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The Similarity Renormalization Group with Novel Generators

W. Li,∗ E.R. Anderson,† and R.J. Furnstahl‡

Department of Physics, The Ohio State University, Columbus, OH 43210

The choice of generator in the Similarity Renormalization Group (SRG) flow equation determines
the evolution pattern of the Hamiltonian. The kinetic energy has been used in the generator for
most prior applications to nuclear interactions with other options largely unexplored. Here we show
how variations of this standard choice can allow the evolution to proceed more efficiently without
losing its advantages.

PACS numbers: 21.30.-x,05.10.Cc,13.75.Cs

I. INTRODUCTION

The Similarity Renormalization Group (SRG) uses a
continuous series of unitary transformations to decouple
high-momentum and low-momentum physics in an input
Hamiltonian [1, 2]. This decoupling means that expan-
sions of physical observables generally become more con-
vergent. The SRG can be implemented through a flow
equation for the evolving Hamiltonian Hs,

dHs

ds
= [ηs, Hs] = [[Gs, Hs], Hs] , (1)

where s is a flow parameter [2, 3] and the generator ηs
is specified by the operator Gs. With Gs chosen to be
the relative kinetic energy Trel, the SRG has been ap-
plied successfully over the past few years to calculate nu-
clear structure and reactions [4–12]. However, different
choices for Gs will give rise to different patterns of evo-
lution, which may be advantageous. In this paper, two
alternatives to Trel are evaluated for their effectiveness in
decoupling and, in particular, for improvements in com-
puting speed (see Fig. 1 for a representative example).
Our tests are for realistic nucleon-nucleon (NN) inter-
actions in two-body systems and for a one-dimensional
model Hamiltonian applied to few-body bound states.

We focus on novel generators that have Gs as functions
of Trel. (Note: we can just as well consider the full kinetic
energy T in our discussion, because the center-of-mass
part commutes with the running Hamiltonian Hs, so we
will use T for convenience.) In particular, we explore the
“inverse” Gs operator

Gs = − σ2

1 + T/σ2
≡ Ginv

s , (2)

and the “exponential” Gs given by

Gs = −σ2e−T/σ
2

≡ Gexp
s . (3)

Each has a Taylor series which reduces to T (up to a
constant, which drops out from the commutator) at low
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FIG. 1. (color online) Computational time to evolve the Ar-
gonne v18

1S0 potential [13] as a function of the final value
of λeq (see text) for several generators, with σ = 2 fm−1 for
Ginv

s and Gexp
s .

momentum or when σ is large. As such, the independent
parameter σ controls the separation of a low-energy re-
gion where Gs behaves as T and the potential is driven
towards the diagonal, and a high-energy region where
evolution is suppressed. This suppression can result in a
significant computational speedup of the SRG evolution
when compared to calculations with Gs = T , while not
impacting the advantageous properties of the evolution
for low-momentum applications.

The suppression of running in unneeded parts of the
Hamiltonian by the novel generators could mitigate the
difficulties of evolving very large matrices for calculations
of light atomic nuclei [11], opening the door to more
tailored SRG generators and more effective evolution of
three- and eventually four-body interactions. Even at the
two-body level there are problems when trying to evolve
to large values of the flow parameter s. A recent example
is a study of SRG decoupling with large-cutoff effective
field theory (EFT) potentials, which require evolution
beyond the range usually considered [14]. In doing so,
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the SRG differential equations can become extremely stiff
and take a prohibitively long time (weeks on a single pro-
cessor) to evolve. This problem has hindered exploratory
studies into issues such as what happens when a chiral
EFT is evolved to the regime of pionless EFT.

In Section II, we give representative results for appli-
cations to two-body systems, including an analysis of the
flow pattern. These results are extended to few-body sys-
tems in Section III using a model one-dimensional Hamil-
tonian that has proved useful in past applications [15, 16].
We summarize and outline future studies in Section IV.

II. TWO-NUCLEON SYSTEMS

In this section we give representative results for evolv-
ing realistic nucleon-nucleon potentials using the novel
generators from Eqs. (2) and (3) in comparison to the
usual choice of Gs = T .

