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We present an efficient method for calculating strength functions using the finite amplitude
method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density
functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully
self-consistent quasi-particle random-phase approximation (QRPA) at a fraction of computational
cost. As a demonstration, we compute the isoscalar and isovector monopole strength for strongly
deformed configurations in 100Zr and 240Pu by considering huge quasi-particle QRPA spaces. Our
approach to FAM, based on Broyden’s iterative procedure, opens the possibility for large-scale cal-
culations of strength distributions in well-deformed superfluid nuclei across the nuclear landscape.

PACS numbers: 21.10.Pc,21.60.Jz,23.20.Js,24.30.Cz

Introduction.– One of the major challenges in the
many-body problem is the microscopic description of the
collective motion involving hundreds of strongly interact-
ing particles. Here, of particular interest is the response
of the system to a time-dependent external field. In the
nuclear case, in the small-amplitude limit of nearly har-
monic oscillations about equilibrium, the phenomena of
interest include the variety of vibrational modes, and
characteristic distribution of electromagnetic, particle,
and beta-decay strength [1, 2].

Most nuclei exhibit strong nucleonic pairing that pro-
foundly impacts their collective motion [3, 4]. When
moving away from the stability line, another factor af-
fecting nuclear correlations, and dynamics is the presence
of a low-lying particle continuum which provides a vast
configuration space for nucleonic excitations. Therefore,
to understand the variety of nuclear modes throughout
the nuclear chart, a consistent treatment of many-body
correlations and continuum is required [5].

This study is devoted to the monopole strength
in superfluid deformed heavy nuclei. The theoretical
method is the quasi-particle random-phase approxima-
tion (QRPA) applied to the self-consistent configuration
obtained by means of the nuclear density functional the-
ory (DFT) [6]. QRPA represents a small amplitude limit
to the time-dependent superfluid DFT method. In the
absence of pairing, QRPA reduces to the usual Random
Phase Approximation (RPA) built atop the Hartree-Fock
(HF) equilibrium.

In the electronic DFT, the RPA contribution to elec-
tron correlation energies has emerged [7, 8] as an impor-
tant building block of accurate density functional treat-
ments of molecules and solids as it combines a number
of attractive features: it includes the long-range disper-
sion [9] as opposed to semi-local functionals; it is non-
perturbative and can be applied to small or zero gap
problems, such as metals [10] or dissociating H2 [11]; it

is nearly exact in the high-density or low-coupling limit,
and it is parameter-free; finally it is intimately related to
the microscopic Coupled Cluster doubles theory [12–14].
In the nuclear DFT, the applicability of (Q)RPA to cor-
relation energies is more limited [15–17] as many nuclei
have transitional character, i.e., they are close to the crit-
ical point for the symmetry-breaking where the second-
order expansion in density fluctuations breaks down [18].
In spite of its drawbacks, because of its deep connection
to DFT, QRPA is still the tool of choice when it comes to
either spherical or well-deformed nuclei. In addition to
numerous applications to small-amplitude collective mo-
tion, QRPA for deformed nuclei may be utilized in the
calculation of the collective mass for the large-amplitude
dynamics [19].

The advantage of QRPA+DFT is that it properly
takes into account self-consistent couplings giving rise to
the variety of symmetry-breaking phenomena and, when
done properly, includes the effects due to the continuum
coupling. Due to the complexity of the problem, the
QRPA framework being capable of a fully self-consistent
description of non-spherical systems has eluded us until
very recently [20–24].

A major obstacle preventing the widespread use of
QRPA has been its high computational cost. In chem-
istry, this factor has limited applications of this method
considerably [8]. In nuclear physics, most fully self-
consistent QRPA applications have been limited to spher-
ical nuclei (see, e.g., [25] and references therein). In spite
of advanced computational resources available, it is only
very recently that deformed QRPA calculations atop the
Hartree-Fock-Bogoliubov (HFB) equilibrium have been
carried out [20–24].

The primary challenge in the conventional matrix
formulation of (Q)RPA is computation and storage of
huge matrices of the residual interaction. The recent
breakthrough came from the realization that both bot-
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tlenecks can be avoided by taking advantage of self-
consistent DFT solutions and directly employing the lin-
ear response theory to them (see literature quoted in
Refs. [14, 26, 27]). Indeed, in both the finite-amplitude
method (FAM) [26] and the iterative non-Hermitian
Arnoldi diagonalization technique [27], the (Q)RPA ma-
trix equations are recast into the set of self-consistent
equations with respect to (Q)RPA amplitudes, which sig-
nificantly reduces computational effort. The FAM has
been applied in the RPA variant to Skyrme energy den-
sity functionals (EDFs) to study giant dipole resonances
and low-lying pygmy dipole modes [28, 29]. Recently, in
its QRPA extension, FAM was used to study monopole
resonances in a spherical drip-line nucleus 174Sn [30].
The iterative Arnoldi diagonalization was first used in
the RPA variant to electromagnetic strength functions
in 132Sn [27], and the spherical QRPA extension has re-
cently been reported [31].

