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The transverse charge density in a fast–moving nucleon is represented as a dispersion integral of
the imaginary part of the Dirac form factor in the timelike region (spectral function). At a given
transverse distance b the integration effectively extends over energies in a range

√
t <
∼ 1/b, with

exponential suppression of larger values. The transverse charge density at peripheral distances thus
acts as a low–pass filter for the spectral function and allows one to select energy regions dominated
by specific t–channel states, corresponding to definite exchange mechanisms in the spacelike form
factor. We show that distances b ∼ 0.5− 1.5 fm in the isovector density are maximally sensitive to
the ρ meson region, with only a ∼ 10% contribution from higher–mass states. Soft–pion exchange
governed by chiral dynamics becomes relevant only at larger distances. In the isoscalar density
higher–mass states beyond the ω are comparatively more important. The dispersion approach
suggests that the positive transverse charge density in the neutron at b ∼ 1 fm, found previously in
a Fourier analysis of spacelike form factor data, could serve as a sensitive test of the the isoscalar
strength in the ∼ 1GeV mass region. In terms of partonic structure, the transverse densities in the
vector meson region b ∼ 1 fm support an approximate mean–field picture of the motion of valence
quarks in the nucleon.
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I. INTRODUCTION

Elastic electron scattering is one of the principal
sources of information on the nucleon’s spatial size and its
internal structure. Two different physical pictures have
traditionally been invoked to interpret the nucleon form
factors measured in such experiments. The first imag-
ines the nucleon as an extended object in space, char-
acterized by a distribution of charge and current, and
aims to explain the form factors as the Fourier image
of these spatial distributions. This approach has been
used extensively in non-relativistic nuclear physics, where
electron scattering has provided detailed spatial images
of the charge and current distribution in nuclei. The
other picture views elastic scattering as the exchange of
a meson–like system between the current and the nucleon
and attempts to describe the form factors in terms of the
masses and couplings of these hadronic states. Histori-
cally, the existence of vector mesons was first postulated
in order to explain the observed behavior of the nucleon
form factors in the region of spacelike momentum trans-
fers |t| <∼ 1GeV2 [1]. The equivalence of the “extended
object” and “exchange mechanism” viewpoints is rooted
in fundamental properties of strong interactions, namely
their relativistic invariance and causality. They guaran-
tee the existence of dispersion relations that express the
form factors at spacelike momentum transfers in terms of
their imaginary parts in the timelike domain (or spectral
functions), where the exchange mechanisms correspond
to intermediate hadronic states in the hypothetical pro-
cess of nucleon–antinucleon creation by the electromag-
netic current.

It is generally expected that a more quantitative com-
parison between the two pictures might provide useful
insights into nucleon structure. Generally, one hopes
that in this way one may relate the physical density of
charge and current at a given distance to exchange mech-
anisms of a certain mass. However, such studies were long
rendered unattractive by the fact that the conventional
spatial representation of form factors, in terms of three–
dimensional spatial distributions in the Breit frame (zero
energy transfer), is meaningful only for non-relativistic
systems. These distributions have no proper density in-
terpretation in the relativistic case [2, 3] and cannot be
related to observables in processes other than elastic eN
scattering. The Breit frame distributions produced by
the well-known exchange mechanisms were studied in
several works, but it has proved difficult to interpret the
results outside of this particular context [4–6].

A new approach to this problem is possible with the
concept of transverse densities [7], whose properties were
explored in a series of recent articles [2, 3, 8, 9]. They are
defined as 2–dimensional Fourier transforms of the elastic
form factors and describe the distribution of charge and
magnetization in the plane transverse to the direction of
motion of a fast–moving system. In contrast to the Breit
frame distributions, they are proper densities and per-
mit a spatial interpretation also for systems in which the
motion of the constituents is essentially relativistic, such
as hadrons in QCD. In fact, the transverse densities are
closely related to the parton picture of hadron structure
in high–energy processes and correspond to a reduction of
the generalized parton distributions (or GPDs) describ-
ing the distribution of quarks/antiquarks with respect to
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longitudinal momentum and transverse position [10, 11].
As such, they have an objective meaning beyond low–
energy elastic eN scattering and can be related to ob-
servables in certain high–energy deep–inelastic processes
sensitive to the transverse sizes of the nucleon, such as ex-
clusive and diffractive eN and NN scattering [12]. This
places the study of transverse densities in the wider con-
text of exploring the nucleon’s partonic structure and
allows one to employ concepts of partonic dynamics to
interpret the resulting spatial distributions.

In this article we study the transverse charge densi-
ties in the nucleon’s periphery in a dispersion representa-
tion which reveals the connection between partonic struc-
ture and the exchange mechanisms acting in the nucleon
form factors. This approach was used previously to ob-
tain the chiral large–distance component of the charge
density from a theoretical calculation of the isovector
spectral function near threshold [8]. Here we perform
a more extensive analysis using empirical spectral func-
tions determined in an dispersion fit to nucleon form fac-
tor data [13], which include the vector meson region and
the high–mass continuum and cover both the isovector
and isoscalar channels. Our study reveals several inter-
esting aspects of the transverse charge densities.

First, the transverse distance b provides an external
parameter which allows one to effectively select different
energy (or mass) regions in the spectral function. This
happens thanks to the exponential convergence of the dis-
persion integral for the transverse density, which strongly
suppresses the contribution of energies

√
t > 1/b. In

particular, we show that distances b ∼ 0.5− 1.5 fm maxi-
mally emphasize the ρ meson mass region in the isovector
spectral function, with only a ∼ 10% contribution from
higher–mass states. In the isoscalar channel the contri-
bution from higher–mass states above the ω are com-
paratively larger, but the ω can be isolated by going to
larger distances of ∼ 2 fm. The transverse densities at
these distances represent, to our knowledge, the clean-
est “vector dominance” observables, permitting detailed
study of the vector meson couplings to the nucleon in
spacelike (exchange) kinematics.

Second, the dispersion result for the transverse charge
densities confirms a slightly positive density in the neu-
tron at intermediate distances b ∼ 0.5 − 1.5 fm, found
previously in a Fourier analysis of the spacelike nucleon
form factors [2]. While not unexpected — the spectral
functions were constructed to fit the spacelike form fac-
tor data — this allows us to discuss this result from a
t–channel perspective. The dispersion approach clearly
shows that the “pion cloud” becomes relevant only at
distances b >∼ 2 fm, and that the positive density at in-
termediate distances is dual to vector meson exchange,
with important contributions from higher–mass isoscalar
states. Their dynamical interpretation remains a chal-
lenging problem and is related to the question of the
strangeness content of the nucleon. Measurements of the
neutron charge density thus may be able to constrain the
couplings of these states to the nucleon.