A. Performance

The key advantage of the novel generators that we wish
to highlight is the improvement in computational per-
formance. For example, the time needed to evolve the
Argonne v18

1S0 potential [13] to equivalent levels of de-
coupling with several generators is plotted in Fig. 1. The
parameter λ ≡ 1/s1/4, which has dimensions of a mo-
mentum, has been used to identify the momentum de-
coupling scale. However, different generators will evolve
a given potential at different rates, so comparing results
with the same definition of λ can be misleading. There-
fore, we identify an “equivalent” λeq for each novel gen-
erator that equalizes the degree of decoupling compared
to Gs = T (for which λeq = λ by definition); the details
are described in Section II B.

The value of σ will also have an impact, as dis-
cussed below; in Fig. 1 we use the intermediate value
σ = 2 fm−1. With this choice, there is nearly an or-
der of magnitude difference in the time to evolve the
Argonne v18 potential with Gexp

s and Ginv
s compared to

Gs = T at λeq = 4 fm−1 and two orders of magnitude

by λeq = 2 fm−1. Note that nuclear interactions have
typically been evolved for nuclear structure studies to
the range λ = 1.5–2.2 fm−1. The speed gains will de-
pend on the initial potential and can be much less for the
evolution of softer initial potentials; e.g., for the N3LO
500 MeV chiral EFT potential of Ref. [17], evolving with
Gexp
s to λeq = 2 fm−1 is about 1.5 times as fast as with

Gs = T and about 3 times as fast to λeq = 1.5 fm−1.
The numerical solution of the SRG evolution equations

requires repeated dense matrix-matrix multiplications.
As a consequence, the evolution has been carried out
on shared-memory computer architectures. Recent cal-
culations using the SRG with many-body forces are ap-
proaching the limits of what is practical to evolve in mem-
ory on a single node due to the size of the model space

needed [11]. A distributed scheme to solve the equations
would permit larger model spaces to be utilized, however
the dense matrix multiplication would then be limited by
internode communication times. The reduced number of
operations required by novel generators might help to
make such a scheme possible.

B. Decoupling and λeq

To validate the apparent computational advantages of
the novel generators, one must confirm that the decou-
pling characteristics of the Gs = T generator are also
reproduced, so that calculations of physical observables
also become more convergent. However, if we evolve to
the same λ, the degree of decoupling for identical initial
potentials differs for Gexp

s and Ginv
s compared to Gs = T .

These differences are evident in the deviations of 1S0

phase shifts calculated from the evolved potentials using
Gexp
s and Gs = T from the unevolved potential shown in

Fig. 2 for several different λ values (only Gexp
s is shown;

Ginv
s has a similar behavior). If the full potentials were

used, the phase shifts would agree – up to numerical pre-
cision – with those from the initial potential, because the
evolution in all cases is unitary. However, the degree of
decoupling for a given value of λ can be made manifest
by first cutting off the potential (that is, setting to zero
its matrix elements) above some value of k and then cal-
culating the phase shifts. In Fig. 2, for illustration, we
choose the cutoff value kcut to be 2 fm−1. The signature
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FIG. 2. (color online) Deviation of phase shifts calculated
with the Argonne v18

1S0 potential [13] evolved with Gs = T
and Gexp

s (σ = 2 fm−1) to various λ values and then trun-
cated at kcut = 2 fm−1 to test decoupling. Phase shifts from
untruncated potentials agree precisely with those from the
initial potential.
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FIG. 3. (color online) Contour plots showing the evolution via Eq. (1) at several values of λeq starting from the momentum-
space Argonne v18

1S0 potential [13] using (a) Gs = T ; (b) Ginv
s from Eq. (2) with σ = 2 fm−1; and (c) Gexp

s from Eq. (3) with
σ = 2 fm−1.

of decoupling is that the phase shifts agree at lower ener-
gies and only deviate close to and above the cutoff. This
is typically observed when the potential is evolved so that
λ is less than the cut momentum [18, 19].

