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Microscopic input to a universal nuclear energy density functional can be provided through the
density matrix expansion (DME), which has recently been revived and improved. Several DME
implementation strategies are tested for neutron drop systems in harmonic traps by comparing
to Hartree-Fock (HF) and ab initio no-core full configuration (NCFC) calculations with a model
interaction (Minnesota potential). The new DME with exact treatment of Hartree contributions is
found to best reproduce HF results and supplementing the functional with fit Skyrme-like contact
terms shows systematic improvement toward the full NCFC results.
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I. INTRODUCTION

Experiments at radioactive ion beam facilities, stud-
ies of astrophysical systems such as neutron stars and
supernovae, and nuclear energy and security needs have
motivated multipronged efforts to develop nuclear energy
density functionals (EDF’s) with substantially reduced
errors and improved predictive power away from stabil-
ity. While great progress has been made in extending
the reach of ab initio wave function methods beyond the
lightest nuclei [1–4], the EDF approach remains the most
computationally feasible method for a comprehensive de-
scription of medium and heavy nuclei [5]. However, the
ab initio methods are vital tools for reaching the goal of
robust functionals informed by microscopic internucleon
interactions. As part of an ongoing program to achieve
this goal, in this paper we investigate trapped neutron
drops with a model interaction. In particular, EDF cal-
culations using several density matrix expansion (DME)
implementations are confronted with ab initio no-core full
configuration (NCFC) [6] results.

The comparisons presented here exploit developments
achieved within the Universal Nuclear Energy Density
Functional (UNEDF) SciDAC-2 collaboration [7, 8]. The
UNEDF project aims to develop a comprehensive the-
ory of nuclear structure and reactions utilizing the most
advanced computational resources and algorithms avail-
able, including high-performance computing techniques
to scale to petaflop platforms and beyond [7]. One ele-
ment of the UNEDF program involves the direct injec-
tion of microscopic physics into novel energy functionals,
with the DME a key tool [9–12]. Another element has
led to efficient density functional theory (DFT) solvers
adapted for the DME [13] and to neutrons in external
traps, which allow accurate and rapid testing of candi-
date functionals [14]. A third element is the extensive de-
velopment of ab initio methods, including improved com-

putational efficiencies [15] and extrapolation techniques
for the NCFC [6] that allow exact calculations (with er-
ror bars) of the same neutron drop systems to which the
functionals are applied.
Neutron drops are a powerful theoretical laboratory

for improving existing nuclear energy functionals. Micro-
scopic input to EDF’s is particularly needed for neutron-
rich nuclei, where there are fewer constraints from exper-
iment. The properties of uniform neutron matter have
been used in the past as a constraint on phenomenological
functionals (e.g., see Refs. [16, 17]), but computational
advances now allow accurate microscopic many-body cal-
culations of inhomogeneous neutron drops in external
potentials using quantum Monte Carlo or NCFC meth-
ods [18, 19]. These calculations can be used to identify
deficiencies in existing functionals (e.g., of the Skyrme
type as in Ref. [18]), to suggest or calibrate new versions,
or simply to provide control data that supplements ex-
periment for the optimization of functionals.
Neutron drops also provide favorable environments for

the development and testing of non-empirical (i.e., mi-
croscopically based) functionals. The necessity of an ex-
ternal potential (because the untrapped system is un-
bound, with positive pressure) is turned into a virtue by
allowing external control over the environment. Density
Functional Theory (DFT), which provides the theoretical
underpinning and computational framework for building
a nuclear EDF, dictates that the same functional applies
for any external potential, which can therefore be varied
to probe and isolate different aspects of the EDF. In con-
trast, the treatment of self-bound systems (such as ordi-
nary nuclei) has much less flexibility. Furthermore, there
are serious complications from symmetry breaking [20],
particularly for the relatively small systems where ab ini-

tio methods can also be applied.
The density matrix expansion was introduced long ago

by Negele and Vautherin, who applied it to G-matrix ef-
fective interactions to derive a Skyrme-like Hartree-Fock
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(HF) energy density functional. The DME has been re-
visited in recent years with the goal of applications to nu-
clear interactions sufficiently soft that many-body pertur-
bation theory (MBPT) for nuclei is a quantitative frame-
work. There are new formal DME developments, as well
as new formulations that include hybrids between purely
ab initio and phenomenological functionals. These must
be tested and validated (or discarded if found to be inad-
equate); in general, due to the complexity of the various
DME procedures and the involved density dependence
they generate for the subsequent functional, we have no
a priori guidance for the accuracy.
In this paper, we isolate the DME issues by using a

simplified model interaction, the two-body Minnesota po-
tential. Focusing on neutron drops is also advantageous
because the self-consistent solution of a self-bound sys-
tem magnifies approximation errors to the extent that it
is difficult to analyze them. Of course, the main draw-
back of using neutron drops is the absence of control by
experimental data. In our case this is not so relevant
as we use a simple model interaction sufficient for con-
ducting our basic tests of these methods. Our results
here provide a foundation for testing more realistic in-
teractions and improved functionals (e.g., that include
pairing), and for extensions to self-bound nuclei.
In Section II, we briefly review the methods and in-

puts used. Results for the Minnesota potential are given
in Section III for representative trap potentials and two
closed-shell neutron drop systems. We summarize our
observations and discuss the next steps to take in Sec-
tion IV.

