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We examine the potential energy contributions to the symmetry energy (in the parabolic approx-
imation) arising from the isovector mesons, π, ρ, and δ. The significance of a microscopic model
which incorporates all important mesons is revealed. In particular, we demonstrate the importance
of the pion for a realistic investigation of isospin-sensitive systems.

I. INTRODUCTION

The physics of unstable nuclei is closely related to the equation of state (EoS) for isospin asymmetric nuclear matter
(IANM). In fact, applications of IANM are broad, ranging from the structure of rare isotopes to the properties of
neutron stars. An important quantity that emerges from IANM studies is the so-called symmetry energy. However, in
spite of many recent and intense efforts, the density dependence of the symmetry energy is not sufficiently constrained
by the available data and theoretical predictions show considerable model dependence.

Older theoretical studies of IANM can be found in Refs. [1, 2]. Interactions adjusted to fit properties of finite
nuclei, such as those based on the non-relativistic Skyrme Hartree-Fock theory [3] or the relativistic mean field
theory (see, for instance, Ref. [4]), have been used to extract phenomenological EoS. A review of Skyrme interactions,
particularly popular for nuclear structure applications, can be found in Ref. [5]. Variational calculations of asymmetric
matter were reported in Refs. [6, 7], whereas extensive microscopic work with IANM was undertaken by Lombardo
and collaborators [8, 9] within the Brueckner-Hartree-Fock (BHF) approach. Dirac-Brueckner-Hartree-Fock (DBHF)
calculations of IANM properties were performed by the Oslo group [10], the Idaho group [11, 12], and by Fuchs and
collaborators [13].

In this paper, we concentrate on the role of the isovector mesons for the symmetry energy. The latter is defined from
an expansion of the energy/nucleon in terms of the isospin asymmetry parameter. In the parabolic approximation, it
is simply the difference between the energies per particle in neutron matter and symmetric nuclear matter, see next
section. Physically, it represents the energy “price” a nucleus must pay for being isospin asymmetric.

The isovector mesons and their impact on the symmetry energy have been discussed in the literature, particularly, in
the context of mean field approaches, both relativistic and non-relativistic (see, for instance, Ref. [14] for an extensive
review on reaction dynamics with exotic nuclei based on effective interactions based on quantum hadrodynamics
(QHD)). Lately, considerable interest has developed around the symmetry potential, which arises from the difference
between neutron and proton single-particle potentials in isospin asymmetric matter. With regard to that issue, it is
interesting to recall that, in relativistic mean field approaches, introduction of the isovector scalar meson (the δ or
a0) is reported to invert the sign of the splitting between the masses of the neutron and the proton in neutron-rich
matter [15].

Furthermore, in approaches based on QHD, such as those originally proposed by Walecka and collaborators [16–18],
the dynamical degrees of freedom are essentially included through coupling of the nucleons to the isoscalar scalar σ
and vector ω mesons. QHD-I models of nuclear matter do not include the pion, which is perhaps the reason why the
contribution of the pion to the symmetry energy may have not been discussed in sufficient depth. (Note, however,
that Walecka’s QHD-II model does include both π and ρ.)

We will explore the role of all isovector channels for the symmetry energy from the point of view of an ab initio
model. The main point of the ab initio approach is that mesons are tightly constrained by the free-space data and
their parameters are never readjusted in the medium (this is what we mean by “parameter-free”). Furhermore, the
contributions from the various mesons are fully iterated, thus giving rise to correlation effects. The corresponding
predictions can be dramatically different than those which may be produced in first-order calculations.

This paper is organized as follows: In the next section, we present some facts and phenomenology about the
symmetry energy; then, in Section III, after a brief review of our theoretical approach, we focus on exploring the
potential energy contributions of the isovector mesons to the symmetry energy. Our conclusions are summarized in
the last section.
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II. SOME FACTS ABOUT IANM

Asymmetric nuclear matter can be characterized by the neutron density, ρn, and the proton density, ρp, which are
related to their respective Fermi momenta, knF or kpF , by

ρi =
(kiF )3

3π2
, (1)

with i = n or p.
It is more convenient to refer to the total density ρ = ρn + ρp and the asymmetry (or neutron excess) parameter

