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I. INTRODUCTION

The low energy dynamics of strongly interacting solids and superfluids can be systematically studied
through an effective theory formulation in terms of weakly interacting phonons - the collective degrees
of freedom in these systems. In the familiar case of solids, one longitudinal phonon and two transverse
phonons arise as Goldstone modes due to the breaking of translation symmetry. In the case of a
superfluid, one mode called the superfluid phonon arises due to the breaking of the global U(1) symmetry
associated with phase rotations of a field operator 1. In special cases the ground state of the system
can spontaneously break both these symmetries. A particularly simple but non-trivial realization is a
solid immersed in a superfluid with strong interactions between the particles that form the solid and the
superfluid respectively. It is likely that a substantial region in the crust of a neutron star is occupied by
such a phase [1] and its presence may affect neutron star phenomenology. From general considerations
we can argue that the inner crust of neutron stars features a lattice of neutron rich nuclei in a bath
of unbound superfluid neutrons. The lattice sites can be viewed as clusters of protons, with a fraction
of neutrons “entrained” on the clusters [2, 3]. Other intrinsically more complex phases where a single
component exhibits both superfluid and solid characteristics have also been proposed. They include the
supersolid phase of 4He [4] and the Larkin Ovchinnikov Fulde Ferrell (LOFF) phases [5, 6] in polarized
fermion superfluids. Although these systems can in principle be realized terrestrially, they have proven
to be challenging to explore in experiments [7]. Nonetheless in all these cases the low energy dynamics
is described by an effective theory of four Goldstone modes [8]. The associated fields for the lattice
phonons are ξa=1..3(r, t) and are related to space-time dependent deformations of the lattice. Similarly,
the field associated with the superfluid mode φ(r, t) is related to the space-time dependent phase of the
condensate. Because of interactions, such as those between the neutrons and the protons in the neutron
star crust, one can not in general treat the two sectors separately and a unified treatment is required.
It is the aim of this paper to provide such a framework.
The low energy theory is described in terms of the fields φ and ξa. The symmetries associated

with translation and number conservation require that the low energy theory be invariant under the
transformation ξa=1..3(r, t) → ξa=1..3(r, t) + aa=1..3 and φ(r, t) → φ(r, t) + θ where aa=1..3 and θ are
constant shifts. This naturally implies that the low energy lagrangian can contain only spatial and
temporal gradients of these fields. Further, by requiring cubic symmetry for the crystalline state, the
quadratic part of the effective lagrangian is given by,

L =
f2
φ

2
(∂0φ)

2 −
v2φf

2
φ

2
(∂iφ)

2 +
ρ

2
∂0ξ

a∂0ξ
a − 1

4
µ(ξabξab)− K

2
(∂aξ

a)(∂bξ
b)

− α

2

∑

a=1..3

(∂aξ
a∂aξ

a) + gmixfφ
√
ρ ∂0φ∂aξ

a + · · · ,
(1)

where higher order terms involve higher powers of the gradients of these fields, and ξab = (∂aξ
b+∂bξ

a)−
2
3∂cξ

cδab. In the uncoupled case, the low energy coefficients (LECs) appearing above, such as ρ, µ,K
are related to the mass density, the shear modulus, and the compressibility of the solid respectively.
They determine the velocities of the phonons in the solid phase. Similarly, the velocity of the phonon
in the pure superfluid case is given by vφ. In the presence of strong coupling between the solid and
superfluid these coefficients are modified. For example, the coefficient ρ in Eq. 1 differs from the usual
mass density of the pure lattice component due interactions that entrain the superfluid, and the mixing
coefficient gmix couples superfluid and lattice dynamics. As we will show Galilean invariance relates
gmix to the modifications of ρ and vφ due to entrainment [9]. An analysis of these modifications in
the context of the neutron star crust due to the underlying interaction between neutrons and protons
was the original motivation for this study. In this case, the mixing coefficient gmix is relevant for heat
transport properties in the inner crust [10], and the eigenmodes of the coupled superfluid-solid system
could play a role in explaining the observed quasi-periodic oscillations in magnetars flares [11].
We will present a general proof that the functional form of the lowest-order Lagrangian is completely

specified by the thermodynamic pressure in the presence of constant external fields that couple to the

1 The U(1) symmetry is related to particle number conservation and we will refer to this as a phase symmetry. Its
breaking simply refers to the choice of a ground state: total number is conserved and the continuity equation remains
valid.
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conserved densities and currents in the system. The derivatives of the pressure with respect to these
external fields determine the low energy constants. Non-perturbative techniques such as Quantum
Monte Carlo or Hartree-Fock techniques may be suited to calculate these thermodynamic functions.
For example, the energy as a function of the density for a non-relativistic uniform Fermi gas at unitarity
was calculated using Quantum Monte Carlo techniques in [12]. (For a recent example of the calculation
of the LECs in relativistic superfluids, see [13].) Since these derivatives of the thermodynamic functions
are related to the long-wavelength limit of static correlation functions of currents and densities, their
direct calculation using non-perturbative methods also provide the needed LECs.

The outline of the paper is as follows. In Section II we outline the formalism and define notation. In
Section III we revisit the effective theory of a neutron superfluid in the absence of any lattice, derived
earlier in Ref. [14, 15]. This serves as a pedagogic warm-up before describing the more complicated
system including the lattice. Here, we prove that lowest order lagrangian is determined by the ther-
modynamic pressure. In Section IV we derive results for the relevant case of the combined neutron
and proton sectors. In Section V we focus on the applications of our formalism to the neutron star
crust and use simple estimates for the mixing coefficient in the neutron star inner crust to determine
the resulting eigenmodes of the longitudinal lattice and the superfluid phonons. Here we also comment
on the connection with previous work on the elastic properties of LOFF phases [16]. We present our
conclusions in Section VI.

II. SYMMETRIES OF THE UNDERLYING HAMILTONIAN

The prototypical system we consider here is composed of two conserved species of particles. In the
neutron stars, this would be the strongly coupled many-body system of non-relativistic neutrons and
protons. In what follows we will continue to refer to these two components as neutron and protons but
it should be understood that our considerations apply more generally. We represent the action for the
system abstractly as S[Ψn,Ψp] where Ψn and Ψp, are the neutron and proton fields. Even though the
particles may be non-relativistic, we will work in a Lorentz covariant form and take the non-relativistic
limit at the end of the calculation. We will denote the spatial indices by Latin characters (a, b, c, i, j,
k) running from 1 to 3 and the full space-time indices by Greek characters (µ, ν, σ, λ) running from 0
to 3.

The theory describing the neutrons and protons is invariant with respect to global phase rotations
of the neutron field, Ψn(x) → exp(−iθn)Ψn(x). The conservation law associated with the symmetry is
the conservation of neutron number. Similarly, independent phase rotations of the protons gives rise
to the conservation of proton number. We note that protons and neutrons are separately conserved on
timescales small compared to the weak interaction time τweak ≃ 1/(G2

F nB T 2) where nB and T are
the baryon density and temperature of the system. For typical conditions the timescale for low energy
dynamics is τEFT ≃ 1/T and correspondingly the ratio τEFT/τweak ≃ G2

FnBT ≪ 1. We shall refer to
the corresponding conserved currents as jµn and jµp respectively. The action S is also invariant under
space-time translations and spatial rotations and the conserved current associated with translations is
the stress energy tensor T µν .

To analyze the constraints provided by these symmetries on the low energy effective action, it is useful
to introduce external fields that couple to the conserved currents (see e.g. discussion in Ref. [17]). For
the internal symmetries we add to the action S[Ψn,Ψp] source terms of the form

∫

d4x jµn(x)A
n
µ(x)

and
∫

d4x jµp (x)A
p
µ(x). If the external fields are allowed to transform appropriately under local U(1)

transformations, this procedure promotes the global symmetries to local symmetries.

A similar extension of space-time symmetries is slightly more subtle. It requires extending space-
time from a flat space-time to a curved space-time, and writing the action in a form that is general
coordinate invariant. Indeed, the non-relativistic theory of neutrons and protons may be seen as the
non-relativistic, flat-space limit, of a fully relativistic, general-coordinate-invariant action. The external
field that couples to the stress-energy tensor is a deformation of the metric, δgµν .