II. BACKGROUND

The present calculations combine ingredients from sev-
eral parts of the UNEDF project. The technical details
are described in full elsewhere, so we merely review the
essential features.

A. DME

The density matrix expansion (DME) introduced by
Negele and Vautherin [21, 22] provides a route to an
EDF based on microscopic nuclear interactions through
a quasi-local expansion of the energy in terms of var-
ious densities: ρ(R), τ(R), ∇2ρ(R), and so on. Kohn-
Sham single-particle potentials are immediately obtained
from simple functional derivatives with respect to these
densities. The DME originated as an expansion of
the Brueckner-Hartree-Fock energy constructed using the
nucleon-nucleon G-matrix [21, 22], which was treated in
a local (i.e., diagonal in coordinate representation) ap-
proximation.
The DME has been reformulated for spin-saturated nu-

clei using non-local low-momentum interactions in mo-
mentum representation [9], for which G-matrix summa-

tions are not needed because of the softening of the in-
teraction. When applied to a Hartree-Fock energy func-
tional, the DME yields an EDF in the form of a gener-
alized Skyrme functional that is compatible with exist-
ing codes, by replacing Skyrme coefficients with density-
dependent functions. As in the original application, a
key feature of the DME is that it is not a pure short-
distance expansion but includes resummations that treat
long-range interactions correctly in a uniform system.
Extensions of the first calculations from Ref. [9] have

modified the DME formalism from Negele and Vau-
therin [21], which provides an extremely poor description
of the vector part of the density matrix [11]. The stan-
dard DME is much better at reproducing the scalar den-
sity matrices, but errors are still sufficiently large that
the discrepancy with full finite-range Hartree-Fock cal-
culations can reach the MeV per particle level. Gebre-
mariam and collaborators [11] introduced a new phase
space averaging (PSA) approach that accounts for the
diffuse Fermi surface [23] and anisotropy [24] of the local
momentum distribution, with no free parameters. The
PSA treatment leads to substantial improvements, par-
ticularly for the vector density matrices, where relative
errors in integrated quantities are reduced by as much as
an order of magnitude across isotope chains [11]. In the
present work, we test the difference between the original
Negele-Vautherin (NV) and the new PSA prescriptions
only for scalar parts.
The Fock energy exhibits spatial non-localities due to

the convolution of finite-range interaction vertices with
non-local density matrices. The DME factorizes the non-
locality of the one-body density matrix by expanding it
into a finite sum of terms that are separable in rela-
tive r ≡ r1 − r2 and center of mass R ≡ (r1 + r2)/2
coordinates. For example, in notation introduced in
Refs. [11, 12], one expands the spin-scalar part (in both
isospin channels) of the one-body density matrix as

ρt(r1, r2) ≈

nmax
∑

n=0

Πn(kr) Pn(R) , (1)

where the functions {Pn(R)} denote various local den-
sities and their gradients (through second order in
the present work) and Πn(kr) denotes the so-called
Π−functions, which depend on the particular formula-
tion of the DME (here NV or PSA). The arbitrary mo-
mentum k sets the scale for the decay in the off-diagonal
direction. As in Ref. [13], we will take k to be the local
Fermi momentum related to the isoscalar density through

k ≡ kF (R) =

(

3π2

2
ρ0(R)

)1/3

, (2)

although other choices are possible that include addi-
tional τ and ∆ρ dependencies [25].
It is possible to apply the DME to both Hartree and

Fock energies so that the complete Hartree-Fock energy
is mapped into a local functional. From the earliest
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DME work, however, it was found that treating the
Hartree contributions exactly provides a better reproduc-
tion of the density fluctuations and the energy produced
from an exact HF calculation [22, 26]. Restricting the
DME to the exchange contribution significantly reduces
the self-consistent propagation of errors [22]. In addi-
tion, treating the Hartree contribution exactly does not
complicate the numerical solutions of the resulting self-
consistent equations compared to applying the DME to
both Hartree and Fock terms. Here we will compare sev-
eral prescriptions for handling the Hartree contribution,
including a Taylor series expansion [27].
A consistent and systematic extension of the DME