Third, the dispersion results provide new insight into
the nucleon’s partonic structure. By constructing the
ratio of u and d valence quark transverse densities in
the nucleon we show that the “vector dominance” region
b ∼ 1 fm is consistent with an approximate mean–field
picture of the motion of valence quarks in the nucleon,
as suggested by quark models. Our approach allows us to
formulate this duality in a model–independent manner,
preparing the ground for dynamical model studies.
The plan of this paper is as follows. In Sec. II we dis-

cuss the basic properties of the dispersion representation
of transverse densities, focusing on the role of the dis-
tance b as a filter for energies

√
t ∼ 1/b in the spectral

function. In Sec. III we summarize present knowledge of
the isovector spectral function and study the contribu-
tions of the different energy regions to the transverse den-
sity, using the empirical parametrization of Ref. [13]. We
identify the region of ρ meson dominance and quantify
the corrections resulting from higher–mass states. Ap-
pendix A explains in detail how this analysis relates to
our earlier study of the chiral component of the isovec-
tor transverse density using chiral perturbation theory
[8]. In Sec. IV we consider the isoscalar charge density
and study its sensitivity to the ω meson pole in the spec-
tral function. We also estimate its uncertainty at large
b and discuss at what momentum transfers future mea-
surements of the (spacelike) isoscalar form factor would
have the strongest impact on the determination the ωNN
coupling. In Sec. V we use our results to study the pro-
ton and neutron transverse charge density in the spectral
representation. In Sec. VI we extract the transverse den-
sities of u and d quarks in the dispersion approach and
discuss the implications for the nucleon’s partonic struc-
ture. A summary and outlook are presented in Sec. VII.
The dispersion representation can in principle be ap-

plied to study transverse densities at any distance, pro-
vided one has sufficient information on the relevant spec-
tral functions. In this work we focus on the peripheral
region of b >∼ 0.5 fm, where the densities are dominated
by the low–mass singularities that are well constrained
by theoretical arguments and fits to present form factor
data. While we use the parametrization of Ref. [13] for
our numerical studies, our conclusions are generic and
rely on features that are common to all such approaches.
Some recent form factor data that appeared after the fit
of Ref. [13] are incorporated in the discussions of Secs. V
and VI and support our numerical results.

II. SPECTRAL REPRESENTATION OF

TRANSVERSE DENSITIES

The matrix element of the vector current operator be-
tween nucleon states with four–momenta p1 and p2 is
parametrized by two functions of the invariant momen-
tum transfer t ≡ (p2 − p1)

2 < 0, the Dirac and Pauli
form factors, F1(t) and F2(t); see Ref. [14] for conven-
tions and basic properties. The Dirac form factor at zero
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FIG. 1: (Color online) (a) Partonic interpretation of the trans-
verse charge density. (b) Singularities of the timelike form fac-
tor resulting from transitions to hadronic intermediate states.

momentum transfer is normalized to the total charge of
the nucleon,

F p
1 (0) = 1, Fn

1 (0) = 0. (1)

Experimental knowledge of the nucleon form factors at
spacelike momentum transfer is reviewed in Ref. [14]; for
a discussion of the most recent data see e.g. Ref. [15].
The transverse charge densities of the nucleon are de-

fined as the two–dimensional Fourier transform of the
Dirac form factors

ρp,n(b) ≡
∫

d2∆

(2π)2
e−i(∆b) F p,n

1 (t = −∆2) (2)

=

∞
∫

0

d∆

2π
∆ J0(∆b) F p,n

1 (t = −∆2), (3)

where ∆ ≡ |∆| and b ≡ |b|. They have a simple in-
terpretation in the infinite–momentum frame, where the
nucleon is moving fast in the “longitudinal” direction and
receives a momentum transfer ∆ in the “transverse” di-
rection. In this frame the coordinate b measures the dis-
tance from the transverse center of momentum of the
nucleon, and the functions ρp,n(b) describe the trans-
verse spatial distribution of electric charge with normal-
ization

∫

d2b ρp,n(b) = 1, 0. As emphasized in Ref. [2],
they are proper densities and can be expressed as the
overlap integrals of the light–cone wave functions with
the same momentum and particle number. More gen-
erally, they correspond to the x–integral of the impact
parameter–dependent valence quark densities in the nu-
cleon, which are defined as the Fourier transform of the
diagonal GPDs and describe the densities of quarks mi-
nus antiquarks with respect to longitudinal momentum
fraction x and transverse position b [10] (see Fig. 1a).
Extensive numerical studies of the transverse charge den-
sities have been performed using empirical parametriza-
tions of the proton and neutron form factor data at space-

like momentum transfers; see Ref. [9] for a recent sum-
mary and analysis of the uncertainties.
The nucleon form factors are analytic functions of

the invariant momentum transfer t, with singularities
(branch cuts, poles) on the positive real axis. Assum-
ing an asymptotic power behavior as F1(t) ∼ |t|−2, as
expected from perturbative QCD (with logarithmic mod-
ifications) and consistent with present experimental data,
the Dirac form factor satisfies a dispersion relation

F p,n
1 (t) =

∞
∫

4m2
π

dt′

t′ − t− i0

ImF p,n
1 (t′)

π
. (4)

It expresses the form factor in terms of its imaginary part
on the principal cut in the physical sheet at t > 4m2

π,
also referred to as the spectral function. Physically, the
singularities in the form factor at t > 0 correspond to
the transition of a timelike virtual photon to a hadronic
state coupling to a nucleon–antinucleon (NN̄) pair (see
Fig. 1b). Most of the states of interest, such as the vec-
tor mesons ρ and ω and their first excitations, lie be-
low the NN̄ threshold t = 4m2

N = 3.5GeV2, where the
spectral functions cannot be measured directly in conver-
sion experiments. However, theoretical methods can be
used to constrain the spectral functions in the unphysi-
cal region; details will be given in Secs. III and IV below.
Supplemented with such information and additional as-
sumptions about the asymptotic behavior, the dispersion
relations Eq. (4) have been used to fit nucleon form fac-
tor data in the spacelike region and extract information
about the spectral functions [13, 16].
A new perspective on nucleon structure can be gained

by combining the dispersion representation of form fac-
tors with the concept of transverse charge densities. Sub-
stituting Eq. (4) in Eq. (2) and carrying out the Fourier
integral, one obtains the transverse charge density as a
dispersion integral over the imaginary part of the Dirac
form factor in the timelike region [8]

ρp,n(b) =

∞
∫

4m2
π

dt

2π
K0(

√
tb)

ImF p,n
1 (t+ i0)

π
. (5)

This spectral representation of the transverse density has
several interesting properties. First, thanks to the expo-
nential drop–off of the modified Bessel function K0 at
large arguments,

K0(
√
tb) ∼ [π/(2

√
tb)]1/2 e−

√
tb (

√
tb ≫ 1), (6)

the dispersion integral converges exponentially at large
t, in contrast to the power–like convergence of the inte-
gral for the form factor, Eq.(4). This greatly reduces the
sensitivity to the high–energy region where the spectral
function is poorly known. As an aside, we note that use
of a subtracted dispersion relation in Eq. (2) would lead
to an expression for ρ(b) which differs from Eq. (5) only
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FIG. 2: (Color online) The “filtering” property of the spectral
representation of the transverse charge density, Eq. (5). The
dispersion integral extends over the cut of the form factor in
the timelike region, t > 4m2

π. Because of the weighting with
K0(

√
tb) only energies of the order

√
t <∼ 1/b in the spectral

function are effectively sampled in the integral.

by a term ∝ δ(2)(b); subtractions therefore have no influ-
ence on the dispersion result for the transverse density at
finite b. In this sense the representation Eq. (5) is simi-
lar to the Borel transform used to eliminate polynomial
terms in QCD sum rules [17].