Therefore, we start with an action of the form, S[Ψn,Ψp, A
n
µ, A

p
µ, gµν ] which is invariant under general
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coordinate transformations,

xµ → x
′µ = xµ + aµ(x)

gµν(x) → g
′µν(x′) = gρσ(x)

∂x
′µ

∂xρ
∂x

′ν

∂xσ

Aµ(x) → A
′µ(x′) = Aσ(x)

∂x
′µ

∂xσ
,

(2)

these transformations include both rotations and boosts as special cases of local space and time trans-
lations. The action is also invariant under local phase rotations of neutrons,

Ψn(x) → Ψ′
n(x) = exp(−iθn(x))Ψn(x)

An
µ(x) → A

′n
µ (x) = An

µ(x) − ∂µθ
n(x) ,

(3)

and local phase rotations of protons,

Ψp(x) → Ψ′
p(x) = exp(−iθp(x))Ψp(x)

Ap
µ(x) → A

′p
µ (x) = Ap

µ(x) − ∂µθ
p(x) .

(4)

The reason for extending the global symmetries to local symmetries is that correlation functions of
the conserved currents can be analyzed very simply by taking appropriate functional derivatives of the
generating functional W [An

µ, A
p
µ, gµν ] with respect to the external fields An

µ(x), A
p
µ(x) and gµν(x). The

generating functional is defined in the standard path integral representation as

eiW [An
µ,A

p
µ,gµν ] =

∫

[dΨn][dΨp]e
iS[Ψn,Ψp,A

n
µ,A

p
µ,gµν ]

= Z[An
µ, A

p
ν , gµν ] ;

(5)

and Z[An
µ, A

p
ν , gµν ] is thermodynamic partition function. For example, the derivative with respect to

the zeroth component of the external field Aµ defines the number density as given by

〈Ω|n̂n(x)|Ω〉An
µ ,A

p
µ,gµν

=
δW [An

µ, A
p
µ, gµν ]

δAn
0 (x)

=
1

iZ

δZ[An
µ, A

p
µ, gµν ]

δAn
0 (x)

. (6)

In order to evaluate correlation functions in an equilibrium state with specified number density, the
functional derivatives with respect to Aµ(x) are evaluated at specific values corresponding to appropri-
ate chemical potentials as required by Eq. 6. For neutrons An

µ(x) = Ān
µ = (µn +mn,0), where µn is the

usual non-relativistic chemical potential and similarly for protons Ap
µ(x) = Āp

µ = (µp +mp,0) and µp

is the corresponding non-relativistic chemical potential. Moreover, functional derivatives with respect
to gµν(x) are evaluated at space-time metric gµν(x) = ḡµν . For the pure neutron sector (Section III),
it suffices to set the equilibrium metric to be the Minkowski metric, ḡµν = ηµν . In the case of coupled
system, since the spatial components of a space-time independent metric specifies the lattice structure,
we will allow ḡµν to be more general in Section IV. In the following we discuss specific cases in which
the ground state |Ω〉 spontaneously breaks number and translation symmetries of the underlying Hamil-
tonian. First, in Section III we discuss the simple case of a superfluid which breaks the U(1) symmetry
associated with number conservation, and subsequently in Section IV we discuss the system of interest
where both the global U(1) and space-time translation symmetries are simultaneously broken.

III. ONE COMPONENT SUPERFLUID

A. Fields and the effective lagrangian

To illustrate the main ideas we first consider a single component superfluid such as degenerate neutron
matter where attractive interactions lead to the formation of Cooper pairs and a transition to a superfluid
state. Here, the two-neutron operator has a non-zero expectation value and in equilibrium

〈Ω|Ψn(x)Ψ
T
n (x)|Ω〉 = Cγ5Θ(x) = Cγ5|Θ| . (7)
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Since the phase of the condensate changes on making a global phase rotation on Ψn, the condensate
spontaneously breaks U(1)n to Z2. The corresponding Goldstone boson field φ(x) is given by the phase
fluctuations of the order parameter.
The field φ(x) transforms nonlinearly under U(1)n transformations with parameter θn:

φ→ φ+ θn . (8)

The effective Lagrangian for φ can be in principle obtained by integrating out the heavy modes
corresponding to the gapped fermionic excitations from the system in a Wilsonian approach.
The partition function in presence of external gauge fields admits the following low-energy represen-

tation:

Zn[A
n
µ, gµν ] =

∫

[dΨn]e
iS[Ψn,A

n
µ,gµν ] −→

∫

[dφ]eiSeff [∂µφ,A
n
µ,gµν ] . (9)

The symmetries of the underlying fundamental theory impose stringent constraints on the form of the
effective lagrangian defined by Seff =

∫

d4x
√−gLeff . Global U(1)n symmetry implies that the Goldstone

boson can occur only through the derivative ∂µφ and local U(1)n symmetry (Eq. 3) implies that An
µ

and φ can appear in Leff only in the combination

Dµφ(x) = ∂µφ(x) +An
µ(x) . (10)

Since we are working in a covariant theory, Leff should transform as a scalar density under general
coordinate transformations. Therefore, the effective lagrangian can only be constructed from building
blocks like Dµφ, ∇νDµφ etc., with all indices contracted. Note that since Dµφ is gauge invariant, the
covariant derivative ∇ν involves no Aν . In particular in flat space ∇ν is just ∂ν .
In this work we use the power counting scheme proposed by Son and Wingate [15] to organize terms

in Leff . We define the power of an operator as the difference between the number of ∂’s and the power
of φ. I.e. all terms of order (∂)m(φ)n (m ≥ n) with the same value of m− n are considered to have the
same order, m− n. An

µ has the same order as ∂µφ, i.e. order 0, and gµν also has order 0. Therefore,

Leff [Dµφ, gµν ] = L0[D
µφDµφ] + L2[(∇νDµφ)

2, ...] + ... (11)

and the leading order lagrangian L0 is an arbitrary function of the building block X = gµνDµφDνφ.
We will see in the next section that the lowest order term L0 is related to the pressure of the system in
equilibrium, and the higher order terms L2... do not affect the pressure. Therefore, their exact form is
not required.

B. Thermodynamic matching

We now relate the functional dependence of L0(X) on X to the functional dependence of the ther-
modynamic pressure P (µn) on the chemical potential µn. We refer to this result as to “thermodynamic
matching”. Although this result is not new [14, 15], here we provide a derivation that can be generalized
to other, more complex patterns of symmetry breaking. In fact, we will use the generalization of this
result in Section IV when we consider the simultaneous breaking of translational and particle-number
symmetry.
We recall that the thermodynamic interpretation of the functionals Z[An

µ, gµν ] and W [An
µ, gµν ] at

constant external fields (An
µ(x) = Ān

µ and gµν(x) = ḡµν = ηµν) is given by the relation

Zn[Ā
n
µ, ηµν ] = eiWn[Ā

n
µ,ηµν ] = e−iV TΩn =

∫

[dφ] eiSeff [D̄µφ,ηµν ] , (12)

where Ωn = 〈Ω|Ĥ − Ān
µj

µ
n |Ω〉 is the free energy density, V is the volume and T is the extent in the time

direction. Here |Ω〉 is the ground state of the Hamiltonian modified by the presence of the external source

Ān
µ (Ĥ is the Hamiltonian density). For the specific choice Ān

µ = (mn +µn,~0) and at zero temperature,

|Ω〉 is the many-body ground state at chemical potential µn and Ωn = 〈Ω|Ĥ−(µn+mn)ĵ
0
n|Ω〉 = −P (µn),

where P (µn) is the usual thermodynamic pressure of the system.
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The low energy effective action Seff [D̄µφ, ηµν ] is a function of the external fields and the Goldstone
fields. It contains all the quantum dynamics of the high energy Fermionic modes encoded as low energy
coefficients. In order to evaluate the partition function Z[An

µ, gµν ] we expand the effective action about
its saddle point φ0 which satisfies

δSeff [D̄µφ(x), ηµν ]

δφ(x)
|φ0 = 0 = −∂µ

dLeff(D̄µφ(x), ηµν )

d∂µφ(x)
|φ0 , (13)

minimizes the Euclidean action, and is well behaved at infinity. For general external fields An
µ(x), the

solution to Eq. 13 is a functional of the external field, φ0[A
n
µ]. However, for our homogeneous and static

system with constant external fields the well behaved solution is φ0 = 0. Expanding about this point
we can write

Seff [D̄µφ, ηµν ] = Seff |φ0=0 +
1

2

∫

d4xd4x′ϕ(x)ϕ(x′)
δ2Seff

δφ(x)δφ(x′)
|φ0 + ... , (14)

where ϕ = φ− φ0, and thus Eq. 12 can be evaluated as a loop expansion

eiW [Ān
µ,ηµν ] = eiSeff |φ0=0+W1−loop+··· (15)

eiW1−loop =

∫

[dϕ]e
i( 1

2

∫
d4xd4x′ϕ(x)ϕ(x′)

δ2Seff
δφ(x)δφ(x′)

|φ0
+...)