procedure beyond the Hartree-Fock level of MBPT has
yet to be formulated. For now, attempts to micro-
scopically construct a quantitative Skyrme-like EDF use
some ad hoc approximations (e.g., using averaged rather
than state-dependent energy denominators) when apply-
ing the DME to iterated contributions beyond the HF
level and/or re-introduce some phenomenological param-
eters to be adjusted to data [21, 22, 28–30]. Recent
work based on chiral NN and NNN effective field the-
ory interactions motivates an approach to building upon
the DME/HF functional that incorporates important mi-
croscopic physics while exploiting the highly developed
Skyrme EDF technology [11–13].
The structure of the chiral interactions is such that

each coupling in the DME/HF functional is decom-
posed into a density-independent coupling constant aris-
ing from zero-range contact interactions and a coupling
function of the density arising from the universal long-
range pion exchanges. This clean separation between
long- and short-distance physics at the HF level sug-
gests a semi-phenomenological approach where the long-
distance couplings (gmt (R;Vπ)) are kept as is, and the
zero-range constants Cm

t are optimized to finite nuclei
and infinite nuclear matter properties [11, 12]. Thus,

gρτt ≡ gρτt (R;Vπ) + Cρτ
t (Vct) , (3)

and so on, so that the DME functional splits into two
terms,

E[ρ] = Ect[ρ] + Eπ[ρ] , (4)

where the first term Ect[ρ] collects all contributions from
the contact part of the interaction plus higher-order
short-range contributions encoded through the optimiza-
tion to nuclei and nuclear matter, while the second term
Eπ[ρ] collects the long-range NN and NNN pion exchange
contributions at the Hartree-Fock level.
Because the contact contributions have essentially the

same structure as those entering empirical Skyrme func-
tionals, a microscopically guided Skyrme phenomenology
has been suggested in which the contact terms in the
DME functional are released for optimization to finite-
density observables [11, 12]. This empirical procedure
is supported by the observation that the dominant bulk
correlations in nuclei and nuclear matter are primar-

ily short-ranged in nature, as evidenced by Brueckner-
Hartree-Fock (BHF) calculations where the Brueckner
G-matrix “heals” to the free-space interaction at suffi-
ciently large distances. One can loosely interpret the re-
fit of the Skyrme constants to data as approximating the
short-distance part of the G-matrix with a zero-range
expansion through second order in gradients. In doing
so, the constants can capture short-range correlation en-
ergy contributions beyond Hartree-Fock. We will test
this strategy for incorporating BHF correlations from the
Minnesota potential, with the free parameters of the vol-
ume part of the functional fixed to properties of infinite
neutron matter and the free surface parameter adjusted
to NCFC results. We will also consider a direct density-
dependent modification to model BHF correlations.

B. Minnesota Potential

All of the calculations reported here use the Minnesota
potential. This is a local NN-only potential that is the
sum of three Gaussians in the radial coordinate rij [31]:

Vij = [VR+
1

2
(1+P σ

ij)Vt+
1

2
(1−P σ

ij)Vs]
1

2
(1+P r

ij) , (5)

where P σ and P r are spin and space exchange operators,
respectively, and

VR = V0Re
−κRr2ij , (6)

Vt = −V0te
−κtr

2

ij , (7)

Vs = −V0se
−κsr

2

ij . (8)

The parameters defining the Vij are given in Table I.
(Note: we have taken the exchange-mixture parameter u
in Ref. [31] equal to be one.) The Minnesota potential
reproduces NN effective range parameters and gives rea-
sonable results for the binding energies of light nuclei. It
is often used as a semi-realistic potential in model calcu-
lations.

TABLE I: Parameters defining the Minnesota potential, see
Eqs. (5)–(8).

Vα value κα value
V0R 200.0MeV κR 1.487 fm−2

V0t 178.0MeV κt 0.639 fm−2

V0s 91.85MeV κs 0.465 fm−2

For our purposes, the important characteristics of this
potential are that it is local, which makes possible the
immediate adaptation of current DME technology (which
is not fully developed for non-local potentials), and that
it is moderately soft, so that HF is a reasonable starting
point and convergence is adequate in the NCFC. Because
we plan to use low-momentum interactions in the future,
this softness is consistent rather than a shortcoming of
the model. While the Minnesota potential lacks impor-
tant features of realistic interactions, such as tensor forces
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and three-nucleon interactions, it provides a convenient,
non-trivial test case for the DME that sets the stage for
future tests.