This behavior provides us with a pragmatic way to
define λeq, by identifying it with the decoupling behavior
that is found for Gs = T for a given λ. We use the results
in Fig. 2 to illustrate the procedure. The continuous
curve shows the deviation of phase shifts for the potential
evolved with Gs = T to λ = 2 fm−1 and cut at k =
2 fm−1. As expected from decoupling, the deviation is
small up to roughly kcut. We use this level of agreement
as the criterion for identifying equivalent λ’s for other
generators. That is, a potential is evolved to a series
of λ values with a novel Gs and then cut at kcut after
evolution. The phase shifts are then compared to the
level of decoupling observed for Gs = T at kcut = λ. The
approximate point in the novelGs evolution for which the
cut phase shifts agree is equated with λeq. Consider the
phase shifts for the potential evolved with Gexp

s to several

values of λ and cut at k = 2 fm−1, as shown in Fig. 2.
For Gexp

s , λ evolved to 1.5 fm−1 gives a similar degree of
decoupling to λ evolved to 2 fm−1 with Gs = T . As a
result, we define λ = 1.5 fm−1 to be the λeq = 2 fm−1

for Gexp
s . We will use λeq below for most comparisons.

C. Flow Analysis

Having chosen a working definition for the decoupling
scale of evolution with our novel generators, we can now
take a closer look at the properties of the evolved poten-
tials. In particular we would like to see how a potential
flows with evolution using the novel generators compared
to Gs = T , and to understand how the choice of σ affects
this flow.

In Fig. 3 we compare the evolution pattern of the two-
body potential in the 1S0 channel with different gen-
erators. Each frame is a representation of the poten-
tial matrices in momentum space; where the matrix is
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FIG. 4. (color online) Diagonal (a) and off-diagonal (b) momentum-space matrix elements for evolved Argonne v18
1S0

potential [13] with Gs = T and novel generators Gexp
s and Ginv

s at λ = 2 fm−1 with σ = 2 fm−1.
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FIG. 5. (color online) Diagonal (a) and off-diagonal (b) momentum-space matrix elements for evolved Argonne v18
1S0

potential [13] with Gs = T and Gexp
s with different values of σ each evolved to λ = 2 fm−1. The lines with σ = 3 fm−1 are

indistinguishable from the ones with Gs = T .

zero, there is no coupling between momentum compo-
nents. The initial potential in all cases is Argonne v18 [13]
and the value of σ is taken to be 2 fm−1. Note that at
λ = 4 fm−1, the first matrix plotted here, there is already
significant evolution. As the potential is evolved, its high
and low momentum components become increasingly de-
coupled, as expected. It is evident that the evolved po-
tentials are similar (but not identical) in the region where
k2, k′2 < σ2. When λ < σ we find that σ roughly defines
the low momentum region where the novel generators
behave as Gs = T . The minor differences in this low
momentum region can be attributed to the fact that the

point in evolution, λ, needed for the novel generators to
reach the corresponding λeq occurs when λ < λeq. At
higher momenta, novel generator evolution is suppressed
relative to Gs = T . The patterns here are characteris-
tic of the particular generator and are similar for other
potentials and in other channels.

This nature of the evolution is further illustrated by
the plots in Figs. 4 and 5, which show a detailed view
of the diagonal and off-diagonal values of the matrices
at low momentum for each generator applied to the Ar-
gonne v18

1S0 potential . The flow parameter was run to
λ = 2 fm−1 with the generators here to distinguish be-
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(a) (b)

FIG. 6. (color online) (a) Unevolved N3LO 500 MeV 1S0 potential . (b) Contour plot showing the evolved N3LO 1S0 potential
with different generators to λeq = 2 fm−1. For Gexp

s and Ginv
s , σ = 2 fm−1.

FIG. 7. (color online) Color contour plots of the first term
(excluding the factor due to Vs) on the right side of Eq. (6)
for Gs = T (left), Ginv

s (middle), and Gexp
s (right). The last

two use σ = 2 fm−1.