, (16)

where we have explicitly displayed only the quadratic (Gaussian) part of the functional integral in [dϕ]
which corresponds to the one-loop approximation. Let us now discuss this loop expansion in light of the
EFT power counting. The key observation, which is a generic feature of low-energy effective theories [18],
is the following: within the momentum (gradient) expansion of the EFT, loop diagrams generated by
L0 are higher order than tree-level diagrams with vertices from L0. In our case, one-loop contributions
to phonon amplitudes are suppressed by four powers of momenta compared to the tree graphs generated
by L0 as shown by Son and Wingate [15]. Using the above considerations we can write

W [An
µ] =

∫

d4xLeff

(

(Dµφ0[A
n
µ]), ηµν

)

+W1−loop(A
n
µ) + ...

=

∫

d4x
[

L0

(

X0

)

+ L2[A
n
µ] + L4[A

n
µ]...

]

+W1−loop(A
n
µ) + ... ,

(17)

where X0 = Dµφ0D
µφ0. L0

(

X0

)

in Eq. 17 is the leading term (O(p0)), the second term is of O(p2),

the third and fourth are O(p4). The contribution of O(p0) involves either no derivatives on the external
fields or two derivatives compensated by a Goldstone propagator of O(p−2). L2(A

n
µ), L4(A

n
µ)... feature

at least one derivative acting on each An
µ. Therefore, higher order contributions necessarily involve

derivatives acting on the external field An
µ(x). So we arrive at a very important result: for very long

wavelength external field (An
µ(x) → constant), only the first term in Eq. 17 survives., i.e.,

W [Ān
µ] =

∫

d4xL0(Ā
n
µĀ

µ n) = V T L0(Ā
n
µĀ

µ n) (18)

Now recall that ĀµĀ
µ = (mn + µn)

2 so that µn =
√

ĀµĀµ −mn. Moreover, L0 depends on Dµφ only
through X . At the classical solution, for constant external field, one has X → X0 = ĀµĀ

µ. So we have
from Eqs. 18 and 12,

L0(X0) = P (
√

ĀµĀµ −mn) = P (
√

X0 −mn = µn) . (19)

The above relation fixes the functional dependence of L0 on the variable X once the functional depen-
dence of P on µn is known. So in general we have:

L0(X) = P (Y ≡
√
X −mn) . (20)

Finally we note that in the non-relativistic limit the relevant building block takes the form Y =
√

(mn + µn + ∂0φ)2 − (∂iφ)2 −mn ≃ µn + ∂0φ− (∂iφ)
2

2mn
[14, 15, 19].
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C. Identifying the low-energy constants

Eq. 20 gives us the complete expression of the superfluid lagrangian to the lowest order in (m − n).
Expanding the function L0(φ) in powers of the Goldstone fields, one can read off the phonon kinetic
term and self-interaction vertices:

Leff [φ] = L0[(µn +mn)
2] +

dP

dY
(∂0φ) +

1

2!

d2P

dY 2
(∂0φ)

2 − 1

2!(µn +mn)

∂P

∂Y
(∂iφ)(∂iφ)

+
1

3!

d3P

dY 3
(∂0φ)

3 +
1

2!

[

− 1

(µn +mn)

d2P

dY 2
+

1

(µn +mn)2
dP

dY

]

(∂0φ)(∂iφ)(∂iφ) + ...

(21)

where all derivatives are evaluated at Y = µn. The above expansion makes it clear that the low energy
constants of the theory are then given by the derivatives of the pressure with respect to the chemical
potential. Eq. 21 also serves as a starting point for a fluid dynamical study of the system once one
realizes that −∂iφ/(mn + µn) is the velocity of the superfluid. (See Ref. [20] and references therein.)
Alternatively, one can show that the thermodynamic derivatives are related to the static correlation

functions involving the neutron charge and current operators. For example,

∂Wn

∂Ān
µ

= 〈Jµ
n (0)〉 =

dP

dY
|eqηµ0 . (22)

Similarly,

∂2Wn

∂Ān
ν∂Ā

n
µ

|eq = i

∫

d4x〈T {Jν
n(x)J

µ
n (0)}〉connected

=

[

1

(µn +mn)

dP

dY
|eqηµν +

(

− 1

µn +mn

dP

dY
+
d2P

dY 2

)

|eqηµ0ην0
]

.

(23)

A more careful analysis taking Ā to be long wavelength but not quite constant shows that the current-
current correlation function thus obtained is the momentum independent part of the transverse-current—
transverse-current correlation function.
Finally, in the non-relativistic limit, separating the space and time components we obtain the well

known results

∂2Wn

∂Ān
0∂Ā

n
0

|eq =
d2P

dY 2

∂2Wn

∂Ān
i ∂Ā

n
j

|eq =
1

mn

dP

dY
ηij .

(24)

IV. THE SUPERFLUID AND LATTICE PHONON LAGRANGIAN

A. Fields and the effective lagrangian

A crystalline ground state of the system spontaneously breaks translations and rotations. The proton
number density acts as the relevant order parameter. Since space-time dependent translations include
rotations as special cases, it will suffice to consider the breaking of the abelian group G of spatial
translations to the subgroup H = {T~b} containing discrete translations by multiples of lattice basis

vectors, ~b. The generators of G are the components of the three-momentum P a given by space integrals
of the energy-momentum tensor components T 0a(x), and momentum conservation takes the local form

∂µ T
µa(x) = 0. (25)

The Goldstone effective fields can be chosen as space-time dependent coordinates ξa(x) (a = 1, 2, 3)
of the coset space G/H :

γ(x) = eiξ
a(x)Pa

, γ ∈ G/H . (26)
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The nonlinear action of the translations group on the Goldstone fields is specified by:

xb → x′b = xb + ab, ξb(x) → ξ′b(x
′) = ξb(x) + ab , (27)

as can be verified by left multiplication of γ ∈ G/H with g = eia
bP b ∈ G.

Promoting the global symmetry to local symmetry, a generally covariant formulation [14, 21] of the
phonon dynamics in the background metric gµν can be readily achieved by introducing a set of fields
that transform as scalar fields under the general coordinate transformations of Eqs. 2:

za(x) = xa − ξa(x) a = 1, 2, 3 . (28)

The fields za(xµ) can be thought of as one particular choice of body-fixed coordinates 2 of a material
point located at xµ = (t, ~x). With this choice the body-fixed coordinates coincide with the “laboratory”
coordinates (xa, gab) when the displacement field ξa vanishes.
As in the pure neutron case, the partition function in the presence of generic external fields An

µ(x),
Ap

µ(x), gµν(x), admits a low-energy representation in terms of the four Goldstone modes φ and ξa:

Z[An
µ, A

p
µ, gµν ] =

∫

[dΨn][dΨp]e
iS[Ψn,ΨI ,A

n
µ,A

p
µ,gµν ] →

∫

[dφ][dξa]eiSeff [φ,ξ
a,An

µ,A
p
µ,gµν ] . (29)

At the end, we will evaluate the partition function for space-time independent external fields Ān
µ, Ā

p
µ

and ḡµν , specifying a particular density, and lattice shape for the system.
Seff represents the effective action of ξa (or equivalently za) and φ in the presence of external fields.