Second, the transverse distance provides an external
parameter which allows one to “filter out” a certain en-
ergy region in the spectral function. Because of the
weighting with the kernel K0(

√
tb) in Eq. (5) the domi-

nant contribution to the integral for a given b comes from
energies in a range

√
t <∼ 1/b (see Fig. 2). This statement

is to be understood in the sense of an exponential filter:
significant numerical suppression happens already at en-
ergies inside the range

√
t <∼ 1/b, determining the overall

magnitude of the resulting density; the important point is
in the relative suppression of higher energies (see Ref. [18]
for a detailed discussion). We shall use this property in
the following to identify regions in b that are maximally
sensitive to certain spectral regions of physical interest,
such as the near–threshold region t− 4m2

π ∼ few m2
π and

the vector meson region t ∼ m2
ρ,ω. The effectiveness of

this method depends, of course, on the actual distribu-
tion of strength in the spectral functions and will be stud-
ied by numerical analysis. More generally, this property
will allow us to associate the nucleon’s partonic struc-
ture in the transverse periphery with the well–known ex-
change mechanisms in the nucleon form factors.

Third, the dispersion representation is the proper
mathematical framework for discussing the asymptotic
behavior of the transverse densities in the limit of large
b and assess the uncertainties of the empirical densities
in the region where they are exponentially small. It is
well–known that the asymptotic behavior of the Fourier
transform [or, for that matter, the Fourier–Bessel trans-
form Eq. (3)] of a real function is determined by the
singularities of that function in the complex plane, as
can be shown by deformation of the integration con-
tour of the Fourier integral. Parametrizations of the
spacelike form factors in terms of rational functions of
Q2 = −t [4, 19] generally have unphysical singularities

in the complex plane (e.g., pairs of complex conjugate
poles with finite imaginary part) that lead to a qualita-
tively wrong asymptotic behavior of the Fourier integrals
of Eqs. (2) and (3). The only way to ensure qualitatively
correct asymptotic behavior of the charge density is to
use form factor parametrizations with the proper ana-
lyticity, as provided by the dispersion representation of
Eq. (4). In this case the Fourier integral over spacelike t
becomes equivalent to the dispersion integral over time-
like t, Eq. (5), and may be evaluated directly in this way.
With the proper asymptotic form ensured by the correct
position of the singularities, one may then estimate the
numerical uncertainty of the large–b densities from the
uncertainty of the spectral strength at low t [39].
For theoretical analysis it is convenient to consider the

isovector and isoscalar combinations of form factors and
the corresponding transverse charge densities [40]

FV,S
1 (t) ≡ 1

2 [F
p
1 (t)∓ Fn

1 (t)], (7)

ρV,S(b) ≡ 1
2 [ρ

p(b)∓ ρn(b)], (8)

which are normalized such that

FV,S(0) =

∫

d2b ρV,S(b) = 1/2. (9)

Because they involve t–channel states of isospin 1 and
0, respectively, the two combinations have very different
spectral functions. In the following we discuss the spec-
tral analysis of the transverse charge densities separately
for the isovector and isoscalar channels, returning to the
proton and neutron densities in Sec. V.

III. ISOVECTOR CHARGE DENSITY

The spectral function of the isovector nucleon form fac-
tor has been studied extensively in the literature and
is under good theoretical control up to squared energies
t ∼ 1GeV2. Because the isovector current couples to
two pions, the threshold in this channel is at t = 4m2

π.
One can identify three distinct regions of the spectral
function. At energies t − 4m2

π ∼ fewm2
π the spectral

function is governed by the universal threshold behavior
implied by soft–pion dynamics and can be calculated in a
model–independent manner. The traditional approach is
to use dispersion theory to calculate the ππ → NN̄ am-
plitude near threshold, taking care to include the effect
of a branch cut singularity on the unphysical sheet close
to t = 4m2

π [20, 21]. Another approach is through chi-
ral perturbation theory with relativistic nucleons, which
naturally implements the correct analytic structure of the
soft–pion amplitudes [22, 23]. At somewhat higher ener-
gies, t <∼ 50m2

π, the spectral function is still saturated
by the ππ channel, but rescattering effects play an im-
portant role away from threshold. In this region one can
use elastic unitarity to calculate the spectral function in
terms of the measured ππ phase shifts, which are domi-
nated by the ρ resonance [20, 21]. At even higher ener-
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gies, t >∼ 50m2
π, the number of possible hadronic chan-

nels makes it impractical to calculate the spectral func-
tion from hadronic dynamics. However, it is constrained
theoretically by the integral relations for the isovector
charge (form factor at t = 0) and Dirac charge radius
(derivative of the form factor at t = 0) following from
the dispersion integral Eq. (4), as well as the requirement
that the spacelike form factor drop faster than |t|−1 at
large momenta (superconvergence relation). In this en-
ergy region one may use a series of poles as an effective
parametrization of the hadronic continuum, with the un-
derstanding that only their collective behavior, not the
individual masses and coefficients, carry physical signifi-
cance. Thus, in Ref. [13] the isovector spectral function
is parametrized as

ImFV
1 (t) = FV

1 (t)ππ +

n
∑

i

aVi δ(t−m2
i ), (10)

where FV
1 (t)ππ is the dispersion–theoretical result in the

ππ channel, covering the near–threshold and ρ meson re-
gion, and the poles parametrize the effective continuum;
the values of the parameters can be found in the quoted
article. In the superconvergence (SC) fit of Ref. [13] the
highest–mass singularity is actually parametrized as a
broad resonance; this has practically no effect on our
study of charge densities in the nucleon’s periphery, as
will be explained in the following. Figure 3 shows the
empirical spectral function in the three different regions.
For illustration we have chosen here 10m2

π as the up-
per boundary of the near–threshold region; alternative
choices will be discussed below, and our conclusions do
not depend on the precise value.
Using this parametrization of the spectral function we

can now quantify how much the different energy regions
contribute to the isovector charge density at a given b.
The results are summarized in Fig. 4. Plot (a) shows the
exponential fall–off of the various contributions to ρV (b)
on a logarithmic scale. Plot (b) shows the radial density
2πbρV (b) on a linear scale; the integral of the total radial
density, given by the area under the sum of the curves,
is the total isovector charge, 1/2. The results show sev-
eral interesting features. First, the near–threshold re-
gion 4m2

π < t < 10m2
π is numerically important only at

very large distances b >∼ 2 fm; see Fig. 4a. At smaller
distances it is simply overwhelmed by the contribution
of the ρ meson region, which has a faster exponential
decay but a much larger coefficient. This confirms the
conclusion of Ref. [8], that the chiral component in the
nucleon’s transverse charge density becomes clearly visi-
ble only at distances b > 2 fm. We note that the precise
upper boundary of the near–threshold region is a mat-
ter of definition and depends on the requested accuracy
of the chiral expansion for the spectral function. For
t < 10m2