α =
ρn−ρp
ρ . Clearly, α=0 corresponds to symmetric matter and α=1 to neutron matter. In terms of α and the average

Fermi momentum, kF , related to the total density in the usual way,

ρ =
2k3F
3π2

, (2)

the neutron and proton Fermi momenta can be expressed as

knF = kF (1 + α)
1/3

(3)

and

kpF = kF (1− α)
1/3
, (4)

respectively.
Expanding the energy/particle in IANM with respect to the asymmetry parameter yields

e(ρ, α) = e0(ρ) +
1

2

(∂2e(ρ)

∂α2

)
α=0

α2 +O(α4) , (5)

where the first term is the energy/particle in symmetric matter and the coefficient of the quadratic term is identified
with the symmetry energy, esym. In the Bethe-Weizsäcker formula for the nuclear binding energy, it represents the
amount of binding a nucleus has to lose when the numbers of protons and neutrons are unequal. To a very good
degree of approximation, one can write

e(ρ, α) ≈ e0(ρ) + esym(ρ)α2 . (6)

The symmetry energy is also closely related to the neutron β-decay in dense matter, whose threshold depends on
the proton fraction. A typical value for esym at nuclear matter density (ρ0) is 30 MeV, with theoretical predictions
spreading approximately between 26 and 35 MeV. The effect of a term of fourth order in the asymmetry parameter
(O(α4)) on the bulk properties of neutron stars is very small, although it may impact the proton fraction at high
density. More generally, non-quadratic terms are usually associated with isovector pairing, which is a surface effect
and thus vanishes in infinite matter [19].

Equation (6) displays a convenient separation between the symmetric and aymmetric parts of the EoS, which facil-
itates the identification of observables that, for instance, may be sensitive mainly to the symmetry energy. Presently,
research groups from GSI [20], MSU [21], Italy [22], France [23], and China [24, 25] are investigating the density
dependence of the symmetry energy through heavy-ion collisions. Based upon recent results, these investigations
appear to agree reasonably well on the following parametrization of the symmetry energy:

esym(ρ) = 12.5MeV
( ρ
ρ0

)2/3
+ 17.5MeV

( ρ
ρ0

)γi
, (7)

where the first term is the kinetic contribution and γi (the exponent appearing in the potential energy part) is found
to be between 0.4 and 1.0. Naturally, there are uncertainties associated with all transport models. Recent constraints
from MSU [21] were extracted from simulations of 112Sn and 124Sn collisions with an Improved Quantum Molecular
Dynamics transport model and are consistent with isospin diffusion data and the ratio of neutron and proton spectra.

Typically, parametrizations like the one given in Eq. (7) are valid at or below the saturation density, ρ0. Efforts to
constrain the behavior of the symmetry energy at higher densities are presently being pursued through observables
such as π−/π+ ratio, K+/K0 ratio, neutron/proton differential transverse flow, or nucleon elliptic flow [26].
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III. THE ROLE OF ISOVECTOR MESONS

A. Review of the theoretical approach

As stated in the Introduction, the starting point of our many-body calculation is a realistic NN interaction which is
then applied in the nuclear medium without any additional free parameters. Thus the first question to be confronted
concerns the choice of the “best” NN interaction. After the development of QCD and the understanding of its
symmetries, chiral effective theories [27, 28] were developed as a way to respect the symmetries of QCD while keeping
the degrees of freedom (nucleons and pions) typical of low-energy nuclear physics. However, chiral perturbation theory
(ChPT) has definite limitations as far as the range of allowed momenta is concerned. For the purpose of applications
in dense matter, where higher and higher momenta become involved with increasing Fermi momentum, NN potentials
based on ChPT are unsuitable.

Relativistic meson theory is an appropriate framework to deal with the high momenta encountered in dense matter.
In particular, the one-boson-exchange (OBE) model has proven very successful in describing NN data in free space
and has a good theoretical foundation. Among the many available OBE potentials, some being part of the “high-
precision generation” [29, 30], we seek a momentum-space potential developed within a relativistic scattering equation,
such as the one obtained through the Thompson [31] three-dimensional reduction of the Bethe-Salpeter equation
[32]. Furthermore, we require a potential that uses the pseudovector coupling for the interaction of nucleons with
pseudoscalar mesons. With these constraints in mind, as well as the requirement of a good description of the NN
data, Bonn B [33] is a reasonable choice. The mesons included are the pseudoscalar π and η, the scalar σ and δ, and
the vector ρ and ω.