FIG. 8. (color online) Color contour plots of the first terms
(excluding the factor due to Vs) on the right side of Eq. (6)
for Gexp

s with σ = 1, 2, and 3 fm−1 from left to right.

tween ambiguities caused by using λeq. In Fig. 4, the val-
ues from different generators agree quite well for k < σ,
where σ ≈ λ. Moreover, we see that the minor “pincush-
ion” effect seen in Fig. 3 for the novel generators relative
to Gs = T is indeed an artifact of using λeq, as each
curve falls to zero at approximately the same time. In
Fig. 5 we focus on Gexp

s versus Gs = T and the fact that
they differ for σ ≤ λ. But, as σ → λ it is evident that
the evolution of the novel generator becomes increasingly
similar to Gs = T in the low-momentum region k < λ.
For larger values of σ the novel generators become indis-
tinguishable from Gs = T .

As a demonstration of similar behavior for different NN
potentials, an evolved potential with different generators
in the 1S0 channel of the N3LO 500 MeV potential [17]

is shown in Fig. 6. Note that the initial potential has
significantly less coupling at high momentum compared
to Argonne v18 [8]. As a result, there is correspond-
ingly less improvement in evolution speed. However, the
general features of the evolution patterns with different
generators seen with Argonne v18 are also seen for the
N3LO potential.

To better understand the evolution process, we need
to look further into the flow equation itself. Evaluat-
ing Eq. (1) in a two-body partial-wave momentum space
basis with Gs = T yields

dVs(k, k
′)

ds
= −(k2 − k′2)2Vs(k, k

′)

+
2

π

∫ ∞
0

q2dq (k2 + k′2 − 2q2)Vs(k, q)Vs(q, k
′) .(4)

In the far off-diagonal region, the first term dominates
(this is true for the ordinary range of λ but is modified
when λ is comparable to the binding momentum of a
bound state). This implies that each off-diagonal matrix
element is driven to zero as

Vs(k, k
′)
k 6=k′−→ Vs=0(k, k′) e−s(k

2−k′2)2 . (5)

For Gs = f(T ), these results are modified to

dVs(k, k
′)

ds
= −

(
k2 − k′2

)(
f(k2)− f(k′2)

)
Vs(k, k

′)

+
2

π

∫ ∞
0

q2dq
(
f(k2) + f(k′2)− 2f(q2)

)
× Vs(k, q)Vs(q, k′) . (6)

and

Vs(k, k
′)
k 6=k′−→ Vs=0(k, k′) e−s(k

2−k′2)(f(k2)−f(k′2)) . (7)

The difference in the exponents of Eqs. (5) and (7) for
k ∼ λ leads to λeq < λ.

The first term of the flow equation (excluding the fac-
tor due to the potential) for each of our generators is
shown as a contour plot in Figs. 7 and 8. In Fig. 7 we
see that T works uniformly (in k2) on the entire region
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FIG. 9. (color online) Contour plot showing the evolution to λeq = 2 fm−1 via Eq. (1) starting from the momentum-space
Argonne v18

1S0 potential [13] using Gexp
s from Eq. (3) with different values of σ.
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FIG. 10. (color online) Computational time to evolve the
Argonne v18

1S0 potential [13] with Gs = T and Gexp
s to

λeq = 2 fm−1 as a function of the value of σ.

of the potential. With Ginv
s , there is much less evolution

close to the diagonal. The plot for Gexp
s is similar, but

exhibits even less evolution in the middle region.

It is evident here that the novel generators will result
in less evolution at high momenta, as we have seen, and
that this should be a generic result for other partial waves
and for higher-body evolution, because it depends only
on kinetic energy differences. We also see how the value
of σ controls the degree to which the operator Gs is sim-
ilar to T . This is illustrated in Fig. 8. If σ = 1 fm−1,
only the edges of the potential are modified; the shape
is completely different from T . For σ = 3 fm−1, there is
the thinnest band on the diagonal, which is closest to T .
At very large σ, there is a transition to T . In the plots
of Fig. 9 we see how the final evolved flow is affected by
differing choices of σ.

The limited evolution at high momenta seen in the
novel generators suggests that the time to evolve to a

given decoupling parameter λeq should be less for Ginv
s

or Gexp
s than for Gs = T . The dramatic drop in evolu-

tion time seen in Fig. 1 for the novel generators makes
it apparent that they are more efficient. However, we
can also look at how the choice of σ affects their perfor-
mance. This is shown in Fig. 10 for Gexp

s , where we see
that the time spent evolving to λeq = 2 fm−1 decreases
as σ decreases. As σ becomes smaller, the evolution at
high momentum is increasingly limited, which we cor-
relate with improvement in computation time; as σ in-
creases, the evolution time approaches that of T (as does
the flow). Note that for the Argonne v18 potential a large
σ is needed before Gs is effectively equal to T .