π the leading–order chiral result accounts for
more than half of the dispersion result (see Appendix A
and Fig. 10). However, it is not possible to substan-
tially modify our conclusion by varying this value within

-0.5
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t  [GeV2]
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ρ meson Effective continuumEffective continuum
(Belushkin 07 fit)

10 mπ
2 50 mπ

2

FIG. 3: Spectral function of the isovector nucleon Dirac
form factor ImF V

1 (t)/π in the parametrization of Ref. [13].
The dotted lines indicate the boundaries of the three spec-
tral regions discussed in the text: Near–threshold region
4m2

π < t < 10m2

π; ρ meson region, 10m2

π < t < 50m2

π;
effective continuum region t > 50m2

π. The solid line shows
the dispersion theory result for the ππ contribution in the
near–threshold and ρ meson regions. The spikes indicate the
delta functions parametrizing the effective continuum; their
absolute height is not drawn to scale, but the relative heights
reflect the ratio of coefficients determined in the SC fit [13].

reasonable bounds: a change from t = 10m2
π to 15m2

π

would give a near–threshold contribution to ρV (b) that
is 1.7 times larger at b = 2 fm, which would have only a
minor effect on the comparison with the ρ region on the
logarithmic scale of Fig. 4a. The important point here
is that for any choice of boundary our approach allows
us to quantify unambiguously how much the region thus
defined contributes to the transverse density.

Second, over a wide range of intermediate distances
0.5 <∼ b <∼ 1.5 fm the isovector transverse charge density
is dominated by the ρ meson mass region; the high–mass
continuum contribution reaches only −12% of the ρ at
b = 0.5 fm and is substantially smaller at larger b. The
region b ∼ 1 fm, where the near–threshold contribution
is equally small, represents the cleanest case of “vector
dominance” in the transverse charge density. Determi-
nation of the nucleon’s transverse density in this region
— by reconstructing it from spacelike form factor data,
or through theoretical calculations — would thus provide
unique information on the ρ meson contribution to the
spectral function and thus its coupling to the nucleon.
Note that the dispersion representation Eq. (5) allows us
to both maximize the sensitivity to the ρ meson mass re-
gion and to quantify the corrections to vector dominance
in a model–independent manner.

Third, the effective continuum contribution to the
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FIG. 4: Contribution of different energy regions in the spectral function (cf. Fig. 3) to the isovector charge density in the
nucleon, ρV (b), calculated with the parametrization of Ref. [13] (SC fit). (a) Density ρV (b) on a logarithmic scale. (b) Radial
density 2πbρV (b) on a linear scale. Dotted lines: Near–threshold region 4m2
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π. Solid lines: ρ meson region
10m2

π < t < 50m2

π. Dashed lines: Effective continuum t > 50m2

π; this contribution is negative and shown with reversed sign
in the logarithmic plot (a).

charge density remains relatively small down to distances
as small as b ∼ 0.3 fm. This happens because of the low
spectral strength in the region immediately above the ρ,
1.0 < t < 1.4GeV2, and the substantial cancellations be-
tween the higher–mass poles in the parametrization [13]
(see Fig. 3). Whether the nucleon spectral function in the
region above the ρ could at least partly be explained by
the ρ′ resonances seen in the ππ channel is an interesting
question which cannot be answered from form factor fits
alone. We note that the e+e− → ππ data clearly show
a broad ρ′ resonance at 1.4GeV that interferes destruc-
tively with the ρ and results in a vanishing ππ strength
at t ∼ 1.2GeV2 (see Ref. [24] and references therein), in
qualitative agreement with the empirical strength distri-
bution found in the nucleon form factor fit [13].
In the SC fit of Ref. [13] the highest–mass pole in

Eq. (10) was actually replaced by a contribution to the
form factor of the form

aVn (m
2
n − t)/[(m2

n − t)2 + Γ2
n], (11)

with Γn comparable to m2
n, mimicking the effect of a

broad resonance. As it stands, this term has poles in
the complex plane away from the real axis, at t = m2

n ±
iΓn, and cannot be regarded as a contribution to the
spectral function. However, as can be seen by calculating
the charge density from the Fourier integral Eq. (3) over
spacelike momentum transfers, the contribution of this
term to the isovector density is very small at all but the
shortest distances, < 2% at b > 0.1 fm and ≪ 1% at
b > 0.5 fm, and we can safely neglect it in our study of
the nucleon’s periphery. The same applies to the highest–
mass pole in the isoscalar density considered in Sec. IV.

In Ref. [8] we studied the question at what distances
the isovector transverse charge density is dominated by
chiral dynamics in a theoretical approach, by compar-
ing the chiral perturbation theory result for the trans-
verse density at b ∼ 1/mπ with the non–chiral density
modeled by elementary ρ meson exchange. An interest-
ing question is how the theoretical approach of Ref. [8]
relates to the present study of the transverse densities
using empirical spectral functions. This is explained in
Appendix A, where we summarize how well the empir-
ical isovector spectral function in the different regions
is reproduced by the theoretical models used in Ref. [8].
Overall, the present analysis with empirical spectral func-
tions fully confirms our earlier conclusion that the chiral
component becomes numerically dominant only at dis-
tances b >∼ 2 fm, contradicting naive expectations that
the charge densities at b >∼ 1 fm could be attributed to
the nucleon’s “pion cloud.”

IV. ISOSCALAR CHARGE DENSITY AND ITS

UNCERTAINTY

The isoscalar spectral function at low energies behaves
very differently from the isovector one, and compara-
tively little is known about it from first principles. The
lowest hadronic state in the isoscalar channel allowed by
quantum numbers is the 3π state. The non-resonant 3π
contribution near threshold was estimated using heavy–
baryon chiral perturbation theory [25] and found to be
roughly two orders of magnitude smaller than the 2π
contribution in the isovector channel; it therefore plays
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no role in the transverse charge density at the distances
b ∼ 2 − 3 fm of interest here (cf. Fig. 4a). The strength
in the 3π channel is overwhelmingly concentrated in the
ω resonance at mω = 0.782GeV, whose width can be ne-
glected for our purposes. At energies

√
t >∼ 1GeV other

hadronic channels come into play. The KK̄ contribution
was computed using dispersion theory [26, 27] and ex-
hibits the φ resonance at 1.02 GeV, very close to thresh-
old; in contrast to ππ in the isovector channel there is
no enhancement of the strength to the left of the reso-
nance. In the parametrization of Ref. [13] the entire KK̄
strength is described by an effective pole at the φ mass.
Additional strength in this region is expected to come
from the πρ continuum, which was found to be sizable
in the context of the Bonn–Jülich meson exchange model
of the NN interactions [28]. This contribution is again
parametrized by an effective pole. We emphasize that
the details of the theoretical estimates of these explicit
higher–mass contributions are ultimately not essential for
the accuracy of the parametrization of the spectral func-
tion in Ref. [13], as these states have masses of the same
order as the effective continuum poles, whose strength is
determined by the fit to the form factor data.