As our many-body framework, we choose the Dirac-Brueckner-Hartree-Fock approach. We will now review the main
aspects of our approach and the various approximations we perform through the application of the DBHF procedure.

The main strength of the DBHF approach is its inherent ability to account for important three-body forces (TBF)
through its density dependence. These are the TBF originating from virtual excitation of a nucleon-antinucleon pair,
known as “Z-diagram”. The characteristic feature of the DBHF method turns out to be closely related to the TBF
of the Z-diagram type, as we will argue next. In the DBHF approach, one describes the positive energy solutions of
the Dirac equation in the medium as

u∗(p, λ) =

(
E∗p +m∗

2m∗

)1/2
(

1
σ·~p

E∗p+m
∗

)
χλ, (8)

where the nucleon effective mass, m∗, is defined as m∗ = m + US , with US an attractive scalar potential. (This will
be derived below.) It can be shown that both the description of a single-nucleon via Eq. (8) and the evaluation of
the Z-diagram generate a repulsive effect on the energy/particle in symmetric nuclear matter which depends on the
density approximately as

∆E ∝
(
ρ

ρ0

)8/3

, (9)

and provides the saturating mechanism missing from conventional Brueckner calculations [36]. (Alternatively, explicit
TBF are used along with the BHF method in order to achieve a similar result.)

The approximate equivalence of the effective-mass description of Dirac states and the contribution from the Z-
diagram has a simple intuitive explanation in the observation that Eq. (8), like any other solution of the Dirac
equation, can be written as a superposition of positive and negative energy solutions. On the other hand, the
“nucleon” in the middle of the Z-diagram is precisely a superposition of positive and negative energy states. In
summary, the DBHF method effectively takes into account a particular class of TBF, which are crucial for nuclear
matter saturation.

Having first summarized the main DBHF philosophy, we now proceed to describe the DBHF calculation of IANM
[11]. In the end, this will take us back to the crucial point of the DBHF approximation, Eq. (8).

We start from the Thompson [31] relativistic three-dimensional reduction of the Bethe-Salpeter equation [32]. The
Thompson equation is applied to nuclear matter in strict analogy to free-space scattering and reads, in the nuclear
matter rest frame,

gij(~q
′, ~q, ~P , (ε∗ij)0) = v∗ij(~q

′, ~q)

+

∫
d3K

(2π)3
v∗ij(~q

′, ~K)
m∗im

∗
j

E∗i E
∗
j

Qij( ~K, ~P )

(ε∗ij)0 − ε∗ij(~P , ~K)
gij( ~K, ~q, ~P , (ε

∗
ij)0) , (10)
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where gij is the in-medium reaction matrix (ij=nn, pp, or np), and the asterix signifies that medium effects are
applied to those quantities. Thus the NN potential, v∗ij , is constructed in terms of effective Dirac states (in-medium

spinors) as explained above. In Eq. (10), ~q, ~q′, and ~K are the initial, final, and intermediate relative momenta,

and E∗i =
√

(m∗i )
2 +K2. The momenta of the two interacting particles in the nuclear matter rest frame have been

expressed in terms of their relative momentum and the center-of-mass momentum, ~P , through

~P = ~k1 + ~k2 (11)

and

~K =
~k1 − ~k2

2
. (12)

The energy of the two-particle system is

ε∗ij(~P , ~K) = e∗i (~P , ~K) + e∗j (~P , ~K) (13)

and (ε∗ij)0 is the starting energy. The single-particle energy e∗i includes kinetic energy and potential energy contri-
butions (see Eq. (27) below). The Pauli operator, Qij , prevents scattering to occupied nn, pp, or np states. To
eliminate the angular dependence from the kernel of Eq. (10), it is customary to replace the exact Pauli operator with
its angle-average. Detailed expressions for the Pauli operator and the average center-of-mass momentum in the case
of two different Fermi seas can be found in Ref.[11].