In practical applications, one might optimize the trade-
off between decoupling and computational speedup by
choosing σ to be approximately equal to, or slightly
greater than the λ corresponding to λeq. Then the de-
coupling properties of Gs = T are preserved in the low
momentum region of interest while still enhancing the
computational performance of the evolution by limiting
the evolution at high momentum. However, this prescrip-
tion has not yet been tested in detail.

III. FEW-BODY TESTS IN A
ONE-DIMENSIONAL MODEL

The effects on matrices in a momentum basis demon-
strated in the last section are generic and so should carry
over to alternative bases and to higher-body forces. Cal-
culations for realistic three-dimensional few-body sys-
tems are not yet available, but we can test the generators
in a one-dimensional model of bosons that has proven to
accurately predict the evolution of three-dimensional few-
body forces [15]. The model we use was originally intro-
duced in Ref. [20] as a sum of two gaussians to simulate
repulsive short-range and attractive mid-range nucleon-
nucleon two-body potentials. It is written in coordinate
space as

V (2)(x) =
V1

σ1
√
π
e−x

2/σ2
1 +

V2

σ2
√
π
e−x

2/σ2
2 (8)
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Basis Momentum Oscillator

System A = 2 A = 2 A = 3 A = 4

σ = 2 3.3 3.3 3.8 4.1

σ = 3 2.6 2.6 2.7 2.8

TABLE I. Speed up in model A-particle 1D oscillator basis
for evolution to λeq ≈ 3, comparing the ratio of the time to
evolve Gs = T versus Gexp

s . The results for Ginv
s are very

similar.

or in momentum space as

V (2)(p, p′) =
V1

2π
√

2
e−(p−p′)2σ2

1/8 +
V2

2π
√

2
e−(p−p′)2σ2

2/8 ,

(9)
where V1 = 12, σ1 = 0.2, V2 = −12, and σ2 = 0.8 (see
Ref. [20] for discussion of units). Also, in calculations
with an initial three-body potential, a regulated contact
interaction is used. This is written as

V (3)(p, q, p′, q′) = cE fΛ(p, q)fΛ(p′, q′), (10)

where cE corresponds to the strength of the interaction,
and

fΛ(p, q) = e−((p2+q2)/Λ2)n . (11)

The regulator cutoff Λ = 2, and the sharpness of the fall-
off is set to n = 4. We have chosen these parameters for
comparison with Ref. [15].

A. Performance

Our first test is to confirm that the enhanced com-
putational performance characteristics of the novel gen-
erators are maintained in the few-body basis. Table I
shows the speedup obtained using the Gexp

s generator
with the model potential described above. The perfor-
mance of the Ginv

s generator is very similar to the Gexp
s

results quoted here. Results are reported at an optimal
λeq; we do not use a range of λ values here due to par-
ticularities of the oscillator basis convergence properties,
as will be discussed in more detail below.

What we find is that the evolution of the two-body
force in 2-, 3-, and 4-particle systems with novel gener-
ators are all 2.5–4 times faster than the evolution with
Gs = T (to the same degree of decoupling). The per-
formance enhancement is relatively basis independent,
with the speedup for the momentum and oscillator bases
found to be roughly equivalent. While the speedup im-
provement is much smaller than found for Argonne v18,
we do not expect a direct correspondence. The impor-
tant point is that the speedup in the A=2 particle system
serves as a good predictor of the speedup in the A=3 and
4 systems. So one might expect a similar improvement in
few-body oscillator basis calculations with Argonne v18

as found above for Argonne v18 in the 2-particle partial-
wave momentum basis. This will be significant as we

move to novel generator calculations in realistic three-
dimensional systems.

B. Decoupling

The measure of performance using the novel generators
depends explicitly on their decoupling properties in the
few-body harmonic oscillator basis relative to Gs = T .
Ultimately, we find the level of decoupling obtained with
Gs = T to be matched by the novel generators.