C. EDF Solvers

The DME-based functionals described in the last sec-
tion and in Ref. [13] have been implemented in the DFT
solvers HFBRAD [32] and HFBTHO [33]. HFBRAD
is a very fast solver for spherical nuclei and density-
dependent local density approximations, while HFBTHO
is much slower but calculates spherical and axially de-
formed nuclei, and can handle additional gradient cor-
rections. A Fortran module for both solvers has been
developed to implement the density-dependent parts of
the EDF from the DME applied to chiral effective po-
tentials [34]. The module contains all of the lengthy
expressions for the DME couplings and their functional
derivatives with respect to the density matrix, and for
numerically stable approximations. The module also has
the capability to calculate related infinite nuclear matter
properties. We have developed a similar module that can
handle expressions coming from the DME of the Min-
nesota potential plus external potentials. This module
was linked to existing DFT solvers to calculate results
presented here.

D. NCFC

To test the DME calculations, we use the ab initio no-
core full configuration (NCFC) approach [6, 35] to pro-
vide exact results (with errors bars). The NCFC is closely
related to the no-core shell model (NCSM) [36–39], as
both employ a many-body harmonic oscillator basis that
treats all nucleons as spectroscopically active. The ba-
sis space includes all many-body states with excitation
quanta less than or equal to Nmax. A general feature is
the possibility to completely remove spurious center-of-
mass excitations, but the present application with an ex-
ternal potential does not exploit this capability. Rather,
the center-of-mass motion is part of the physical system.
The main difference between the NCFC and NCSM is
that the NCSM employs an interaction renormalized to
the finite many-body basis, such as the Lee-Suzuki effec-
tive interaction.
The NCFC approach involves the extrapolation of a se-

quence of finite matrix results with the bare interaction
(as opposed to a Lee-Suzuki effective interaction) to the
infinite basis space limit. This makes it possible to ob-
tain basis-space-independent results for binding energies
and other observables, and to evaluate their numerical
uncertainties. The extrapolation methods are described
in Ref. [6]. A recent calculation of 14F in Ref. [4], made
prior to the first experimental measurements, illustrates
the predictive power of the NCFC approach when cou-
pled with leadership class computer resources. Note that

the present calculations do not exploit the full capabili-
ties of the codes and computers available to further min-
imize theoretical errors, because current error bars are
small enough for the present application.
To solve for ground-state energies, radii, and form fac-

tors of trapped neutron systems, the code MFDn [40–43]
was generalized to allow for external potentials. Only
spherically symmetric harmonic oscillator traps are used
in the current investigation, but other shapes and de-
formed traps are also directly available.

III. RESULTS

The neutrons are confined by an external single-
particle harmonic potential:

vext(r) =
1

2
mΩ2r2 , (9)

with harmonic oscillator parameter ~Ω varied from
5MeV to 20MeV. The calculations here use N = 8 and
N = 20 neutrons, which form closed shells. In the fu-
ture we will revisit this problem with pairing included
and consider intermediate N values. Accurate NCFC re-
sults are limited to larger oscillator parameters because
of slow convergence with Nmax for the Minnesota po-
tential. (Note: quantum Monte Carlo techniques such as
GFMC or AFDMC are effective for smaller ~Ω and could
be used for additional comparisons.) In some cases, ex-
trapolations are not reliable and so only upper bounds
to the total energy are given.
Comparisons between different DME treatments of the

Hartree term are given in Tables II, III and IV. The
full HF results provide a baseline for comparison of the
Negele-Vautherin (HF/NV) and Phase-Space-Averaging
(HF/PSA) approximations to HF, with variations based
on how the Hartree part of the DME is treated. For
each of the two DME implementations, there are three
possibilities: treat Hartree with the same DME (NV or
PSA), use a naive Taylor expansion (NT), or treat it
exactly. We split the total energy into internal and trap
contributions, with

Eint = Etot − Uext (10)

and

Uext = 4π

∫

dr r2vext(r) ρ(r) . (11)

Results are presented as deviations from the full HF re-
sults of the total and internal energies and the radii.
These results are for spherical solutions, which were
shown to minimize the energy. That is, by imposing a
non-zero quadrupole moment as a constraint, we found
in all cases that the total energy rapidly increases as the
quadrupole moment deviates from zero.
It is evident that the DME with PSA and exact Hartree

is systematically the closest to HF energies and radii. For



5

TABLE II: Comparison of DME approximations to HF to-
tal energies for different treatments of the Hartree term,
expressed as deviations from the full Hartree-Fock results
∆Ei = Ei − EHF in MeV.

HF/NV HF/PSA
N ~Ω NV NT exact PSA NT exact
8 3 0.1 0.2 0.1 0.0 0.1 0.0
8 5 0.4 0.8 0.4 −0.1 0.6 0.2
8 10 2.1 5.1 2.0 −1.7 4.1 0.9
8 15 4.2 12.9 4.6 −7.1 10.8 2.1
8 20 6.0 24.2 7.7 20.9 3.4
20 3 0.5 0.8 0.6 −0.1 0.4 0.2
20 5 1.8 3.4 2.3 −1.0 2.0 0.9
20 10 5.9 18.5 11.0 −14.0 12.0 3.9
20 15 3.8 44.3 22.7 31.6 7.9
20 20 −17.8 80.0 34.8 61.3 12.5

TABLE III: Comparison of DME approximations to HF in-
ternal energies for different treatments of the Hartree term,
expressed as deviations from the full Hartree-Fock results
∆Ei = Ei − EHF in MeV.