With the definitions

Gij =
m∗i

E∗i (~q′)
gij

m∗j
E∗j (~q)

(14)

and

V ∗ij =
m∗i

E∗i (~q′)
v∗ij

m∗j
E∗j (~q)

, (15)

one can rewrite Eq. (10) as

Gij(~q
′, ~q, ~P , (ε∗ij)0) = V ∗ij(~q

′, ~q)

+

∫
d3K

(2π)3
V ∗ij(~q

′, ~K)
Qij( ~K, ~P )

(ε∗ij)0 − ε∗ij(~P , ~K)
Gij( ~K, ~q, ~P , (ε

∗
ij)0) , (16)

which is formally identical to its non-relativistic counterpart.
The goal is to determine self-consistently the nuclear matter single-particle potential which, in IANM, will be

different for neutrons and protons. To facilitate the description of the procedure, we will use a schematic notation for
the neutron/proton potential. We write, for neutrons,

Un = Unp + Unn , (17)

and for protons

Up = Upn + Upp , (18)

where each of the four pieces on the right-hand-side of Eqs. (17-18) signifies an integral of the appropriate G-matrix
elements (nn, pp, or np) obtained from Eq. (16). Clearly, the two equations above are coupled through the np
component and so they must be solved simultaneously. Furthermore, the G-matrix equation and Eqs. (17-18) are
coupled through the single-particle energy (which includes the single-particle potential, itself defined in terms of the
G-matrix). So we have a coupled system to be solved self-consistently.

Before proceeding with the self-consistency, one needs an ansatz for the single-particle potential. The latter is
suggested by the most general structure of the nucleon self-energy operator consistent with all symmetry requirements.
That is:

Ui(~p) = US,i(p) + γ0U
0
V,i(p)− ~γ · ~pUV,i(p) , (19)
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where US,i and UV,i are an attractive scalar field and a repulsive vector field, respectively, with U0
V,i the timelike

component of the vector field. These fields are in general density and momentum dependent. We take

Ui(~p) ≈ US,i(p) + γ0U
0
V,i(p) , (20)

which amounts to assuming that the spacelike component of the vector field is much smaller than both US,i and U0
V,i.

Furthermore, neglecting the momentum dependence of the scalar and vector fields and inserting Eq. (20) in the Dirac
equation for neutrons/protons propagating in nuclear matter,

(γµp
µ −mi − Ui(~p))ui(~p, λ) = 0 , (21)

naturally leads to rewriting the Dirac equation in the form

(γµ(pµ)∗ −m∗i )ui(~p, λ) = 0 , (22)

with positive energy solutions as in Eq. (8), m∗i = m+ US,i, and

(p0)∗ = p0 − U0
V,i(p) . (23)

The subscript “i” signifies that these parameters are different for protons and neutrons.
As in the symmetric matter case [34], evaluating the expectation value of Eq. (20) leads to a parametrization of

the single particle potential for protons and neutrons (Eqs.(17-18)) in terms of the constants US,i and U0
V,i which is

given by

Ui(p) =
m∗i
E∗i

< ~p|Ui(~p)|~p >=
m∗i
E∗i

US,i + U0
V,i . (24)

Also,

Ui(p) =
∑
j=n,p

∑
p′≤kj

F

Gij(~p, ~p
′) , (25)

which, along with Eq. (24), allows the self-consistent determination of the single-particle potential as explained below.
The kinetic contribution to the single-particle energy is

Ti(p) =
m∗i
E∗i

< ~p|~γ · ~p+m|~p >=
mim

∗
i + ~p2

E∗i
, (26)

and the single-particle energy is

e∗i (p) = Ti(p) + Ui(p) = E∗i + U0
V,i . (27)

The constants m∗i and

U0,i = US,i + U0
V,i (28)

are convenient to work with as they facilitate the connection with the usual non-relativistic framework [35].
Starting from some initial values of m∗i and U0,i, the G-matrix equation is solved and a first approximation for

Ui(p) is obtained by integrating the G-matrix over the appropriate Fermi sea, see Eq. (25). This solution is again
parametrized in terms of a new set of constants, determined by fitting the parametrized Ui, Eq. (24), to its values
calculated at two momenta, a procedure known as the “reference spectrum approximation”. The iterative procedure
is repeated until satisfactory convergence is reached.