For the purpose of our analysis, we divide the empir-
ical isoscalar spectral function into the ω pole, which is
the analogue of the ρ in the isovector channel and ac-
counts for the entire strength at energies

√
t < 1GeV,

and a “rest” of higher–mass states, about whose nature
we remain agnostic at this point. The respective con-
tributions to the isoscalar transverse charge density are
shown in Fig. 5. One sees that the relative contribution

from higher–mass states is substantially larger than in
the isovector density, amounting to −27% of the ω at
b = 1 fm. Vector dominance at intermediate distances
is therefore realized not as perfectly as in the isovector
charge density. However, because of the absence of a non-
resonant contribution below the ω mass, in the isoscalar
case one has the option to go to larger distances to maxi-
mize the vector meson contribution: at b = 2 fm the con-
tribution from higher–mass states has dropped to −8%
of the ω. Thus, it is possible to realize “vector meson
dominance” in the isoscalar charge density as well.

In view of the paucity of theoretical information in
the isoscalar sector, it is worthwhile to consider the un-
certainty of the empirical isoscalar transverse density at
large b. In the region where it is dominated by the ω
contribution its uncertainty is essentially determined by
the accuracy with which the coefficient of the ω pole can
be determined from dispersion fits to the isoscalar form
factor. The analysis of Ref. [13] quotes an uncertainty
of ±16% for the ω coefficient; we can therefore ascribe
a relative uncertainty of this magnitude to the isoscalar
charge density at b > 1.5 fm, where the ω accounts for
more than 80% of the total density (see Fig. 5). (An even
larger range of ωNN couplings is quoted in Ref. [29];
however, that analysis uses a more restrictive form fac-
tor fit than the one of Ref. [13].) At smaller values of b
the contribution from higher–mass poles can no longer be
neglected and correlations between the errors of the coef-
ficients of the various poles become important in estimat-
ing the error of the total charge density; unfortunately,
this information is not provided in the fit of Ref. [13].
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Altogether, we see that there is considerable uncertainty
in the isoscalar charge density at large b.

In order to determine more accurately the isoscalar
transverse density in the nucleon’s periphery it is obvi-
ously necessary to gain better knowledge of the coeffi-
cient of the ω pole in the isoscalar spectral function (or,
equivalently, the ωNN coupling) from dispersion fits to
spacelike form factor data. It is interesting to ask at
what momentum transfers future form factor measure-
ments would have the strongest impact on the determi-
nation of the ω coefficient. Naively one might think that,
because the ω completely dominates the charge density
at b >∼ 2 fm, form factor data at −t <∼ π2/(2 fm)2 =

0.1GeV2 would be most useful to constrain the ω coeffi-
cient. However, it is data over a broad range of interme-
diate momentum transfers −t ∼ m2

ω that effectively de-
termine the ω coefficient in the dispersion analysis. The
reason lies in the nature of the spectral representation
— the ω is the leading singularity, and all spacelike mo-
menta in the range −t ∼ m2

ω are equally affected by the
strength of this pole. To see this explicitly, let us consider
a spectral representation of the isoscalar form factor as
an ω pole and a sum of n− 1 higher–mass poles [13, 16]

FS
1 (t) =

aω
m2

ω − t
+

n
∑

i=2

aSi
m2

i − t
. (12)

The coefficients are constrained by charge conservation

and the |t| → ∞ asymptotic behavior of the form factor,

FS
1 (0) = 1/2, (13)

lim
|t|→∞

t FS
1 (t) = 0. (14)

The resulting linear relations allow one to express two
coefficients in terms of the other n − 2. A value n ≥ 3
is required to have sufficient flexibility in the fit and
avoid artificial correlations between the behavior at small
and large |t|. The fit of Ref. [13] effectively works with
n = 4 [41]; that its highest–mass pole has a finite width,
Eq. (11), is not important for our argument here. Fig-
ure 6 shows the derivative of the form factor parametriza-
tion Eq. (12) with respect to aω after the constraints
Eqs. (13) and (14) were used to eliminate two of the other
coefficients, for n = 4 and the mass values of Ref. [13]
(the aω–derivative does not depend on the value of the
remaining free coefficient but only on the position of the
poles). The result clearly shows that the sensitivity to aω
is broadly distributed over a range of momentum trans-
fers |t| ∼ m2

ω, suggesting that precise form factor mea-
surements in this region would be most useful to con-
strain this parameter. A more accurate analysis of the
impact of future form factor data on the determination
of the large–b isoscalar densities, with account of exper-
imental uncertainties and correlations between parame-
ters, remains an interesting problem for further study.

V. PROTON AND NEUTRON CHARGE

DENSITIES

Using the dispersion results for the isovector and
isoscalar transverse densities we can construct the trans-
verse charge densities in the proton and neutron, cf.
Eq. (8). The results are shown in Fig. 7. The dispersion
integral Eq. (5) with the spectral functions of Ref. [13]
gives a peripheral charge density in the neutron that is
clearly negative above b >∼ 1.5 fm, and positive over a
wide range of intermediate distances b ∼ 0.5− 1.5 fm. A
positive density at such distances was found previously
in a Fourier analysis of the spacelike neutron form factor
[2]. With the insights into the spectral composition of the
transverse change densities from the studies of Secs. III
and IV we can now explain this behavior of the neutron
charge density from the t–channel point of view.
The negative charge density in the neutron at large dis-

tances arises because the spectral strength in the isovec-
tor channel starts at lower masses than in the isoscalar
channel, namely 4m2

π rather than m2
ω. As a result,

the isovector density has a slower exponential decay
and becomes dominant in the b → ∞ limit (note that
ρn = ρS − ρV ). This is a robust prediction of the dis-
persion approach, which is independent of the details of
the parametrization of the spectral functions. Qualita-
tively, such large–distance behavior is consistent with the
the picture of the neutron as a proton at the center and
a negative pion in the cloud. However, the analysis of
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Sec. III shows that the chiral near–threshold region of
the isovector spectral function becomes numerically dom-
inant only at very large distances >∼ 4 fm (see Fig. 4a). At
the distances of interest here, b ∼ 2 fm, the isovector den-
sity results rather from the broadly distributed strength
in the ρ meson region. We conclude that non–chiral in-
teractions still play an essential role in the transverse
density at such distances. That the “pion cloud” is not
yet dominant at b ∼ 2 fm is also seen from the fact that
the proton and neutron densities are still far from being
equal and opposite in sign, because of the large isoscalar
density arising from the ω.
The positive density in the neutron at intermedi-

ate distances b ∼ 1 fm lies in the region where vector
mesons give a prominent contribution to the isovector
and isoscalar transverse densities; cf. Secs. III and IV.
An interesting question is whether the positive charge
density in the neutron could be explained solely on the
basis of the vector meson region in the spectral functions,
i.e., as the result of vector meson exchange in the form
factor. To answer this question one needs to look in detail
at the spectral composition of the neutron charge density
in the region b ∼ 0.5 − 1.5 fm. Figure 8 shows the total
neutron charge density obtained from the dispersion in-
tegral, as well as the result from the region

√
t < 1GeV,

corresponding to the difference of the ω and ρ region
of the isoscalar and isovector spectral functions, respec-
tively (here the near–threshold region is included in the
ρ; but its contribution is numerically small, see Fig. 4).
One sees that the vector meson region alone does pro-
duce a positive neutron charge density; however, with the
ωNN coupling of Ref. [13], this contribution is substan-
tially larger than the full dispersion result. Higher–mass
states, particularly in the isoscalar channel, are essential

 0
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FIG. 8: Spectral composition of the transverse charge den-
sity in the neutron, as evaluated with the spectral functions
of Ref. [13]. Solid line: Total dispersion result (cf. Fig. 7).
Dashed line: Contribution from

√
t < 1GeV, given by the

difference ω − ρ (here ρ includes the near–threshold region).

for explaining the positive neutron charge density at the
quantitative level.