HF/NV HF/PSA
N ~Ω NV NT exact PSA NT exact
8 3 0.0 −0.0 0.0 0.1 0.0 0.1
8 5 −0.1 −0.4 −0.1 0.2 −0.3 −0.1
8 10 0.1 −1.0 −0.2 1.3 −1.0 −0.1
8 15 1.1 −1.5 0.3 5.4 −1.8 0.1
8 20 3.2 −1.9 1.1 −2.7 0.5
20 3 −0.2 −0.4 −0.3 0.1 −0.3 −0.1
20 5 −0.3 −1.2 −0.6 1.0 −0.8 −0.2
20 10 3.3 −2.2 0.3 11.9 −2.6 0.2
20 15 16.9 −2.0 4.4 −5.4 1.4
20 20 68.3 −1.2 11.1 −8.7 3.2

all DME approximations, internal energies are generally
closer to full HF than the total energies. This can be un-
derstood because the internal energy comes mostly from
the volume part of the EDF. DME and full HF agree
for infinite (uniform) matter, so similar results can be
expected from this part. However, one can see that the
DME approximations give slightly larger radii, which im-
plies slightly larger external energies, and so larger total
energies. A possible explanation is that the DME cou-
pling for the ρ∆ρ term may not take into account all the
surface effects.
Some of the DME/PSA entries in Tables II and IV

are missing. In these cases, the calculation failed to con-
verge because of EDF instabilities [44]. The instabilities
occurred at high values of ~Ω when both the Hartree and
Fock terms were taken from the DME. This could indi-
cate some problems at high density in the Hartree part of
the DME expressions. These instabilities are not, how-
ever, just simply related to the infinite neutron matter
properties, and are therefore more involved [44].
An alternative to the DME for microscopically based

EDF’s uses the more completely microscopic but com-
putationally far more intensive Optimized Effective Po-
tential (OEP) method [10]. In Ref. [45], the OEP was

TABLE IV: Comparison of DME approximations to HF rms
radii for different treatments of the Hartree term, expressed
as deviations from the full Hartree-Fock results ∆ri = ri−rHF

in fm.

HF/NV HF/PSA
N ~Ω NV NT exact PSA NT exact
8 3 0.01 0.02 0.00 −0.02 0.01 −0.01
8 5 0.03 0.07 0.03 −0.01 0.05 0.01
8 10 0.04 0.11 0.04 −0.06 0.09 0.02
8 15 0.03 0.14 0.04 −0.13 0.12 0.02
8 20 0.02 0.16 0.05 0.15 0.02
20 3 0.02 0.05 0.03 −0.02 0.02 0.01
20 5 0.04 0.09 0.06 −0.04 0.06 0.02
20 10 0.02 0.13 0.07 −0.18 0.09 0.02
20 15 −0.04 0.16 0.07 0.13 0.03
20 20 −0.20 0.18 0.05 0.15 0.02

applied to the same model problem of the Minnesota po-
tential for neutrons in a trap. Comparisons made to exact
HF results show that the exact exchange version of OEP
is almost indistinguishable from HF, in contrast to the
small but non-negligible discrepancies found here. Fu-
ture comparisons as both methods continue to be refined
will help to gauge the accuracy of DME approximations
and guide the development of corrections.

To test schemes for incorporating correlations beyond
HF, we use BHF calculations of neutron matter, which we
expect to be quite accurate for the Minnesota potential.
Two strategies are considered, following the discussion in
Section IIA.

The first strategy is based on the empirical observa-
tion that the ratio of the neutron matter HF and BHF
results is a rather smooth function of density, which we
denote f(kF). By assuming a rank-one separable expan-
sion of the potential, V (k,k′), the G-matrix would take
the form G(k,k′) ∼ V (k,k′)/f(kF) and then taking a
simple Gaussian for the potential form factor and ex-
panding out the integral that appears in the definition of
f(kF), one motivates the form

f = a+ bρ1/3 + cρ+ dρ5/3 + . . . . (12)

The coefficient a, b, c, and d are determined by a fit.
(Calculations omitting d were also made and yield sim-
ilar results except for the densest neutron drops.) This
strategy is implemented in the DFT solvers by evaluat-
ing the ρ dependence in the Fock terms as ρ → ρ(R),
which means the DME/HF couplings simply get scaled
by f(ρ). In the exact Hartree treatment, the prescrip-
tion ρ → 1/2[ρ(r1)+ ρ(r2)] is used and otherwise ρ(R) is
used. This approach is labeled BHF/PSA (or just BHF)
in the subsequent tables and figures (only results based
on exact-Hartree, DME/PSA are given).