Finally, the energy per neutron or proton in nuclear matter is calculated from the average values of the kinetic and
potential energies as

ēi =
1

A
< Ti > +

1

2A
< Ui > −m . (29)

The EoS, or energy per nucleon as a function of density, is then written as

ē(ρn, ρp) =
ρnēn + ρpēp

ρ
, (30)

or

ē(kF , α) =
(1 + α)ēn + (1− α)ēp

2
. (31)

Clearly, symmetric nuclear matter is obtained as a by-product of the calculation described above by setting α=0,
whereas α=1 corresponds to pure neutron matter.
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TABLE I: Potential energy contributions (in MeV) for selected partial waves to the energy of NM and SNM, and their difference.
The density is equal to 0.185 fm−3.

Partial waves UNM USNM UNM − USNM
1S0 -18.71 -18.75 0.042
3P0 -1.88 -1.75 -0.126
1P1 0 4.045 -4.045
3P1 20.51 14.40 6.111
3S1 0 -20.29 20.29
3D1 0 1.564 -1.564
1D2 -4.250 -2.477 -1.773
3D2 0 -4.360 4.360
3F2 -1.022 -0.560 -0.462
3P2 -12.47 -7.697 -4.773

TABLE II: Contributions (in MeV) to the potential energy of SNM from various mesons for three different potential models.
The density is equal to 0.185 fm−3.

Potential σ + ω σ + ω + π π σ + ω + π + ρ ρ σ + ω + ρ+ δ δ All mesons

Bonn B -29.82 -45.89 -17.08 -38.69 7.21 -35.13 3.56 -34.24

Bonn A -33.27 -44.65 -11.38 -38.47 6.18 -36.90 1.57 -36.15

Bonn C -23.45 -45.21 -21.75 -38.74 6.47 -33.61 5.13 -32.98

B. Results

In Table I we show the contributions of some major partial waves to the potential energy of neutron matter (NM)
and of symmetric nuclear matter (SNM). The last column displays their difference, to signify the potential energy
contribution to the symmetry energy. The chosen density is 0.185 fm−3, corresponding to a Fermi momentum of
1.4 fm−1 in SNM and 1.76 fm−1 in NM (from Eq. (3) with α=1). (Summing up all contributions and including the
kinetic term yields 33.7 MeV, very close to the actual value of our symmetry energy at this density.)

We observe that spin-triplet waves, particularly 3S1, give the largest contribution. It will be interesting to revisit
this point in conjunction with the role of the δ meson. We note that, although the contribution of the δ meson to a
quantitative nucleon-nucleon (NN) interaction is known to be relatively small, this meson is a crucial mechanism to
fine-tune the S-waves, that is, 1S0 vs. 3S1. Hence, its importance for isospin dependent phenomena.

In Table II, we show the contributions to the potential energy of SNM from the different mesons. We show these
contributions for potentials A and C as well [33]. The three potentials differ mostly in the parameters used for
the πNN form factor, which has a large impact on the strength of the tensor force, with Bonn A displaying the
weakest tensor force and Bonn C the strongest (as demonstrated by the predicted D-state probabilities, which are
4.47, 5.10, and 5.53% for A, B, and C, respectively.) These three potentials span the uncertainty in our knowledge
of the short-range tensor force. Considering all three models will then provide information on how the effects being
examined (namely, the role of the isovector mesons on the symmetry energy) change with changing tensor force, while
maintaining consistency with the free-space NN data. We believe that the latter constraint in crucial for a reliable
investigation of many-body effects.

We start by taking σ and ω together, since a model with only one of these mesons is entirely meaningless and would

TABLE III: As in the previous Table but for NM.

Potential σ + ω σ + ω + π π σ + ω + π + ρ ρ σ + ω + ρ+ δ δ All mesons

Bonn B -17.00 -13.30 3.7008 -12.00 1.30 -15.21 -3.22 -16.09

Bonn A -20.10 -15.50 4.60 -14.00 1.50 -15.23 -1.23 -16.40

Bonn C -14.04 -11.37 2.67 -10.39 0.98 -15.48 -5.11 -16.05
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TABLE IV: The difference between the potential energy contributions (in MeV) to NM and SNM from isovector mesons.