However, the convergence properties of the oscillator
basis with respect to SRG evolution, and consequently
the issue of selecting an appropriate λeq in this basis, is
more complicated than for the momentum basis. The
convergence of observables depends on a balance of the
ultraviolet (UV) and infrared (IR) cutoffs intrinsic to the
choice of a particular oscillator basis. These cutoffs are
given by [11]

ΛUV ∼
√
mNmax~Ω (12)

and

ΛIR ∼
√
m~Ω

Nmax
, (13)

where Ω is the oscillator frequency, and Nmax is the max-
imum number of total oscillator excitations in the basis.
Thus, a cutoff in oscillator basis states results in two ap-
proximate cutoffs in momentum space. But the SRG, us-
ing the generators being considered here, only provides
a means to effectively lower the UV cutoff (by decou-
pling high and low momentum degrees of freedom in the
Hamiltonian). As such, convergence is not monotonically
improved with respect to evolution in λ.

As a measure of the decoupling, we plot the binding
energy of the lowest energy state for an A-particle system
with respect to Ncut for evolutions of the initial Hamil-
tonian to various λ (this procedure was carried out for
Gs = T using this model in [15]). The actual calculation
is carried out by evolving the model interaction to λ in
an initial basis large enough so that the binding energy
is well converged. The Hamiltonian is then truncated at
Ncut and the binding energies calculated in the reduced
basis. The value of Ncut refers to the number of oscil-
lator excitations in the basis, and is the oscillator basis
equivalent of the kcut parameter in momentum space, as
used in Sec. II. But again, each Ncut here corresponds
to a rough ΛUV and ΛIR truncation in momentum space.

Results are shown in Fig. 11 for the A = 2-, 3-, and
4-particle systems using Gexp

s with σ = 3 for selected
values of λ. The signature of decoupling is the improved
convergence of the binding energy at smaller Ncut with
respected to SRG evolution. As the interaction is evolved
the degree of decoupling gets better. This is only true up
to some value of λ, however, at which point the degree of
decoupling starts to get worse. It is the latter behavior
which is introduced by the IR cutoff of the oscillator basis
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FIG. 11. (color online) Decoupling using Gexp
s with σ = 3 for (a) A = 2, (b) A = 3, and (c) A = 4. The initial two-body only

potential is evolved to each λ shown in a basis with Nmax = 40. Matrix elements of the potential are set to zero if one or both
states have N > Ncut and the resulting Hamiltonian is diagonalized to obtain the ground-state energies plotted.
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FIG. 12. (color online) The lowest bound-state energy for a four-particle system as a function of λ evolved using the SRG Gexp
s

generator and an Nmax = 40 basis with an initial three-body potential with strength (a) cE = 0.0, (b) cE = −0.05, and (c)
cE = 0.05. The (blue) curves with diamonds include the full evolution of the Hamiltonian while the (black) curves with circles
use the two-body potential evolved in the two-particle system and the (red) curves with squares use the two- and three-body
potential evolved in the three-particle system. Evolution with Ginv

s is almost indistinguishable.

that complicates our efforts to choose a λeq, since a one-
to-one correspondence with λ is no longer clear.

Nevertheless, a practical choice can be made by equat-
ing the λ with λeq when decoupling is found to be optimal
in the Gs = T and novel generator evolutions. The op-
timal levels of evolution happen to coincide at λ ≈ 3 for
Gs = T and the novel generators. Thus, the speedup
results in Table I were reported at λeq = 3. Moreover,
given these values for λ and λeq, we have chosen σ = 3
for most of the model space calculations in this section.

One may note that differences do exist between the
Gs = T and novel generator decoupling results, particu-
larly at low Ncut [15]. However, the level at which any of
the generators become well converged to the exact results
with respect to Ncut are effectively the same. Thus, it is
reasonable to make the comparisons we have done here

in order to determine λeq.