In sum, our t–channel analysis shows that the precise
value of the transverse charge density in the neutron at
distances b ∼ 0.5 − 1.5 fm is closely tied up with the
question of the spectral strength in the isoscalar channel
at masses

√
t ∼ 1GeV. As shown in Sec. IV, the in-

formation on the transverse density in this region comes
from form factor measurements over a broad range of in-
termediate momentum transfers |t| ∼ 0.1 − 1GeV2 (see
Fig. 6 for the isoscalar component). Accurate measure-
ments of the neutron form factor at these momentum
transfers may thus considerably improve our knowledge
of the isoscalar spectral function. Because of the poten-
tial contribution from mesons containing strange quarks
(KK̄, φ), this question is of interest also for the deter-
mination of the strangeness content of the nucleon; see
Ref. [29] and references therein.

The transverse charge density in the neutron at large
b was recently studied by evaluating the Fourier trans-
form of the spacelike form factor Eq. (3) [30], using an
updated version of the Friedrich–Walcher form factor
parametrization [4] that includes recent data from the
BLAST [31] and Jefferson Lab Hall A experiments [32].
For b < 2 fm their Fourier result agrees well with the neu-
tron density obtained from the dispersion integral Eq. (5)
with the spectral functions of Ref. [13], with a maximum
discrepancy of ∼ 20% at b = 1.7 fm. At b > 2.4 fm the
Fourier result of Ref. [30] becomes positive, in contradic-
tion to the robust prediction of the dispersion approach
(see above). This behavior of the Fourier transform may
be a consequence of the fact that the spacelike form fac-
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tor fit of Ref. [4] uses a higher–order rational function
with unphysical singularities in the complex t–plane; cf.
the discussion in Sec. II.

VI. IMPLICATIONS FOR PARTONIC

STRUCTURE

The transverse densities obtained from the dispersion
representation of the nucleon form factors provide inter-
esting insight into the nucleon’s partonic structure. Here
we would like to point out several implications that can
be stated in a model–independent manner.
For the partonic interpretation of our results it is con-

venient to extract the transverse densities of u and d
valence quarks in the proton, defined as the integral over
x of the impact parameter–dependent valence quark dis-
tributions:

ρu(b) ≡
∫ 1

0

dx uval(x, b), (15)

uval(x, b) ≡ u(x, b)− ū(x, b) etc.; (16)

the latter reproduce the usual valence quark distributions
upon integration over the transverse plane,
∫

d2b uval(x, b) = uval(x) ≡ u(x)− ū(x) etc. (17)

The transverse densities of u and d valence quarks are
related to the isoscalar and isovector charge densities by

ρu,d(b) = 3ρS(b)± ρV (b) (18)

and normalized such that
∫

d2b ρu,d(b) = 2, 1. Figure 9
shows the ratio of d– and u–quark transverse valence
quark densities, ρd(b)/ρu(b), as obtained from the disper-
sion integral Eq. (5) evaluated with the spectral functions
of Ref. [13]. The numerical result exhibit several inter-
esting features. In the limit of large transverse distances
we expect that

ρd(b)/ρu(b) → −1 (b → ∞). (19)

In the t–channel (or exchange mechanism) view this
should happen because at asymptotically large b the
isovector charge density due to chiral two–pion exchange
near threshold should become dominant; see Secs. III
and A. In the s–channel (or partonic) view the trans-
verse density at such distances should result from con-
figurations in the proton’s light–cone wave function cor-
responding to a neutron at the center and a peripheral
π+, which contribute to the u and d̄ distributions in the
proton. The numerical results show that the ratio be-
comes negative at b > 2.5 fm but is still far from −1,
reaffirming our earlier conclusion that the chiral compo-
nent becomes numerically dominant only at substantially
larger distances.
Over a broad range of intermediate transverse dis-

tances the d/u valence quark density ratio in Fig. 9 is

ρd(b)/ρu(b) ≈ 1/2 (0.2 fm <∼ b <∼ 1.6 fm). (20)
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FIG. 9: Ratio of d– and u–quark transverse valence quark
densities in the proton, ρd(b)/ρu(b), as a function of b, as
obtained from the dispersion integral Eq. (5) evaluated with
the spectral functions of Ref. [13].

This is the value one would obtain in a generic mean–
field picture of the nucleon, in which constituent u– and
d–quarks in the rest frame move approximately inde-
pendently on identical orbitals; the detailed manner in
which these effective degrees of freedom project on the
quark partons in the infinite–momentum frame is irrel-
evant here, as it would be common to the u– and d–
flavors and cancel in the ratio Eq. (20). For example,
the SU(6) quark model gives dval(x)/uval(x) = 1/2 even
with relativistic corrections (see Ref. [33] and references
therein); the same would be true for the b–dependent va-
lence quark distributions Eq. (16), whose integral over
x gives the transverse densities Eq. (15). In this sense,
Eq. (20) offers model–independent evidence of an approx-
imate mean–field picture of the nucleon’s valence quark
structure at distances b ∼ 1 fm. In the t–channel view
this region of distances is governed by the vector mesons,
albeit with a non–negligible contribution from higher–
mass states in the isoscalar channel. Exploring this du-
ality between valence quark structure and vector meson
exchange in dynamical models of the nucleon would be
an interesting problem for further study.
The same conclusion could in principle be reached al-

ready from inspection of the proton and neutron charge
densities in Fig. 7. The neutron density in the region
0.3 < b < 1.5 fm is substantially smaller than the proton
one; in the mean–field picture the former would be zero.
The advantage of using the ratio ρd(b)/ρu(b) is that it
eliminates much of the non–trivial b–dependence on the
bound–state structure in this region.
Finally, at even smaller distances, b < 0.2 fm, the

charge density ratio obtained from the dispersion repre-
sentation of Ref. [13] drops significantly below the mean–
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field value of 1/2 (see Fig. 9) [42]. At such values of b it
is possible that part of the proton charge density results
from partonic configurations in which the active quark
carries large momentum fraction x ∼ 1, while the spec-
tators are restricted to substantially smaller values [34].
(The variable bmeasures the distance of the active parton
from the transverse center–of–mass of the nucleon, see
Fig. 1a [10]. For x → 1 the center–of–mass coincides with
the position of the active parton, whence such configura-
tions contribute to the density at b → 0 independently of
their physical transverse size; see Ref. [18] for a detailed
discussion.) The observed behavior of ρd(b)/ρu(b) is con-
sistent with a decreasing ratio of d and u valence quark
distributions at large x,

dval(x)/uval(x) ≪ 1 (x → 1). (21)