We can organize the terms in Seff according to the same power counting introduced earlier in our
discussion of the superfluid, i.e. in increasing difference between the number of derivative operators and
the Goldstone fields,

Seff [φ, ξ
a, An

µ, A
p
µ, gµν ] =

∫

d4x
√−g

[

L0(∂µφ, ∂µz
a, An

µ, A
p
µ, gµν)

+ L1(∇ν∂µφ,∇νAµ,∇ν∂µz
a, ...) + ...

]

.

(30)

Symmetries impose powerful constraints on the form of Leff . Since z
a transform as scalars, ∂µz

a trans-
forms as a contravariant vector. The building blocks of the scalar function Leff are scalar combinations
of An

µ(x), A
p
µ(x), gµν(x), ∂µφ, ∂µz

a, and their covariant derivatives. Symmetry under phase rotations
of the neutrons, Eq. 3, implies that An

µ(x) should appear in a combination such that the transformation
An

µ(x) → An
µ(x)+∂µθn(x) leaves the effective action invariant. The same is required for the protons. In

the pure neutron case we found that gauge symmetries implied that ∂µφ and An
µ(x) could appear only

in the combination Dµφ. To lowest order in the power counting, the scalar combinations that can be
constructed from the gauge invariant combinations are

X = gµνDµφDνφ (31)

W a = gµν Dµφ∂νz
a (32)

Hab = gµν ∂µz
a∂νz

b . (33)

In addition to these building blocks, other possibilities arise in the mixed case that were not present in
the case of a pure neutron superfluid. The following terms only change by a total derivative on making
gauge transformations defined in Eqs. 3, 4, 3

∫

d4x
1

3!
ǫµνσλǫabc

(

C1A
p
µ(x) + C2 ∂µφ(x)

)

(∂νz
a(x)∂σz

b(x)∂λz
c(x)) . (37)

2 These are the coordinates in a frame frozen in the body of the solid. If one follows a material point in the solid, its
coordinates in this frame remain constant.

3 The term
∫

d4x
C3

3!
ǫµνσλǫabc

(

An
µ(x)

)

(∂νz
a(x)∂σz

b(x)∂λz
c(x)) (34)

can be rewritten as,
∫

d4x
C3

3!

[

3!
√

g det
(

IH
)

− ǫµνσλǫabc
(

∂µφ(x)
)

(∂νz
a(x)∂σz

b(x)∂λz
c(x))

]

, (35)

where,

IH =

[

X W aT

W a Hab

]

. (36)

This shows that any term proportional to C3 can be reabsorbed by a redefinition of the function f and the coefficient
C2.
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Hence, the most general form of L0 is

L0(∂µφ,∂µz
a, An

µ, A
p
µ, gµν) = f(X,W a, Hab)

+
1

3!
√−g ǫ

µνσλǫabc
(

C1 A
p
µ + C2 ∂µφ

)

(∂νz
a∂σz

b∂λz
c) .

(38)

The term proportional to C2 is a total derivative that becomes relevant only in presence of non-trivial
topological configurations (vortices) for the field φ [8]. This would be relevant for calculations of vortex-
phonon interactions but for now on we disregard this term and restrict our discussion to vortex free
configurations.

B. Thermodynamic matching

Extending the analogy with the neutron superfluid case further we can relate L0 to the free energy
of the neutron-proton system. The free energy Ω[An

µ, A
p
µ, gµν ] is proportional to the log of the partition

function. Following the discussion in the pure neutron case, one can show that for space-time indepen-
dent external fields, gµν(x) = ḡµν , A

p
µ(x) = Āp

µ, A
n
µ(x) = Ān

µ, Ω it is also equal to L0 evaluated at the
classical solution φ|0 = 0, ξa|0 = 0. Hence,

Z[Ān
µ, Ā

p
µ, ḡµν ] = eiW [Ān

µ,Ā
p
µ,ḡµν ] = e−iV TΩ[µn,µp,ḡµν ] = eiV TL0(0,δ

a
µ,Ā

n
µ,Ā

p
µ,ḡµν) , (39)

where V T =
∫

d4x
√−ḡ. For this choice of the many body ground state, X0 = Ān

µĀ
µ n, W a

0 = 0 and

Hab = ḡab. Therefore,

−Ω[µn, µp, ḡµν ] = f(X = X0,W
a = 0, Hab = ḡab) +

1√−ḡ C1 (µp +mp) . (40)

The constant C1 can be determined from the requirement that ∂Ω
∂µp

= C1√−ḡ p
. Thus, we see that C1

is the density of protons for a configuration whose metric has determinant −1. Symbolically, C1 = nη
p,

where ηµν is a particularly convenient choice (also see footnote 5) for a metric with determinant −1.
When we consider the functional form of f , we encounter a feature different from the previous case

where we considered the pure neutron superfluid. There, we were able to determine the complete
dependence of the function f on its arguments from the free energy function Ω (L0(X) = P (Y ) =

−Ωn(Y )), i.e. from a calculation of the partition function with the specific form Ān
µ = (mn + µn,~0) for

the external field. In the mixed case, however, since Dµφ∂
µza|eq = 0 for Ān

µ = (mn + µn,~0), it is not

possible to calculate the dependence of f onW a from the free energy calculation in this external field. 4

To determine the dependence of f onW a one needs to evaluate the partition function Z for a space-time
independent external gauge field An

µ(x) that has non-zero spatial components, Ãn
µ = (µn+mn,Ai). This

gives D̃µφ0 = Ãn
µ, X̃0 = Ãn

µÃ
µ n and W̃ a

0 = ḡaνÃn
ν = Ãa n. Then,

− Ω[Ãn
µ, Ā

p
µ, ḡµν ] = L0(0, δ

a
µ, Ã

n
µ, Ā

p
µ, ḡµν) (41)

= f(X = X̃0,W
a = W̃ a, Hab = ḡab) +

1√−ḡ n
η
p(µp +mp) (42)

By calculating the free energy for various Ãn
µ and ḡab we can map out the functional dependence of f

on X , W a and Hab. Finally, noting that Ω = 〈Ω|Ĥ − Ãn
µj

µ
n − np(µp +mp)|Ω〉 (Ĥ is the hamiltonian

density), the term proportional to np cancels out from both sides and the function f is given by,

f(X̃0, W̃
a
0 , ḡ

ab) = 〈Ω|Ãn
µj

µ
n − Ĥ |Ω〉 . (43)

The generalization of Eq. 39 with the full Ãn is simply

Z[Ãn
µ, Ā

p
µ, ḡµν ] = eiW [Ãn

µ,Ā
p
µ,ḡµν ] = e−iV T Ω[Ãn

µ,µp,ḡµν ] = eiV TL0(0,δ
a
µ,Ã

n
µ,Ā

p
µ,ḡµν) . (44)

4 This fact is intuitively understandable. In the non-relativistic limit [14] we have W a ∼ mn(− 1

mn
∂aφ − ∂0ξ

a +
1

mn
∂iφ∂iξ

a) = mn(van − ∂0ξ
a − vn.∇ξa) which is the relative velocity between the neutron superfluid and the pro-

ton clusters. The dependence on W a therefore represents the interaction between the superfluid neutrons and the
lattice when they are moving relative to each other, and can not be calculated by a ground state evaluation of the free
energy.
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C. Identifying the low-energy constants

Expanding the function L0 in powers of the Goldstone fields φ and ξa, one can read off the phonon
kinetic term (including kinetic mixing among the ξ and φ) and self-interaction vertices. The expansion
in the φ field can be done as in Section III. The expansion in ξa is performed about the undeformed
equilibrium configuration with ḡµν = ηµν and ξa = 0. Deviations from the equilibrium shape are then
signified by ξa 6= 0, which gives Hab = ηab + ∆Hab with ∆Hab = −(∂aξb + ∂bξa) + ∂µξ

a∂νξ
bηµν . At

equilibrium, X = X0 and W a = W a
0 = 0, and deviations from equilibrium are given by X − X0 =

∆X = 2(µn +mn)∂0φ+ ∂µφ∂νφη
µν and W a −W a

0 = ∆W a = −(µn +mn)∂0ξ
a + ηab∂bφ− ∂µφ∂νξ

aηµν .
To second order in the fields, the expansion of f is

f(X,W a, Hab) = f(X0,0, η
ab)

+
∂f

∂X

∣

∣

∣

eq
(2(µn +mn)∂

0φ+ ∂µφ∂
µφ) +

1

2!