C. Induced Many-Body Forces

In general, the evolution of an interaction via the SRG
leads to induced many-body forces. This is evident if we
examine the second quantized form of the Hamiltonian

H = Tija
†
iaj + Vijkla

†
ia
†
jalak + · · · (14)

where the dots indicate that higher-body forces may also
be present in the initial interaction. When the SRG
commutators in Eq. (1) are performed, one can see that
many-body forces will be induced. These induced forces
could pose a serious problem for few-body calculations
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because at some point we must truncate the model space
in numerical calculations, which will alter the predicted
value of observables. These can be controlled, however,
if there is a hierarchy of many-body forces so that suc-
cessively larger many-body components are suppressed,
and one can include at most one or two induced pieces to
obtain well converged results. This has been found to be
the case for Gs = T and needs to hold for any practical
alternative generators.

A measure of the induced many-body forces (which has
been used in previous studies [6, 11, 15]) is to calculate
the ground state energies of the A = 3 and 4 particle sys-
tems starting with a 2-body interaction and to examine
how this energy changes with and without the induced 3-
and 4-body components, as a function of the evolution
parameter λ. We do this in Fig. 12 with a plot of the
ground-state energy for the 4-particle system with the
initial 2-body interaction embedded and evolved in the
A = 2-, 3- and 4-body bases with novel generators Gexp

s .
The results for Ginv

s are virtually indistinguishable. The
curves show that the hierarchy of induced many-body
forces is preserved for the novel generators just as with
Gs = T [15] (see, however, Ref. [21]). This hierarchy also
holds for calculations with an initial three-body force and
in the A = 3 particle system.

In summary, the model results suggest that the advan-
tageous features of SRG evolution with Gs = T can be
maintained with the added computational performance
of the novel generators when applied to realistic three-
dimensional few-body calculations.

IV. SUMMARY

In this work, novel generators for the SRG that are
functions of the kinetic energy operator T with an ad-
justable scale parameter σ were tested. We found that
functions which reduce to T for basis states with kinetic
energy less than σ preserved the good features of T , such
as decoupling, but efficiently suppressed evolution for
higher kinetic energies and thereby took much less time
to evolve. Specific examples were considered, but other
choices with a Taylor expansion starting with T should
give comparable results. Their action was understood
using a simple analysis of how the generators directly af-
fect regions of high and low momentum. If σ is taken
large enough, the generators become equivalent to T . It
is important to note that not only the two-body prop-
erties of T were preserved by the novel generators, but
also its characteristics in a few-body model space. This
includes decoupling and the hierarchy of induced many-
body forces, which is critical for applications to larger

systems of particles.

The novel generators allow us to evolve potentials to
much smaller values of λ than previously feasible. This
should enable us to explore the transition between pion-
ful and pionless regions of EFT potentials and further
test the observations of Glazek and Perry about evolving
past a bound state [22]. The original choice for Gs ad-
vocated by Wegner and collaborators [2, 3] and applied
extensively in condensed matter is the diagonal compo-
nent of the interaction, Gs = Hdiag(s),

〈i|Hdiag(s)|j〉 ≡

{
〈i|H(s)|j〉 if i = j ,

0 otherwise.
(15)

In Ref. [22], it was observed that when evolving a sim-
ple model past a bound state the Wegner evolution with
Hdiag will decouple the bound state by leaving it as a
delta function on the diagonal of the Hamiltonian. In
contrast, with Gs = T the bound states remained cou-
pled to low-momentum, and were pushed to the lowest
momentum part of the matrix. This behavior was ex-
plored in Ref. [14] for leading-order, large-cutoff EFT po-
tentials featuring deeply bound spurious states. However,
it has not been studied for the physical deuteron state,
which requires evolving well below λ = 1 fm−1. This is
now easily possible with the replacement of Hdiag for T
in Eqs. (2) and (3), although there are as-yet-unsolved
complications from the discretization of the momentum
basis.

The most important next step for the novel generators
is to apply them to evolve realistic few-body potentials,
where speeding up the evolution is desirable due to the
large sizes of the matrices involved. The novel generators
can be applied directly to few-particle bases using the
method described in Refs. [6, 11, 15]. Calculations in
a one-dimensional model performed here imply that the
speed-up carries over to three-body forces and could have
a significant impact in making realistic calculations with
additional induced many-body forces feasible.
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