The second strategy follows Ref. [13] to incorporate
BHF correlations by adding a contact part to the HF
functional for the Minnesota potential. In general, the
contact part Ect[ρ] of the EDF has the form of the stan-
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dard Skyrme functional

Hct(r) =
~
2

2m
τ0 +Hct

0 (r) +Hct

1 (r) , (13)

where

Hct

t (r) =
(

Cρ2

t0 + Cρ2

tDργ
0

)

ρ2t + Cρτ
t ρtτt + Cρ∆ρ

t ρt∆ρt

+ Cρ∇J
t ρt∇Jt + CJ2

t J2

t , (14)

and the isospin index t = {0, 1} labels isoscalar and
isovector densities, respectively. In analogy to Ref. [13],
the neutron coupling constants Ci = Ci

0 + Ci
1, i =

{ρ2, ρτ} are fitted to reproduce the neutron matter BHF
results. This allows us to constrain the zero-range volume
parameters of the DME-based functional, but not the pa-
rameters entering the surface part of the functional.
We optimize the surface parameters in the DME func-

tional in a manner similar to the optimization done for
standard Skyrme functionals. One could think of pro-
cedures based on semi-infinite neutron properties, or
on the leptodermous expansion of the functional [46].
Here we optimize the surface coupling constant Cρ∆ρ =

Cρ∆ρ
0

+ Cρ∆ρ
1

to NCFC Etot values presented in Tables
V and VI by using theoretical error bars as weights. A
simple minimization of the root-mean-square deviation
yields almost the same result. The values for the neu-
tron parameters of the Minnesota model are:

Cρ2

= −18.25MeVfm3 , Cρτ = 4.57MeV fm5 ,

Cρ∆ρ = −1.8MeV fm5 , (15)

with Cρ2

D = Cρ∇J = CJ2

= 0. Calculations done with
these parameters are labeled as “fit/PSA” in Tables V
and VI and “fit” in the figures.

We have set the coupling constant Cρ2

D to zero in the
fit to neutron matter properties. In the usual Skyrme-
DFT scheme, the density dependence controlled by the
power γ is needed to produce reasonable saturation prop-
erties. For example, the incompressibility of symmetric
nuclear matter is strongly affected by γ, and usually an
acceptable value requires γ < 1. In the present calcu-
lations we do not constrain symmetric matter; indeed,
the Minnesota potential does not produce realistic sat-
uration. More generally, the density dependence from

nonzero Cρ2

D is used to effectively account for beyond-HF
and three-body effects. The simplicity of the NN-only
Minnesota potential seemingly lets us transfer beyond-
HF effects to the other coupling constants and omit the

Cρ2

D term entirely.
In Tables V and VI, we summarize results for different

trap parameters from the NV and PSA DME implemen-
tations of HF with exact Hartree, the two strategies to
go beyond HF (BHF and fit, both based on PSA with ex-
act Hartree), along with full HF and NCFC results. As
already observed from the earlier tables, the comparisons
to HF shows that the DME-HF/NV and DME-HF/PSA

TABLE V: Results for calculations of 8 neutron drops in har-
monic potentials. All energies are in MeV and the rms radii
rrms are in fm. The NCFC results use up to the Nmax in
square brackets and parenthesis indicate the extrapolation un-
certainty in the last quoted digit(s). The approximations are
explained in the text.

Approx. ~Ω Etot Eint Uext rrms

HF 5 71.9 37.6 34.3 3.78
HF/NV 5 72.3 37.5 34.8 3.80
HF/PSA 5 72.1 37.5 34.5 3.78
BHF/PSA 5 68.8 34.9 33.9 3.75
fit/PSA 5 70.0 36.8 33.2 3.71

NCFC [14] 5 < 69.5
HF 10 142.4 69.6 72.8 2.75

HF/NV 10 144.5 69.5 75.0 2.79
HF/PSA 10 143.4 69.6 73.8 2.77
BHF/PSA 10 139.4 66.2 73.2 2.75
fit/PSA 10 138.6 67.3 71.3 2.72

NCFC [16] 10 138.1(6) 66(2) 72(2) 2.73(3)
HF 15 217.4 101.8 115.6 2.31

HF/NV 15 222.1 102.1 120.0 2.35
HF/PSA 15 219.5 101.9 117.6 2.33
BHF/PSA 15 214.8 98.5 116.2 2.31
fit/PSA 15 212.5 98.1 114.4 2.30

NCFC [16] 15 212.7(2) 98.6(4) 114.1(4) 2.293(4)
HF 20 296.4 135.1 161.3 2.04

HF/NV 20 304.1 136.3 167.8 2.09
HF/PSA 20 299.8 135.6 164.2 2.06
BHF/PSA 20 294.1 131.8 162.4 2.05
fit/PSA 20 290.9 130.0 160.9 2.04

NCFC [16] 20 290.8(2) 131.5(3) 159.3(3) 2.032(2)

TABLE VI: Results for calculations of 20 neutron drops in
harmonic potentials with the same conventions as Table V.