∂2f

∂X2

∣

∣

∣

eq
(2(µn +mn)∂

0φ)2

+
1

2

∂2f

∂W a∂W b

∣

∣

∣

eq
(−(µn +mn)∂

0ξa + ∂aφ)(−(µn +mn)∂
0ξb + ∂bφ)

+
∂f

∂Hab

∣

∣

∣

eq
∆Hab +

1

2

∂2f

∂Hab∂Hcd
∆Hab∆Hcd

+
∂2f

∂Hab∂X

∣

∣

∣

eq
∆Hab(2(µn +mn)∂

0φ) .

(45)

We have simplified the expansion above by taking ∂f
∂Wa |eq = 0, ∂2f

∂X∂Wa |eq = 0 and ∂2f
∂Hab∂W c |eq = 0.

This would be the case for any crystal with reflection symmetry, for example a cubic crystal. For a
cubic crystal, one can further simplify the expressions by using symmetry under rotation by π

2 along

the axes. This gives ∂2f
∂Wa∂W b = 1

3
∂2f

∂W c∂W c δ
ab, ∂f

∂Hab = 1
3

∂f
∂Hcc δ

ab, and ∂2f
∂X∂Hab = 1

3
∂2f

∂Hcc∂X
δab, where

∂
∂Hcc = ∂

∂H11 +
∂

∂H22 + ∂
∂H33. Finally, we drop the total derivatives.

With all these simplifications,

f(X,W a, Hab) = f(X0,0, η
ab) +

1

2

∂2f

∂Y 2
(∂0ϕ)

2 +
1

2
∂iϕ∂jϕη

ij

[

1

mn + µn

∂f

∂Y
− ∂2f

3∂W c∂W c

]

+
1

2

[

2

3

∂f

∂Hcc
+ (mn + µn)

2 ∂2f

3∂W c∂W c

]

∂0ξ
a∂0ξ

a + (∂0ϕ∂aξ
a)

[

2

3

∂2f

∂Hee∂Y
+ (mn + µn)

∂2f

3∂W c∂W c

]

+
1

3

∂f

∂Hcc
(∂iξ

a∂iξa) +
1

2

∂2f

∂Hab∂Hcd
(∂aξ

b + ∂bξ
a)(∂cξ

d + ∂dξ
c) + ...

(46)

One key consequence of Eq. 46 is that the low-energy constants are related to derivatives of the function
f with respect toX ,W a, andHab evaluated at the “equilibrium” pointX = X0, W

a =W a
0 , H

ab = ηab.
In turn, due to the thermodynamic matching relation Eq. 44, the low-energy constants can be expressed
in terms of derivatives of the generating functionalW [Ãn

µ, Ā
p
µ, ḡµν ]. The analysis proceeds along parallel

lines to the pure neutron case, but it contains a number of novel features, which we discuss in some
detail below.

1. Thermodynamic derivatives

The first order derivatives of the functional W [Ãn
µ, Ā

p
µ, ḡµν ] specify the number density of particles in,

and the stress energy tensor of, the system:

1

V T

∂W

∂An
0

|eq = 〈nn〉 =
∂f

∂Y

−2

V T

∂W

∂g00
|eq = 〈T 00〉 = (mn + µn)

∂f

∂Y
− f

−2

V T

∂W

∂gab
|eq = 〈T ab〉 =

[

−2
1

3

∂f

∂Hcc
− f

]

ηab .

(47)
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In particular, 2 1
3

∂f
∂Hcc = − 1

3 〈T a
a 〉 − f . The second order derivatives of W have the following form,

1

V T

∂2W

∂An
0∂A

n
0

|eq =
∂2f

∂Y 2
≡ −FA0A0

1

V T

∂2W

∂An
a∂A

n
b

|eq =
[ 1

mn + µn

∂f

∂Y
− 1

3

∂2f

∂W c∂W c

]

ηab ≡ −FAaAb

1

V T

∂2W

∂An
0∂g00

|eq = (mn + µn)
∂2f

∂Y 2
≡ −FA0g00

−2

V T

∂2W

∂An
0∂gab

|eq =
[

− ∂f

∂Y
− 2

1

3

∂2f

∂Hcc∂Y

]

ηab ≡ −FA0gab

−2

V T

∂2W

∂An
a∂gb0

|eq =
[ ∂f

∂Y
− (mn + µn)

∂2f

3∂W c∂W c

]

ηab ≡ −FAagb0

4

V T

∂2W

∂g00∂g00
|eq = −f + (mn + µn)

∂f

∂Y
+ (mn + µn)

2 d
2f

dY 2
≡ −Fg00g00

4

V T

∂2W

∂g00∂gab
|eq =

[

−f − (mn + µn)
∂f

∂Y
+ 2

1

3

∂f

∂Hcc
− 2

1

3
(mn + µn)

∂2f

∂Y ∂Hcc

]

ηab ≡ −Fg00gab

4

V T

∂2W

∂ga0∂gb0
|eq =

[

−f + (mn + µn)
∂f

∂Y
− 2

1

3

∂f

∂Hcc
− (mn + µn)

2 ∂2f

3∂W c∂W c

]

ηab ≡ −Fga0gb0

4

V T

∂2W

∂gab∂gcd
|eq = −(f +

4

3

∂f

∂Hee
)(ηacηbd + ηadηbc − ηabηcd) + 4

∂2f

∂Hab∂Hcd

≡ −Fgabgcd ,

(48)

where all derivatives of f are evaluated at equilibrium. The second order correlations are proportional
to the momentum independent part of appropriate time ordered correlation functions of the neutron
current and the total stress energy tensor. Since they can be found simply from Eq. 48 by noting that
jµ and T µν are obtained as the partial derivatives of W with respect to Aµ and gµν , respectively, we
don’t explicitly include them here. The expressions in Eqs. 45 and 48 look complicated but have simple
physical interpretations, as we discuss below. Keeping our eyes on the applications to the neutron star
crust, we will take the non-relativistic limit and replace µn +mn by mn below.

2. The entrainment coefficient

Here we note that the current-current correlation function for neutrons, ∂2W
∂An

a∂A
n
b

|eq is not simply

proportional to the total neutron density but is instead proportional to df
dY

−mn

3
∂2f

∂W c∂W c . We conjecture

that nb ≡ mn

3
∂2f

∂W c∂W c > 0 and this represents the number density of neutrons “bound” or “entrained”

on the nuclei. ∂f
∂Y

− mn
1
3

∂2f
∂W c∂W c is then interpreted as the number of “unbound” neutrons in the

system. Indeed, from the coefficient of (∂iφ)
2 in Eq. 46 we see that the current of the superfluid mode is

proportional to nf = (nn−nb), where nf is neutron density that can participate in superfluid transport.
It is also reassuring that in Eq. 46 the effective mass density of the “proton” clusters involved in lattice

vibrations is correspondingly increased by mnnb. This is easily seen by noting that the coefficient of the

kinetic term is given by 1
2 [

2
3

∂f
∂Hcc +m2

n
1
3

∂2f
∂W c∂W c ] =

1
2 [

2
3

∂f
∂Hcc +mnnb]. The picture of the inner crust as

periodic clusters of ions and neutrons “entrained” on the clusters has been discussed previously [2, 3].
Our formalism confirms this intuition, and provides a field theoretic derivation of the entrained neutron
density in terms of generalized thermodynamic derivatives.