Experimental information on this ratio at large x is de-
pendent on theoretical corrections to nuclear binding ef-
fects in measurements with nuclear targets, which are
the subject of on–going research; new data are expected
with the 12 GeV Upgrade of Jefferson Lab [35]. A joint
analysis of elastic form factors and large–x inclusive scat-
tering data could explore the properties of large–x con-
figurations in the nucleon’s partonic wave function more
effectively than either class of observables alone.
We note that at distances b < 0.2 fm the proton and

neutron charge densities defined by Eqs. (2) and (3) are
sensitive to the spacelike form factors at high momen-
tum transfers where experimental information is limited,
especially for the neutron. In particular, the u– and d–
quark densities at b = 0 can be obtained from the ordi-
nary (not Fourier) integrals of the spacelike form factors
as

ρu,d(b = 0) =

∫ ∞

0

dQ2

4π
F1u,d(t = −Q2), (22)

where F1u ≡ 2F p
1+Fn

1 and F1d ≡ 2Fn
1 +F p

1 are the u– and
d–quark contributions to the form factor. A recent anal-
ysis [15] including the neutron data from the Jefferson
Lab Hall A experiment [32] extracted the u– and d–quark
Dirac form factors up to Q2 = 3.4GeV2. Integration of
these data, assuming extrapolation into the unmeasured
high–Q2 region by a rational fit with a leading 1/Q4 be-
havior, gives a ratio ρd(0)/ρu(0) ≈ 0.35, somewhat larger
than the value 0.3 obtained from Ref. [13] (see Fig. 9), but
still substantially below 1/2. We note that at b > 0.2 fm
the charge densities obtained from these data are in good
agreement with those obtained from the dispersion fit of
Ref. [13]. With the 12 GeV Upgrade of Jefferson Lab
the neutron’s Dirac form factor will be measured up to
Q2 ∼ 8GeV2 [35], substantially reducing the uncertain-
ties in the u– and d–quark densities at small b.

VII. SUMMARY AND OUTLOOK

The dispersion approach to transverse densities allows
one to formulate the concept of vector dominance in the

nucleon form factors in a manner which is fully quantita-
tive and consistent with QCD. Extraction of the trans-
verse densities in the region b ∼ 1 fm can provide unique
information on the ρ meson’s coupling to the nucleon.
It also affords a model–independent definition that could
in principle serve as a basis for calculating this hadronic
coupling using non–perturbative QCD methods, such as
lattice calculations.

The spectral analysis of transverse densities at inter-
mediate distances b ∼ 1 fm suggests an interesting con-
nection between vector dominance and the valence quark
structure of the nucleon. Such duality might be real-
ized in a relativistic constituent quark picture, where the
leading singularity “seen” by the current is at a mass√
t = 2mconst ≈ mρ. An effective dynamics of chiral

constituent quarks at a low resolution scale appears as
a result of the spontaneous breaking of chiral symmetry
in QCD. Exploring this connection in explicit dynami-
cal models would be an interesting problem for further
study.

Generally, the dispersion representation Eq. (4) pro-
vides the proper mathematical framework for studying
transverse densities at distances b >∼ 1 fm. Its analyticity
ensures the correct asymptotic behavior of the density,
and the exponential fall–off of the different contributions
is encoded already in the position of the singularities. It
thus represents a valuable tool for studying peripheral
nucleon structure using empirical or theoretical meth-
ods. Dispersion fits to the spacelike nucleon form factors
therefore have a special significance and should be given
high priority as a method of data analysis [13]. Such
fits should be updated as new data become available,
particularly with the 12 GeV Upgrade of Jefferson Lab
that will cover the high–Q2 region with high precision.
One should also explore improved parametrizations of
the spectral functions in the high–mass region that sat-
isfy QCD constraints and respect the analytic properties
of the form factor.

Neutron form factor data are of particular importance
for extracting the ωNN coupling and, indirectly, the cou-
pling of higher–mass states in the isoscalar channel possi-
bly related to the nucleon’s strangeness content. Our es-
timates show that these objectives require accurate mea-
surements over a broad range of intermediate momentum
transfers |t| ∼ 0.1 − 1GeV2 rather than exceptionally
large or small values.

A similar spectral analysis could be performed for the
nucleon’s Pauli form factor, whose partonic representa-
tion is related to the angular momentum of partons in
the light–cone wave function; such analysis is in progress.
The approach described here could also be extended to
the axial form factors, whose transverse representation
constrains the quark helicity distributions in the nucleon.
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Appendix A: Theoretical analysis of isovector charge

density

In Ref. [8] we studied the question at what trans-
verse distances the isovector charge density in the nu-
cleon is dominated by the universal chiral dynamics that
governs the long–range behavior of strong interactions.
The large–b limit of the isovector charge density is de-
termined by the threshold behavior of the spectral func-
tion near t → 4m2

π, corresponding to t–channel exchange
of two soft pions, which can be analyzed in a model–
independent manner within chiral perturbation theory
[22, 23]. By comparing the calculated chiral contribu-
tion to the non–chiral density arising from zero–width
ρ meson exchange we found that the former becomes
numerically dominant only at distances b >∼ 2 fm. In
this appendix we explain how the theoretical approach of
Ref. [8] relates to the present dispersion analysis of the
transverse densities, by showing how well, and in what
sense, the theoretical approximations used in Ref. [8] re-
produce the empirical spectral functions. This also allows
us to address some questions concerning the quantitative
comparison of “chiral” and “non–chiral” components of
the transverse density that were not discussed in detail
in Ref. [8], such as the role of higher–order chiral correc-
tions, the finite width of the ρ, and the value of the ρNN
coupling.
The one–loop chiral result for the isovector spectral

function near threshold can be stated as [8]

ImFV
1 (t+ i0)

π
=

g2A(t− 2m2
π)

2

4(4πfπ)2mN

√
t
(X − arctanX)

+
2(1− g2A)[k(t)]

3

3(4πfπ)2
√
t

, (A1)

X ≡ 4mNk(t)/(t− 2m2
π), (A2)

where gA = 1.26 is the nucleon isovector axial coupling,
fπ = 93MeV the pion decay constant, and

k(t) ≡
√

t/4−m2
π (A3)
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FIG. 10: Comparison of theoretical approximations to the
isovector spectral function with the empirical result of
Ref. [21]. Solid line: Chiral one–loop result, Eq. (A1).
Dashed line: ρ meson contribution [GS form Eq. (A10),
Γρ = 0.15GeV] with gρNN = 3.25 from the Bonn–Jülich
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dispersion analysis in the two–pion channel [21].