Approx. ~Ω Etot Eint Uext rrms

HF 5 230.4 120.9 109.6 4.26
HF/NV 5 232.8 120.2 112.5 4.32
HF/PSA 5 231.3 120.7 110.6 4.28
BHF/PSA 5 221.3 112.4 108.9 4.25
fit/PSA 5 223.0 117.5 105.5 4.18

HF 10 455.4 224.0 231.5 3.10
HF/NV 10 466.5 224.2 242.2 3.17
HF/PSA 10 459.3 224.1 235.2 3.12
BHF/PSA 10 445.0 215.7 229.3 3.08
fit/PSA 10 441.5 214.8 226.7 3.07
NCFC [8] 10 < 452.

HF 15 693.0 328.1 364.9 2.59
HF/NV 15 715.7 332.5 383.2 2.66
HF/PSA 15 700.9 329.5 371.4 2.62
BHF/PSA 15 680.1 318.2 361.8 2.58
fit/PSA 15 675.9 313.2 362.7 2.59
NCFC [8] 15 678(8) 322(10) 356(10) 2.56(4)

HF 20 941.3 435.2 506.1 2.29
HF/NV 20 976.1 446.3 529.8 2.34
HF/PSA 20 953.7 438.4 515.4 2.31
BHF/PSA 20 928.1 417.7 510.4 2.30
fit/PSA 20 924.4 414.5 509.9 2.30
NCFC [8] 20 922(6) 425(10) 497(10) 2.27(3)
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FIG. 1: (color online) Total energy and radius for 8 and 20
neutrons in a harmonic potential with oscillator parameters
10MeV, 15MeV and 20MeV. Calculations using the NCFC
are compared to full HF, the DME/PSA approximation to HF
with exact Hartree, and results incorporating the resummed
ladders for neutron matter using a density-dependent adjust-
ment (BHF) and using fit coefficients from Eq. (15).

calculations have consistently higher energies and radii.
These trends and the comparison to the NCFC results
are evident in Figs. 1 and 2, where energies and radii
from the various DME prescriptions are compared to a
full Hartree-Fock calculation and to NCFC calculations
for 8 and 20 neutrons. The energies have been scaled by
the Thomas-Fermi energy trend N4/3

~Ω [18] to remove
the dominant dependence on N and ~Ω. The error bars
from the NCFC are from the extrapolations; the exact
results for the Minnesota Hamiltonian are expected to
lie within these error ranges.

The DME/PSA BHF results improve on the HF and
DME/PSA HF results systematically for both the total
and internal energies, and for the radii. They are within
the errors of the NCFC in many cases. The DME/PSA
fit result with only additional volume terms fit to neu-
tron matter, is consistently worse than the HF results,
particularly for the internal energy (not shown). This
failure is consistent with Ref. [13], where the analogous
prescription was found to introduce unacceptably large
over-binding in nuclei. Here, the total energies and rms
radii are systematically too small. But once a surface
term is added and fit to the NCFC results for the total
energies, excellent systematics are found for these ener-
gies and the predicted radii. The predicted internal en-
ergies are also improved although there are much larger
differences from the central NCFC values than for the
total energies.

The reproduction of coordinate-space densities and the
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FIG. 2: (color online) Internal energy and radius for 8 and 20
neutrons in a harmonic potential with oscillator parameters
10MeV, 15MeV and 20MeV as in Fig. 1.
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FIG. 3: (color online) Density for 8 neutrons in a harmonic po-
tential with oscillator parameter 10MeV. The non-interacting
density (HO) is compared to calculations using the NCFC
(shaded region), the DME/PSA approximation to HF with
exact Hartree, and results incorporating the resummed lad-
ders for neutron matter via a density-dependent adjustment
(DME/PSA BHF) and using fit coefficients.

corresponding momentum-space form factor are shown
for some representative cases in Figs. 3, 4, and 5. These
examples illustrate the very large range in interior density
probed by this set of external potentials. The improve-
ments noted for DMA/PSA BHF energies and radii are
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FIG. 4: (color online) Density for 20 neutrons in a harmonic
potential with oscillator parameter 15MeV, see Fig. 3 caption.
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FIG. 5: (color online) Form factor for 8 neutrons in a har-
monic potential with oscillator parameter 10MeV, see Fig. 3
caption.

also seen for the densities. The DME/PSA fit results
might be judged the best, although the error bands from
the NCFC calculation are too large to allow a definitive
conclusion. The form factor is given by:

F (q) =
1

N

∫

dr 4πr2ρ(r)
sin qr

qr
. (16)

Not surprisingly, the characteristic features of the first
minimum and height of the second maximum are well

reproduced within the NCFC error band.