3. Relating the LECs to the stress and elastic tensors

From Eq. 45 and the last relation in Eq. 48 one sees that the part of the effective lagrangian quadratic

in gradients of ξa can be expressed in terms of ∂2W
∂gab∂gcd

|eq. This result establishes a non-trivial relation
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between the LECs appearing in the phonon quadratic lagrangian and the stress tensor correlator that
can be calculated in the underlying theory using non-perturbative methods. We can go one step further
and relate the LECs to first and second order thermodynamic derivatives of the free energy with respect
to the strain tensor (i.e. the stress and elastic tensors). This step relies on the relationship between
the external metric gµν and the strain of the crystal structure, i.e. its shape. We will find that since
the strain has pieces both linear and quadratic in the displacement fields (see Eq. 50 below) the elastic
constants are linear combinations of first and second order derivatives of the free energy with respect
to the strain.
Let us first recall a few basic definitions from the theory of elasticity. The elastic constants can be

defined through thermodynamic derivatives of the free-energy (or internal energy) per unit mass 5 with
respect to the strain tensor sab associated with deformations around some reference point:

F = F0 − tabsab +
1

2
Xabcd sabscd + ... (49)

In the above relation tab is the stress tensor associated with the reference configuration, which we will
take to be the equilibrium configuration. Xabcd is known as the elastic tensor. For an equilibrium
configuration in absence of external forces, tab = 0, and the components of Xabcd are simply the elastic
constants. For an equilibrium configuration in the presence of external forces (tab 6= 0), for example a
solid under pressure, the elastic constants are linear combinations of tab and Xabcd.
The strain tensor is defined in terms of the displacement fields ζa(x) as follows:

sab =
1

2

(

∂ζa

∂xb
+
∂ζb

∂xa
+
∂ζi

∂xa
∂ζi

∂xb

)

. (50)

The strain tensor has a simple geometric interpretation. Imagine choosing the body-fixed coordinates xa

so that they coincide with the Euclidean (flat) laboratory coordinates when the body is in equilibrium.
After a deformation specified by the displacement fields ζa(x), the body-fixed coordinate system will
have a non-trivial three-dimensional metric, whose deviation from flat metric is specified by sab:

ηab ≡ −δab → gab = ηab − 2 sab . (51)

We now state the results that ensure the connection with the elastic constants, relegating their proof
to Appendix A. The main point is that the energy density Ω[Ãn, Āp, ḡ] calculated using the path integral
(Eqs. 29 and 39) in the presence of a space-time independent metric of block form

ḡµν =

[

1 0
0 ḡab

]

(52)

is equal to the flat-space energy density in the lowest energy state |Ωg〉 subject to the “deformation

condition” 〈Ωg|ξ̂a(x)|Ωg〉 = ζag (~x), with ζ
a
g (x) related to ḡab by

ḡab = ηab − 2 sab(ζg) , (53)

and sab(ζ) given in Eq. 50. This result establishes a correspondence between the ground state in presence
of ḡab 6= ηab and a deformed configuration around the “true ground state” in the absence of external
gravitational field, ḡab = ηab. Therefore, by varying the external metric ḡab we probe different deformed
configurations of the system, with strain tensor related to ḡab by Eq. 53.

Identifying the free energy F [s] per unit volume in flat space with F =
√−ḡΩ = −

√−ḡ

V T
W [Ãn

µ, Ā
p
µ, ḡµν ]

we have:

Xabcd ≡ δ2F

δsabδscd

∣

∣

∣

∣

∣

s=0

=
δ2
√−gΩ

δsabδscd

∣

∣

∣

∣

∣

s=0

= − 4

V T

δ2W

δḡabδḡcd

∣

∣

∣

∣

∣

ḡ=η

. (54)

5 Equivalently, one defines the thermodynamic quantities per unit volume of the undeformed [22] system. The free energy

per unit flat space volume element is given by F =
√−ḡΩ = −

√
−ḡ

V T
W [Ãn

µ, Ā
p
µ, ḡµν ].
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For a cubic crystal

Xabcd =

(

K̄ − 2

3
µ̄

)

δabδcd + µ̄
(

δacδbd + δadδbc
)

+ α δabcd , (55)

where the term proportional to α is non-zero only if a = b = c = d and represents the anisotropy in the
elastic coefficients. Now we have all the pieces to write the LECs in terms of thermodynamic derivatives.
For convenience, we define P = − 1

3 〈T a
a 〉, and E = 〈T 00〉.

4. The quadratic phonon lagrangian

Making the identifications discussed above, we can write the quadratic lagrangian in a rather compact
form. Neglecting constant terms and total derivatives, and using integration by parts to simplify some
terms, we find:

L0 =
1

2

[

−FA0A0

]

(∂0φ)
2 − 1

2

[

−1

3

(

FAaAb

)

ηab

]

(∂iφ)
2

+
1

2

[

P + E +
m2

n

3

(

FAaAb

)

ηab

]

ξ̇aξ̇a

+

[

1

3

(

FA0gab
+mnFAaAb

)

ηab

]

(∂cξ
c)(∂0φ)

− 1

4

[

µ
]

ξab ξab − 1

2
[K] (∂cξ

c)2 − 1

2
α
∑

a

(∂aξ
a∂aξ

a) . (56)

This form allows us to express the low-energy constants appearing in Eq. 1 in terms of thermodynamic
functions and derivatives as follows,

ρ = P + E +
m2

n

3

(

FAaAb

)

ηab

K = K̄ +
1

3
P

µ = µ̄− P

f2
φ = −FA0A0

v2φf
2
φ = −1

3
FAaAb

ηab

gmix =
1√
ρfφ

[1

3

(

FA0gab
+mnFAaAb

)

ηab
]

,

(57)

where

K̄ =
(−5

18
δabcd +

1

6
δabδcd +

1

9
δacδbd

)

Xabcd (58)

µ̄ =
(

−1

6
δabcd +

1

6
δacδbd

)

Xabcd (59)

α =
(5

6
δabcd −

1

6
δabδcd −

1

3
δacδbd

)

Xabcd , (60)

with Xabcd given in Eqs. 54, 55.
The pressure term in the definition of the bulk (K) and shear modulus (µ) in Eq. 57 should not be

cause for concern. Its origin can be traced back to the term linear in sab in Eq. 49, which is present in
a system at finite pressure [23, 24].
This dependence of the elastic constants on the linear term in the Taylor expansion of the free energy

with respect to the strain tensor sab appears to be counter-intuitive. However, the key point here is
that the strain tensor associated with a deformation ξa has parts both linear and quadratic in ∂bξ

a

(Eq. 50). Using this, one can show that the elastic constants are entirely determined by the quadratic
terms in the expansion of the free energy with respect to the displacement field ξa (that appears in the
combinations ξab and ∂aξ

a).
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V. APPLICATIONS

A. Neutron star inner crust

Here we apply the formalism to the inner crust of neutron stars and illustrate the importance of
entrainment and kinetic mixing induced by the neutron-proton interactions. We revise the calculation
of the mixing constant gmix (Eq. 1) in Ref. [10] including the effects due to entrainment. In this
earlier work, a somewhat arbitrary distinction was made between neutrons bound in the nuclei and
the neutrons “outside”. The interaction between the nuclei and unbound neutrons was modeled by a
short-range potential V (r) = −2πanI δ

3(r)/mn where anI was the effective neutron-nucleus scattering
length. Here, using the results of the previous section we show that neither of these ad hoc assumptions
are necessary as the LECs of the effective theory are simply related to generalized thermodynamic
derivatives evaluated in the non-perturbative ground state. A first principles calculation of the LECs
would require a numerical non-perturbative calculation. Such a calculation is beyond the scope of this
study. In what follows we will use simple estimates based on earlier calculations to draw some qualitative
conclusions about the role of interactions between the solid and the superfluid in the neutron star crust.
From the preceding discussions the lowest order effective lagrangian for longitudinal modes with

canonically normalized fields φ̃ = fφφ and ξ̃i =
√
ρξi in the inner crust can be written as

L =
1

2
(∂0φ̃)

2 − 1

2
v2φ (∂iφ̃)

2 +
1

2
(∂0ξ̃i)

2 − 1

2
v2l (∂iξ̃i)

2 + gmix ∂0φ̃ ∂iξ̃i , (61)

where the LECs defined in Eq. 57 can be written as

v2φ =
nf

mn f2
φ

, v2l =
K + (4/3)µ

ρ
, and gmix =

1

3

(

FA0gab
+mnFAaAb

)

ηab
√

−FA0A0ρ
, (62)