the t–channel center–of–mass momentum of the ππ sys-
tem (here t > 4m2

π). Equations (A1) and (A2) represent
a compact approximation to the exact chiral 1–loop re-
sult with relativistic nucleons [22, 23] in which we omit-
ted certain terms of order t/m2

N that become numerically

important only at t ∼ 1GeV2 and give negligible contri-
butions to the charge density at large b. In Fig. 10 we
compare our approximate expression Eq. (A1) with the
empirical spectral density obtained from the dispersion
analysis of Ref. [21], which represents an update of the
classic result of Ref. [20]. One sees that the one–loop
result gives a reasonable representation of the empiri-
cal spectral density near threshold, with the discrepancy
reaching ∼ 50% at t ≈ 10m2

π = 0.195GeV2. Two–loop
chiral corrections were studied in Ref. [23] and found to
increase the value in this region by∼ 20%. We emphasize
that the chiral expression is physically meaningful only
in the near–threshold region t − 4m2

π ∼ fewm2
π; its nu-

merical value at larger t is shown for illustrative purposes
only.
In Ref. [8] we approximated the ρ meson contribution

to the isovector charge density using a zero–width pole. A
simple theoretical model of the ρ meson contribution in-
corporating the finite ρ width and its energy dependence
is the Gounaris–Sakurai (GS) form factor, obtained from
an effective range expansion of the ππ scattering phase
shift [36]. The spectral function of the resulting form
factor FGS(t), normalized to FGS(0) = 1, is of the form

ImFGS(t+ i0)

π
=

CB(t)

π[A2(t) +B2(t)]
, (A4)
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FIG. 11: Ratio of the isovector transverse charge densi-
ties ρV (b) obtained from a finite–width ρ meson [GS form
Eq. (A4), Γρ = 0.15GeV] to the corresponding density for
a zero–width pole. Both distributions are normalized to the
same total charge.

with

A(t) ≡ m2
ρ − t+ (Γρm

2
ρ/k

3
ρ){k2ρh′

ρ(m
2
ρ − t)

+ [k(t)]2 [h(t)− hρ]}, (A5)

B(t) ≡ (m2
ρΓρ/

√
t)[k(t)/kρ]

3, (A6)

C ≡ m2
ρ + (Γρm

2
ρ/k

3
ρ)[k

2
ρh

′
ρm

2
ρ

+ m2
πhρ −m2

π/π], (A7)

where Γρ is the width parameter, k(t) the t–channel ππ
center–of–mass momentum Eq. (A3), kρ ≡ k(m2

ρ), and
h(t) denotes the auxiliary function

h(t) ≡ 2k(t)

π
√
t

ln

√
t+ 2k(t)

2mπ
, (A8)

with hρ ≡ h(m2
ρ) and h′

ρ ≡ dh/dt(m2
ρ). These expres-

sions apply at t > 4m2
π. In fact, the full complex form

factor on the upper edge of the cut at t > 4m2
π is given

by

FGS(t+ i0) =
C

A(t) − iB(t)
, (A9)

and its values at t < 4m2
π can be obtained by proper

analytic continuation of the expressions in Eqs. (A5),
(A6), and (A8). One finds that the form factor is regu-
lar at t = 0, as should be [the apparent singularity from
the

√
t factors in Eqs. (A6) and (A8) cancels between

the two terms in the denominator of Eq. (A9)] and is
normalized to unity there. In Fig. 11 we compare the
transverse charge density obtained from the finite–width
spectral function Eq. (A4) et seq. (mρ = 0.77GeV,Γρ =
0.15GeV) with that obtained in the zero–width approx-
imation; both densities here are normalized to the same
integral (total charge). One sees that the zero–width
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FIG. 12: Comparison of the transverse charge densities ρV (s)
resulting from the chiral and ρ meson approximations to the
isovector spectral function (cf. Fig. 10). Solid line: Charge
density from the one–loop chiral result Eq. (A1). Dashed
line: Charge density from a finite–width ρ meson [GS form
Eq. (A10), Γρ = 0.15GeV] with gρNN = 3.25 from the Bonn–
Jülich model [37]. Dotted line: Charge density from a zero–
width ρ meson pole with the same coupling.

form provides a very good approximation to the charge
density over a wide range of b, with an accuracy better
than 10% in the range 0.1-1.4 fm. At larger values of b the
finite–width density becomes systematically larger than
the zero–width approximation, reflecting the fact that
large distances are dominated by the spectral strength
at the lowest available masses.
The ρ meson contribution to the isovector spectral

function in the GS approximation is then given by

ImFV
1 (t+ i0)ρ
π

=
gρNN

fρ

ImFGS(t+ i0)

π
, (A10)

where gρNN is the ρ–meson–nucleon vector coupling, and
f−1
ρ parameterizes the ρ meson coupling to the electro-

magnetic current and is related to the e+e− partial decay
width as Γ(ρ → e+e−) = (αemmρ/3)(e/fV )

2. With the
value of gρNN = 3.25 from the Bonn–Jülich model of the
NN interaction [37] and fρ = 5.01 from the experimental
value of the e+e− partial decay width [38] we obtain

gρNN/fρ = 0.65. (A11)

This value is 30% larger than the simple “vector domi-
nance” value of 0.5, which would follow from normalizing
the ρ contribution to the form factor given by Eq. (A10)
to FV

1 (0)ρ = 1/2, and reflects the fact that in reality part
of the charge carried by the ρ is compensated by the neg-
ative contribution from higher–mass states. The spectral
function resulting from a ρ meson with this coupling and
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a width Γρ = 0.15GeV is shown in Fig. 10. One sees that
this simple model agrees well with the empirical spectral
function in the ρ meson mass region.
Altogether, we see that the chiral component near

threshold and the finite–width ρ meson with the
above parameters reproduce approximately the empiri-
cal isovector spectral function in the different regions.
We emphasize that our aim here is not to construct a
model of the complete spectral function, but merely to
show that the theoretical approximations used in our ear-
lier analysis [8] agree reasonably well with the empirical
result in their respective regions of validity. In particu-
lar, we do not advocate to add the “chiral” and “ρ” com-
ponents in Fig. 10 (not even with an adjusted ρ meson
coupling), as this would imply that one has to evaluate
the chiral expression in a region where it is not theoret-
ically justified and compensate the result by subtracting
strength elsewhere; cf. the discussion in Ref. [23].
In Fig. 12 we compare the chiral component of the

isovector charge density obtained from Eq. (A1) with
that generated by the GS finite–width ρ meson with the
coupling Eq. (A11). It is seen that the chiral component
dominates only at distances b > 2 fm. An increase of the
chiral component by ∼ 20% due to two–loop corrections
[23] would not substantially affect this comparison on a
logarithmic scale. Also shown in Fig. 12 is the density
resulting from a zero–width ρ meson pole of the same
coupling, as used in the estimate of Ref. [8]. One notes
that the finite width of the ρ meson pushes the region of
dominance of the chiral component out to even slightly
larger distances. Overall, the refined analysis here fully
supports the conclusions of Ref. [8], that the chiral com-
ponent of the transverse charge density overwhelms the
non–chiral density only at distances b > 2 fm.
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