IV. SUMMARY

In this paper, we perform test calculations to help de-
velop density functionals for nuclei using microscopic in-
put. In particular, we use the density matrix expansion
(DME) as a bridge from many-body perturbation theory
to EDF’s that can be used in solvers and with optimiza-
tion techniques developed for phenomenological Skyrme
functionals. There are many implementation questions
and options for the DME, some of which are addressed in
the present work. Ultimately we will use high-precision
two- and three-body nuclear interactions, such as from
chiral effective field theory, evolved to softer forms using
renormalization group methods. This softening makes
them suitable for a MBPT treatment, unlike conventional
interactions. As an interim step, we have used the Min-
nesota potential as a (moderately) soft, semi-realistic in-
teraction for our tests.
The test environment is interacting neutrons in a har-

monic trap. By varying the oscillator frequency of the
trap, different inhomogeneous density profiles are probed.
According to DFT, an EDF for self-bound nuclei should
be the same for the neutron systems, with the simple ad-
dition of the external potential to the Kohn-Sham poten-
tial and Uext to the energy functional. Thus we can make
controlled explorations of the energies for different den-
sity distributions. The predictions are validated against
ab initio calculations using NCFC methods, made pos-
sible for 8 and 20 neutrons by computational and algo-
rithmic advances enabled by the UNEDF project. A key
feature is that the same Hamiltonian is used for the ab

initio solution and the functional. This allows us to more
reliably isolate different sources of approximation errors.
Comparisons were first made between the DME at the

HF level and full HF calculations. The best results for the
improved form of the DME, which uses phase-space av-
eraging (PSA), were consistently superior to the original
Negele-Vautherin formulation. This agrees with the find-
ings in Ref. [27], where it was found in non-self-consistent
calculations of nuclei that the PSA-DME was the most
accurate formulation when the expansion is truncated
at second order in gradients. (Note: the improvement
will be more significant for more realistic interactions in-
cluding spin-orbit and tensor forces.) Several options for
treating the Hartree (direct) contribution were consid-
ered, with a clear preference for an exact treatment in
the PSA version of DME. This is consistent with past
experience applying the DME.
There are still systematic discrepancies between the

best DME Hartree-Fock calculations and the full HF
results. This is in contrast to results from recent
exact-exchange orbital-based calculations, which find ex-
tremely close agreement with HF for the same neutron
systems and interactions [45]. Thus the source of the
discrepancies seems to be the DME approximation and
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not simply the use of a local Kohn-Sham potential. This
implies that DME-based functionals will always need to
be supplemented with some correction mechanism for in-
herent DME approximations as well as for errors from
many-body approximations.
Hartree-Fock is a good quantitative starting point for

these neutron drop systems with the Minnesota poten-
tial, but the full NCFC solutions show clear differences
in the patterns of energies and radii. These differences
are used as a testbed for two ways to incorporate correla-
tions beyond HF in the DME functional. In both cases,
Brueckner-Hartree-Fock (BHF) calculations of neutron
matter with the Minnesota potential were used as the
exact reference. (Instead, one could use ab initio calcu-
lations if available, or else calibrate to phenomenological
values.)
In the first approach, the functional was modified by

density-dependent terms, while in the second approach,
the interaction was supplemented with Skyrme-like con-
tact terms, whose coefficients were fit to the neutron
matter calculation. The first method (labeled BHF in
the figures), showed systematic improvement from DME
Hartree-Fock toward the full NCFC results, both for the
energies and the radius. The second method with vol-
ume terms only was found to be unacceptable, but the
addition of a fit surface term improved the systematics
dramatically, to roughly the error limits of the current
NCFC calculations for the total energies and the pre-
dicted radii. These results validate the strategies planned
for more realistic forces.
There are many ways forward from the present cal-

culations. The neutron drop system will continue to

be a valuable tool for diagnostic testing, which will in-
clude using non-harmonic (e.g., Woods-Saxon) and de-
formed traps. On-going development of the density ma-
trix expansion includes the extension to pairing, which
will be tested using open-shell neutron numbers, and ex-
tensions to incorporate higher-order MBPT and more
complete low-momentum potentials. These extensions
will be tested both in the neutron drop systems and for
ordinary self-bound nuclei. Work in these directions is in
progress.
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