Here we note that (−FAaAb
ηab/3)f/mn = (nn−nb)/mn where nf is the density of “free” neutrons that

participate in superfluid motion, nb is the number density of neutrons entrained by the lattice and nn

is the total neutron number density. Further, since neutrons and ions remain non-relativistic in the
neutron star crust, the LECs simplify

ρ = E + P +
m2

n

3

(

FAaAb

)

ηab

Non−Rel−−−−−−→ (np + nb) mn

gmix =
1

3

(

FA0gab
+mnFAaAb

)

ηab

fφ
√
ρ

Non−Rel−−−−−−→ 1

fφ
√
ρ

[

nb − np

∂2f

∂np∂µn

]

=
1

fφ
√
ρ

[

nb − np

∂nn

∂np

]

(63)

where the hybrid free energy function is

f(µn, np) = (µn +mn)nn(µn)− E(µn, np) . (64)

Here np is the proton density, K and µ are respectively the bulk and shear moduli of the combined
system, and we have ignored the small contribution due to the LEC α that encodes the anisotropic
contribution. In [10] a simple estimate of gmix was derived but failed to include the contribution due to
entrainment effects. We have verified that the result in Ref. [10] can be recovered by setting nb = 0 in
Eq. 63.
In Ref. [10], assuming that the effective interaction between the unbound neutrons and ions is weak,

it was found that f2
φ = mnkF /π, and v2φ = nf/(mnf

2
φ), where kF and nf = k3F /3π

2 are the Fermi
momentum and number density of unbound neutrons. The speed of longitudinal lattice vibrations
was approximated as the Bohm-Staver sound speed. The longitudinal sound speed is given by vl =
√

KI/ρ where KI = ρ(∂(PIe)/∂ρ) is the bulk-modulus of the electron-ion system. To calculate the
longitudinal speed in the Bohm-Staver approximation, the total pressure of the electron-ion system is
(well) approximated by the electron pressure Pe, and the mass density of lattice is taken to be ρ = mnA
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where A is the number of bound nucleons in the ion. Interactions between nucleons will modify these
simple estimates quantitatively 6. Qualitatively, the effect of strong neutron-proton interactions is
the induced mixing between longitudinal lattice phonons and the superfluid modes. This interaction
is characterized by the dimensionless LEC, gmix, which in turn depends on two contributions, one
proportional to np(∂nn/∂np) and the other proportional to the entrainment parameter nb.
In the neutron star context, both of these quantities can be calculated using phenomenological models.

The ground state structure which specifies the profiles of nucleons is obtained by solving the single-
particle equations in the Wigner-Seitz (WS) approximation [1] or more realistic boundary conditions that
reflect the cubic lattice structure [26, 27]. For a given volume of the WS unit cell VWS, these calculations
determine the number of bound neutrons (Nb), protons (Z), and the total number of neutrons in the
cell (NWS). They also determine how µn and µp vary with neutron and proton densities. The first
contribution to gmix is found by noting that np(∂nn/∂np) = npf

2
φVnp where Vnp = (∂µn/∂np) is the

effective interaction between neutrons and protons. The other contribution is related to the density of
bound neutrons and a naive estimate would suggest that nb = Nb/VWS. However, as discussed earlier
in section IVC2 and in Ref. [9], the number density of neutrons that effectively move with the nucleus
is defined through the static limit of the current-current correlation function κ = −FAaAb

ηab/3 =
(nn − nb)/m. This correlation function has been computed earlier for neutrons in the background
of a static periodic potential designed to mimic the neutron star crust in Refs. [2, 26, 28]. In these
calculations κ = (nn − n∗)/m∗ is defined in terms of an ad hoc but convenient quantity called the
effective mass m∗ of unbound neutrons, and the average number density of neutrons with energy less
than zero is denoted by n∗. Thus the LEC

nb = nn − mn

m∗
n

(nn − n∗) , (65)

where nn = NWS/VWS is the average neutron density in the cell.
We now turn to a simple illustration of how mixing affects the propagation of longitudinal modes

in the crust. For this purpose it would be ideal to compute the three LECs (vφ, vl, gmix) from a self-
consistent underlying microscopic model using Eq. 62. However, such a calculation is beyond the scope
of this work and we adopt a less rigorous approach where we use the results of Ref. [10] for the velocities
of the superfluid and lattice modes in the uncoupled system, and assume that nb ≫ np(∂nn/∂np) and
m∗/m ≃ 1. Simple estimates support our expectation that the dominant contribution to gmix is due to
nb. In this case,

gmix ≃ vφ
nb

√

(nb + np)nf

(66)

Our second assumption m∗/m ≃ 1 is likely to be invalid in some regions of the crust [28]. Nonetheless
to simply illustrate the role of mixing we have set m∗ = m and plan to return to a fully self-consistent
calculation in future work.
In terms of the canonically normalized fields the kinetic terms in Fourier space has the form,

S =
1

2

∑

k

(ϕ̃(−k) k̂.ξ̃(−k))
(

k20 − v2φk
2 gmixk0|k|

gmixk0|k| k20 − v2l k
2

)(

ϕ̃(k)

k̂.ξ̃(k)

)

(67)

The velocities of the two eigenmodes can be obtained by diagonalizing the matrix in Eq. 67. The results
are shown in Fig. 1 where the solid curves incorporate mixing effects due to a finite gmix given by Eq. 66
and the dotted curves show the uncoupled case with gmix = 0.
In contrast, the speed of the transverse lattice modes are unaffected by mixing and is given by

vt =

√

µ

ρ
=

√

µ

(np + nb)mn

. (68)

Here, only entrainment effects play a role in the propagation of transverse lattice phonons, as was
previously pointed out in Ref. [9].

6 Very large coupling between the unbound neutrons and the ions could [25] in principle make v2
l
< 0 and violate our

central assumption that the stable ground state breaks translational symmetry. The stability of periodic ground states
in model calculations [26, 27] suggest that is not the case.
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FIG. 1. The velocities of the two eigenmodes. The dotted lines are vl and vφ ignoring mixing.

B. Crystalline superfluids or LOFF-like phases

Other systems of phenomenological interest where this low energy theory applies are the LOFF
phases [5, 6]. Here, attractive interactions between two species of fermions leads to pairing at the Fermi
surface but with a pair condensate 〈ψ1ψ2〉 which is spatially inhomogeneous in the ground state. A
mismatch in the Fermi-momenta of the two interacting species in the absence of pairing, disfavors the
formation of zero-momentum Cooper pairs and instead pairs with finite total momentum are favored.
These pairs condense to form a ground state that breaks translation symmetry and can be written as a
sum over plane-waves,

〈ψ1(x)ψ2(x)〉 ∼ ∆(r) = ∆
∑

{qa}
e2iq

a·r , (69)

where ∆ is the gap parameter. The magnitude of the momentum |qa| ≃ δkF where δkF is the splitting
between the Fermi momenta of the interacting species. The magnitudes of the momenta and their
spatial orientation is determined by minimizing the total free energy and this set of momenta specifies a
crystalline ground state. The LOFF phases can in principle be realized in ultracold Fermi gases [29–34]
where a splitting between Fermi levels can be achieved through a population imbalance, and in dense
quark matter where a Fermi level splitting arises naturally [35, 36].
In dense quark matter, pairing between different flavors of quarks can play a role in determining

the ground state structure. The relatively large strange quark mass, and charge neutrality induce a
splitting between the Fermi energies of up, down and strange quarks. The expected splitting between
the Fermi energies is δµ ≃ m2

s/(8µq) where ms is the strange quark mass and µq is the quark chemical
potential. At moderate densities, such as those realized in the neutron star core where µq ≃ 400 MeV,
this splitting between Fermi energies can favor LOFF phases in quark matter with spatially varying
di-quark condensates with a crystalline structure when δµ ∼ ∆0/

√
2 [37–39], where ∆0 is the gap in the

absence of Fermi surface splitting. As this ground state breaks the same symmetries as those discussed
in Section II, these phases are amenable to the same low energy energy effective theory formulation.
Several aspects of the low energy theory of crystalline phases in quark matter have already been

described in Ref. [40]7. In Ref. [16], the coefficients of the “lattice only” (φ = 0 in Eq. 1) effective theory

