widths γij to account for the larger values of

the wave function resulting from the deeper well. Simultaneously, the exponential tail has

to be modelled accurately by keeping the smaller widths corresponding to the longer-range

part. In essence, larger Λs require larger bases but do not pose an in-principle limitation for

the application of the RGM. To assess whether a certain variational basis expands the triton

accurately, the supposedly complete basis, {|i〉, i = 1, . . . , Di} with D1,2 = 60 and D3 = 0,

is extended by 5 vectors all taken from the dominant grouping—which, for the triton, is the

deuteron-neutron one. In the new, (D′ = (D1+5)+D2+D3)-dimensional space, the triton

binding energy is calculated as a function of one width parameter, either γ1 for the deuteron

fragment, or γ2 for the separation of the neutron from the deuteron. Figure 6 displays the

graph of the function f (γi) = B(t, D′)−B(t, D), with B(t, X) being the smallest eigenvalue

of the system
〈

φm

∣

∣Ĥ
∣

∣φn

〉

= E
〈

φm

∣

∣φn

〉

, (A1)

with indices m,n specifying the X variational parameters cij in Eq. (18). The numerical

uncertainties due to the finite basis are summarized in table II. In conclusion, a total un-

certainty in the three-body binding energy B(3)—the numbers are of the same order of

magnitude for 3He—due to the truncation of the variational basis of

∆ (RGM) = ±1.5 keV (A2)

is assigned to this analysis. This value is markedly less than the näıve 10 % LO EFT( 6π) of
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FIG. 6: Difference in B(t) due to the addition of basis vectors to a reference set - w12w12(0). This

change is shown in the lowest panel (a) as a function of either of the two width parameters γ1,2 for

a d-n (d−-n) grouping in two S waves. The middle (b) (top (c)) panel displays the change for the

nucleons in relative P (D) waves.

B(t, exp), and hence the 120-dimensional basis is sufficient for the accuracy of this order.

The LEC values depend on the loop regulator Λ and on the RGM basis that spans the

space in which they are fitted to data. For a cutoff variation at Λ > mπ and a modification

of the basis using states with support only for particle separations less than approximately

1/mπ, both dependencies reflect a modification of non-observable high-energy modes ab-

sorbed in the LECs. However, the dependency on the model space is sought to be minimal,

so as to allow application of and comparison with the LEC values found using other numer-

ical methods. To assess this uncertainty, the 20-dimensional S-wave two-body basis used

throughout this work was refined in two ways:

• add one basis state and determine Cpp
S as a function of the width parameter;

• determine Cpp
S as a function of the regulator parameter used for the irregular Coulomb

function;
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In both cases, the change in the LEC was −0.01 <
∆Cpp

S

Cpp
S

< 0.001, and the resulting effect on

two- and three-body observables relevant for this work was small relative to the anticipated

leading-order EFT( 6π) accuracy.
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[12] D. E. González et al., Phys. Rev. C 73, 034001 (2006)

[13] R. Machleidt, Phys. Rev. C 63, 024001 (2001)

[14] S. A. Coon et al., Nucl. Phys. A 317, 242 (1979).
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