Potential UπNM − UπSNM UρNM − UρSNM UδNM − UδSNM

Bonn B 20.78 -5.90 -6.78

Bonn A 15.98 -4.68 -2.80

Bonn C 24.42 -5.48 -10.24
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FIG. 1: (color online) Contribution from the various mesons to the equation of state of symmetric matter (a) and neutron
matter (b).

produce a completely unrealistic correlated wavefunction, especially so with the σ alone, due to the absence of any
short-range repulsion. The fourth column is the difference between the values shown in the third and second columns
and represents the contribution from the pion alone. Notice that this contribution is attractive, as to be expected,
recalling that the pion’s tensor potential, Vt, generates a large and attractive second-order term, Vt

Q
E0−EVt, when

iterated in the Bethe-Goldstone equation. Consistent with that, this contribution is largest with Bonn C, due to its
stronger tensor force.

The contribution of the ρ meson is shown in the sixth column as the difference between the values in columns
five and three. It is considerably smaller than the pion’s and repulsive, since the tensor force generated by the ρ
typically reduces the pion’s tensor force at short range. With regard to the ρ, it is useful to recall that the interaction
Lagrangian which couples vector mesons with nucleons contains both a vector coupling and a tensor coupling,

LNNρ = −gρψ̄γµ~τψ · φµρ −
fρ

4M
ψ̄σµν~τψ · (∂µφνρ − ∂νφµρ ) . (32)

These are related to the electromagnetic properties of the nucleon in the vector dominance model, where the nucleon
couples to the photon via a vector meson. In the framework of the vector dominance model [37], a value of 3.7 is
obtained for the ratio of the tensor to vector coupling constant, κρ = fρ/gρ, whereas a stronger value of κρ=6.6 was
determined from partial-wave analyses [38]. In other words, a larger value of the ρ tensor coupling as compared to its
vector coupling is well supported by evidence, a fact that is reflected in meson exchange models where, typically, the
ratio κρ is about 6. Therefore, a Lagrangian density with only a vector coupling for the ρ [39], i. e. fρ=0, may miss
the most important part of how this meson couples to the nucleon.
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Back to Table II, the δ meson is included next, providing a small and positive contribution. The last column displays
the full result, when the pseudoscalar meson η is included as well. Table II is more insightful when examined together
with Table III. The latter shows the same physical quantities as in Table II but for pure neutron matter. Here, the
contribution of the pion is much smaller and opposite in sign. This is due to the absence of the 3S1 partial wave in
NM and, consequently, the absence of a large part of the attractive second-order tensor term mentioned above. The
effect of the δ meson in NM is of about the same size as the one observed in SNM but opposite in sign. This can be
easily understood recalling that the effect of the isovector scalar meson is attractive in 1S0 and repulsive in 3S1, and
that the latter is absent from NM. With respect to potential model dependence, the size of the effect is largest in
model C and weakest in model A. Model dependence should be expected, as the parameters of the δ meson are quite
different for the three potentials.

Before proceeding to discuss the symmetry energy, we show, for Bonn B, how the various mesons contribute to
the energy of symmetric nuclear matter, Fig. 1(a), and neutron matter, Fig. 1(b). From Fig. 1(a), one can see that
the effect of the pion is large at all densities. As argued previously, this effect comes from the attractive second-
order conribution generated by the pion potential, which is clearly quite large already at low density. As density
increases, the second-order tensor contribution is reduced by the Pauli operator (and dispersion effects) and thus
retains approximately the same size. We also note the clear impact of the pion on the saturation density of SNM,
demonstrating the remarkable saturating effect generated by the tensor force, particularly through the 3S1 partial
wave.

For neutron matter, on the other hand, the contribution of the pion comes mostly from the (repulsive) tensor force
in some major isospin-1 partial waves. Accordingly, Fig. 1(b) shows that such contribution is opposite in sign and
weaker as compared to the one in SNM, as already observed when discussing Table III. Also, the effect increases with
density, in contrast to the case of SNM; see comments in the previous paragraph.