7 The low energy theory for a one dimensional LOFF phase in ultracold Fermi gases was discussed in Ref. [41]. It focussed
on the potential energy and did not consider the terms involving time derivatives. Therefore the mixing of the modes
was not considered.
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were computed microscopically in a Ginzburg-Landau expansion [39]. This work was primarily focussed
on the shear modes and showed that both the kinetic coefficient, ρ, and the elastic constants µ etc.,
were of the order µ2

q∆
2 where ∆ is the pairing gap parameter. The mixing between the longitudinal

lattice phonon mode and the superfluid mode was mentioned but the relevant mixing coefficient was
not calculated. Using the same techniques, we have estimated the mixing coefficient and we find that
in the regime where LOFF-like phases are favored

gLOFF
mix ∼ ∆

δµ
. (70)

Similarly, the coefficients for the “superfluid only” (ξa = 0) sector can also be computed (some were
calculated in [42]). For ∆ ≪ µq we expect the coefficient f2

φ ∼ µ2
q, corresponding to the density of states

near the Fermi surface for a relativistic system. Our simple estimates here show that strong mixing
between the superfluid and the longitudinal mode can be realized, with important implications for hy-
drodynamic oscillations both in the context of dense quark matter and trapped imbalanced Fermi gases,
where LOFF phases may also be potentially realized. Definitive results require a rigorous derivation
of the low-energy constants. A promising technique for the calculation of the low energy constants in
the LOFF phase beyond the presently used Ginzburg Landau approximation, are Density Functional
Theories (DFTs) [32]. The parameters of the DFTs are constrained by ab-initio calculations, and they
can be used to calculate the free energies of various states in an efficient manner.

VI. CONCLUSIONS

We have studied a low energy effective theory describing phases of matter that simultaneously break
translational symmetry and a number conservation symmetry. U(1) phase invariance and general coor-
dinate invariance restrict the combinations of terms that can appear in the effective lagrangian. We have
shown that the lowest order lagrangian (featuring equal number of derivatives and Goldstone fields) is
determined by the derivatives of the thermodynamic pressure with respect to the external fields such
as the chemical potential. While this was known in the case of one superfluid system [14, 15], here we
have provided a different proof for superfluids and we have generalized it to the mixed system. The two
main results of this paper, Eqs. 48 and 56, provide a useful framework for computing the low energy
dynamics.
Our thermodynamic matching relates the LECs to thermodynamic derivatives of the free energy

with respect to external fields (chemical potential, vector potential, background metric). We have also
pointed out the relation between LECs and correlators of the U(1) current and the stress tensor at small
momenta. Both approaches might be pursued in future non-perturbative calculations using many-body
techniques such as Skyrme Hatree-Fock and Quantum Monte Carlo. For LOFF phases in trapped
ultracold Fermi gases, the LECs may be calculated using DFT techniques.
As a concrete example of phenomenological interest, we have considered matter in the inner crust

of a neutron star, updating a previous estimate of the parameter characterizing the kinetic mixing of
superfluid and lattice phonons. We also discussed briefly how this formulation would apply to the
crystalline superfluids or LOFF-like phases and highlighted the role of mixing between the modes in
these systems. These systems may be realised in terrestial experiments done on trapped ultracold Fermi
gases, and mixing in these systems could affect the hydrodynamic modes in these atomic traps.
Finally, we note that the formalism that we have set up here can be applied to study the low-energy

dynamics of other physical systems with several spontaneously broken symmetries, such as a system
composed of two superfluid species.
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Appendix A: Ω[Ān, Āp, ḡ] and energy density of deformed states

In this appendix we show that the energy density Ω[Ān, Āp, ḡ] = −W [Ān, Āp, ḡ]/(V T ) calculated
using the path integral (Eqs. 29 and 39) admits a simple physical interpretation. It is the expectation

value per unit volume E [ζg ] = 〈Ωg|ĤĀn,Āg,ḡ=η|Ωg〉/V of the flat-space Hamiltonian in the state |Ωg〉 that
minimizes E [ζg ] subject to the constraint 〈Ωg|ξa(x)|Ωg〉 = ζag (x), with ζ

a
g (x) satisfying ḡab = ηab−2sab(ζ)

(see Eq. 50). In other words Ω[Ān, Āp, ḡ] is the energy density in the lowest energy state subject to
the “deformation condition” 〈Ωg|ξa(x)|Ωg〉 = ζag (x). It is precisely in this sense one should think of
the metric ḡab as determining the shape of the system. To avoid notational clutter, we will focus here
on the case of a pure solid system and neglect the dependence on the external fields Ān and Āp. The
derivation involves several steps, which we summarize below.

• First, let us evaluate the partition function in the presence of a space-time independent background
metric ḡµν of form Eq. 52 by the saddle point method. The classical solution that minimizes the
Euclidean action and is well behaved at |x| → ∞ is given by ξa = 0. So we have:

Z[ḡ] = eiW [ḡ] = Exp
{

iV T L0

(

Hab(g = ḡ, ξ = 0)
)}

(A1)

• Since we are working with a diffeomorphism invariant theory, we can obtain the same result for the
free energy in a different coordinate system. Let us use this freedom to switch from coordinates
(xa, ḡab) to the “flat” coordinates (x̃a, ηab).

8 The appropriate variable transformation can be
found by noting that Hab is a scalar density. This results in xa(x̃) = x̃a − ξag (x̃), with the field ξg
determined by the condition Hab(g = ḡ, ξ = 0) = Hab(g = η, ξ = ξg), which explicitly reads

ḡab = ηab −
( ∂ξbg
∂x̃a

+
∂ξag
∂x̃b

− ηij
∂ξag
∂x̃i

∂ξbg
∂x̃j

)

. (A2)

Eq. A2 defines ξag up to rigid rotations and translations. For constant ḡab the solution has the form

ξag (x̃) = Ka
b x̃

b+ca where the elements ofKa
b and ca are constant 9. Equivalently the inverse change

of variables reads x̃a(x) = xa+ζag (x), with ζ
a
g (x) = ξag (x̃)+O(ξ

2
g), and one has ḡab = ηab−2sab(ζ),

with the strain sab(ζ) given in Eq. 50.
In summary, as a consequence of general coordinate invariance one has:

Z[ḡ] = eiW [ḡ] = Exp
{

iV T L0

(

Hab(g = η, ξ = ζg)
)}

, (A3)

with a time-independent field configuration ζg(~x) determined by Eqs. 50 or alternatively A2.

• Next we note that the exponent on the RHS of Eq. A3 is the flat-space action evaluated at the field
ξ = ζg. Moreover, to leading order in the loop expansion (and low-energy expansion) the action
coincides with the quantum effective action Γ[ζg] = Seff [ζg]. But the quantum effective action
Γ[ζg] admits an energy interpretation [43–45]: for time-independent field configurations ζg(~x), one

has that Γ[ζg]/T = −〈Ωg|ĤĀn,Āg,ḡ=η|Ωg〉 where |Ωg〉 is the state that minimizes the expectation

value of the Hamiltonian under the constraint 〈Ωg|ξ̂a(x)|Ωg〉 = ζag (~x) . In equations, the above
chain of reasoning reads

W [ḡ] ≡ −V T Ω[ḡ] (A4)

W [ḡ] = Seff [ζg] = Γ[ζg] = −T 〈Ωg|ĤĀn,Āg ,ḡ=η|Ωg〉 (A5)

≡ −V T E [ζg ] , (A6)

thus proving that Ω[ḡ] = E [ζg ], with ζg related to ḡab by ḡab = ηab − 2sab(ζg).

8 The flat coordinates (x̃a, ηab) play a somewhat special role: the configuration ξ̃a = 0 corresponds to the equilibrium
configuration in absence of external fields. In this state the body-fixed coordinate za = x̃a − ξ̃a are flat (coincide with
the laboratory coordinates). Deformations from equilibrium ξ̃ 6= 0 induce a non-euclidean metric in the body-fixed
coordinates.

9 Note however, that one needs to avoid “large diffeomorphisms”, which are not well behaved at |x| → ∞. Proper behavior
at infinity can be ensured by multiplying the transformation by appropriate convergence factors that decay to zero at
|x| → ∞ faster than any polynomial.
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