In Table IV, we show the difference between the potential energy contributions to NM and SNM from the isovector
mesons, as an estimate of the effect of each meson on the potential energy part of the symmetry energy. (The density
is the same as in the previous tables.) Clearly, in a microscopic, meson-theoretic approach the impact of the pion
on the symmetry energy is the largest. We find this to be a point of considerable interest, since mean field theories
are generally pionless. This is because the bulk of the attraction-repulsion balance needed for a realistic description
of nuclear matter can be technically obtained from σ and ω only, an observation that is at the very foundation of
Walecka models such as QHD-I [16]. However, in any fundamental theory of nuclear forces, the pion is the most
important ingredient. Chiral symmetry is spontaneously broken in low-energy QCD and the pion emerges as the
Goldstone boson of this symmetry breaking [28]. Moreover, NN scattering data cannot be described without the pion,
which is also absolutely crucial for the two-nucleon bound state, the deuteron.

When moving to nuclear matter (and regardless the possibility of obtaining realistic values of its bulk properties,
including the symmetry energy, with a pionless theory), this conceptual problem is not removed. Isospin dependence
is carried by the isovector mesons: Because of their isovector nature, these mesons contribute differently in different
partial waves thus giving rise to isospin dependence. (This is not the case with isoscalar mesons, which tend to
contribute similarly in all partial waves.) Thus, an important aspect of the physics is missing in a discussion of isospin
dependence that does not include the pion. Also, conclusions concerning the effect of other mesons (particularly ρ
and δ) may be distorted due to the absence of the pion. This may include, for instance, observations concerning
isospin-sensitive quantities such as the neutron-proton mass splitting in neutron-rich matter.

As mentioned earlier, investigations of ρ and δ contributions to the potential symmetry energy have been reported,
such as the one in Refs. [14, 40]. In Fig. 6-1 of Ref. [14], for instance, those contributions are shown to be very large
in size (about -40 MeV and 50 MeV at saturation density for δ and ρ, respectively). Thus, the interplay between ρ
and δ is described as the equivalent, in the isovector channel, of the σ-ω interplay in the isoscalar channel [40].

The dramatic differences between those and our present observations originate from several sources, which include:
The absence of the pion; the nature of the ρ coupling; the fact that our meson contributions, when iterated, are
reduced by the effect of the Pauli projector. As mentioned previously, the role of the δ is important although subtle,
and it is found in its different contributions to I=1 and I=0 partial waves, especially the S-waves.

In Fig. 2 we show the density dependence of the symmetry energy with Bonn A, B, and C. The potential model
dependence comes almost entirely from differences among predictions of the SNM energy. With the three sets of
predictions, we mean to estimate the uncertainty to be expected when using different parametrizations for the isovector
mesons, while respecting the free-space NN data.

Figure 3 displays the momentum dependence of the single-proton and single-nucleon potentials in IANM, as pre-
dicted by the three potentials. Differences are small, at most 10% at the lowest momenta. We recall that the gradient
between the potentials shown in Fig. 2, closely related to the isovector optical potential, is the crucial mechanism
that separates proton and neutron dynamics in IANM.

In closing this section, we take note of Ref. [41], where the effect of the short-range tensor interaction on the
symmetry energy is examined using an approximate expression for the second-order tensor contribution [42]. It must
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FIG. 2: (color online) The symmetry energy as predicted with Bonn A, B, and C.

be noted, though, that the variations performed on the short-range tensor interaction in Ref. [41] are unconstrained
and, thus, to some extent arbitrary.

IV. CONCLUSIONS

We have examined the effect of the isovector mesons on the difference between the potential energies of pure neutron
matter and symmetric matter. Our findings are easily understood in terms of the contributions of each meson to the
appropriate component of the nuclear force and the isospin dependence naturally generated by isovector mesons.

We find that the pion gives the largest contribution to this difference. The contribution of the pion is often
ovelooked, possibly because this meson is missing from some mean field models, which are popular among users of
equations of state. It is our opinion that conclusions regarding the interplay of ρ and δ in phenomenological models
must be taken with caution.

We comment on fundamental differences between our approach and the one of mean field models, particularly
pionless QHD theories. First, these differences are of conceptual relevance, since free-space NN scattering and bound
state are, essentially, pion physics. Furthermore, they can impact in a considerable way conclusions with regard to
isospin dependent systems/phenomena. In order to have a fundamental basis, a microscopic theory of the nuclear
many-body problem has to start from the bare NN interaction with all its ingredients.
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