While based on the same principle, the actual numer-
ical implementations of FAM and iterative Arnoldi di-
agonalization differ. In the applications of FAM, the
(Q)RPA amplitudes are iterated at desired energies. The
Arnoldi algorithm is a Krylov subspace iterative method
for extracting a partial eigenspectrum, i.e., it computes a
discrete set of states that approximate true eigenvectors.
(For another nuclear application, an iterative Lanczos-
based power iteration algorithm for solving the RPA
equations, see Ref. [32].) The number of states found is
equal to the number of iterations, and these states (usu-
ally different from QRPA modes) are used to construct
the strength function.

The current implementation of FAM has so far been
done in the coordinate-space representation that requires
a large number of iterations (in some cases more than
500-1,000 [26, 28]) to obtain self-consistent amplitudes.
Here, we propose a fast and efficient method for solv-
ing the FAM-QRPA equations in the harmonic oscillator
(HO) basis using the Broyden iterative scheme [33, 34]
previously adopted to HFB equations of nuclear DFT
[35]. We study the performance of the method and com-
pare it with the standard QRPA diagonalization method.
We demonstrate that FAM-QRPA solutions can be ob-
tained with typically 40 iterations at modest memory
requirements of about half a gigabyte for large model
spaces corresponding to extreme cases of fission isomers
in the actinides.

Finite Amplitude Method.– The basic formulation of
the FAM-RPA is presented in Ref. [26], and that for
the FAM-QRPA is given in Ref. [30]. The implementa-
tion of a traditional matrix formulation QRPA method
(MQRPA) used in this work follows that of Ref. [21]. In
this section, we recapitulate the method and define all
necessary quantities.

The variation of the total DFT energy defined through
an energy density E(ρ, κ, κ∗), with respect to the particle
and pairing density matrices, ρ = V ∗V T and κ = V ∗UT ,

results in the HFB equations

(

h− λ ∆
−∆∗

−h∗ + λ

)(

Uµ

Vµ

)

= Eµ

(

Uµ

Vµ

)

, (1)

where

hkl[ρ, κ, κ
∗] =

∂E [ρ, κ, κ∗]

∂ρlk
, ∆kl[ρ, κ] =

∂E [ρ, κ, κ∗]

∂κ∗
kl

, (2)

Eµ are the quasi-particle energies, (Uµ, Vµ) are the two-
component HFB quasi-particle vectors, and the chemical
potential λ is introduced to conserve the average particle
number.
The QRPA equations for the mode amplitudes (Xµν ,

Yµν) and excitation energies ω can be written in a matrix
form as:

(

A B
B∗ A∗

)(

X
Y

)

= ω

(

X
−Y

)

(3)

with matrices A and B coming from second variational
derivatives of E [ρ, κ, κ∗] with respect to ρ and κ. In
MQRPA, Eqs. (3) are solved by means of the explicit
diagonalization, and the strength function corresponding
to the one-body operator F̂ is subsequently computed. In
our results, strength functions calculated with MQRPA
are smeared with a Lorentzian-averaging function hav-
ing a width Γ = 2γ. Such an averaging can be associated
with complex QRPA frequencies ω + iγ that are intro-
duced in the context of strength function technique with
schematic interactions [1, 36–38]. In fact, strength func-
tions obtained in such a way do not require knowledge
of individual RPA eigenvalues; the summation over the
RPA spectrum is replaced by integration over energy (see
also Refs. [15, 16]).
Following the earlier applications of FAM [26, 28–30],

we solve the QRPA problem in the presence of a one-
body external perturbation F̂ of a given frequency ω. In
this case, Eq. (3) can be rewritten in an alternative way
[30]:

(Eµ + Eν − ω)Xµν + δH20
µν(ω) = F 20

µν ,

(Eµ + Eν + ω)Yµν + δH02
µν(ω) = F 02

µν ,
(4)

where the complex antisymmetric matrices

δH20(ω) = U †δh(ω)V ∗
− V †δh(ω)TU∗

−V †δ∆
∗
(ω)V ∗ + U †δ∆(ω)U∗,

δH02(ω) = UT δh(ω)TV − V T δh(ω)U
−V T δ∆(ω)V + UT δ∆(ω)∗U,

(5)

are defined in terms of the non-Hermitian variations

δh(ω) = (h[ρη, κη, κ̄η]− h[ρ, κ, κ∗])/η,

δ∆(ω) = (∆[ρη, κη]−∆[ρ, κ])/η,

δ∆(ω) = (∆[ρ̄η, κ̄η]−∆[ρ, κ])/η,

(6)
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where η is a small parameter to numerically expand den-
sities up to the first order. The non-Hermitian density
matrices in (6) are:

ρη = (V + ηU∗X∗)
∗
(V + ηU∗Y )

T
,

κη = − (U + ηV ∗Y ) (V + ηU∗X∗)
†
,

ρ̄η = (V + ηU∗Y )
∗
(V + ηU∗X∗)

T
,

κ̄η = − (U + ηV ∗X∗) (V + ηU∗Y )
†
.

(7)

We note that the above density matrices depend on the
external field F̂ through the QRPA vectors (X,Y ).
The FAM-QRPA equations (4) can be formally solved

with respect to Xµν , Yµν :

Xµν = −
δH20

µν(ω)− F 20
µν

Eµ + Eν − ω
, Yµν = −

δH02
µν(ω)− F 02

µν

Eµ + Eν + ω
. (8)

Since the matrices δH20(ω) and δH02(ω) linearly depend
on Xµν and Yµν , a self-consistent iterative scheme needs
to be adopted to find the QRPA amplitudes. In essence,
FAM replaces the calculation and diagonalization of the
large QRPA matrices A, B with a much simpler proce-
dure of calculating δH20(ω) and δH02(ω), and solving
Eqs. (4) at desired values of ω. To guarantee that the
FAM-QRPA solution carries a finite strength function
for every value of ω, we take ω → ω + iγ with a small
imaginary part γ. As we shall see later, such a choice cor-
responds to a Lorentzian smearing of Γ = 2γ, except for
the vicinity of ω = 0 [1]. It is worth noting that the FAM
implementation of QRPA is straightforward and EDF-
independent, as the same HFB procedures that define
the fields h,∆ in terms of particle and pairing densities
are also used in FAM-QRPA calculations.
Ideally, a self-consistent iterative FAM-QRPA proce-

dure should converge rapidly and the result should not
depend on η if its value is small enough. In practice,
a direct iteration of (8) diverges in most cases, espe-
cially when γ is small and/or when ω is close to the
true QRPA root. Indeed, when γ → 0, the left-hand
side of Eqs. (4) becomes singular; hence, instabilities are
expected around QRPA roots. To guarantee numerical
stability, one has to resort to a procedure which ‘mixes’
the solutions from previous and next iterations. To this
end, the conjugate gradient method and its derivatives
were utilized in coordinate-space applications [26, 28–30].
In this work, based on the HO expansion technique, the
modified Broyden’s procedure [34, 35] has been adopted
and turned out to yield stable results while providing
excellent computational performance. For a system of
linear equations (4), Broyden iterations exhibit the Q-
superlinear convergence [39].
Results.– To benchmark FAM-QRPA for deformed nu-

clei and check its performance, we carried out FAM and
MQRPA [21] calculations using the SLy4 EDF [40] and a
contact volume pairing with a 60 MeV cutoff with respect
to the reference single-particle energies [41]. To facilitate
comparison with MQRPA implementation of Ref. [21],
the center-of-mass correction has been ignored in this

test. The pairing strength was chosen to reproduce the
experimental neutron pairing gap of 120Sn. All HFB cal-
culations were performed with the DFT code HFBTHO
[41] that solves the Skyrme-HFB equations in the HO (or
transformed HO, THO) basis, assuming axial and reflec-
tion symmetries.
As discussed in Ref. [21], MQRPA calculations are sub-

ject to two truncations. The first truncation pertains to
the maximum rank of the QRPA Hamiltonian matrix.
To this end, one neglects all canonical states with single-
particle energies greater than some cutoff value. The sec-
ond truncation is made by excluding those QRPA quasi-
particle pairs that have occupation probabilities less than
some small critical value v2crit or larger than 1− v2crit.
The benchmarking calculations have been carried out

for the monopole isoscalar (IS) and modified isovector
(IV) response operators:

f IS =
eZ

A

A
∑

i=1

r2i , f IV =
eZ

A

N
∑

i=1

r2i −
eN

A

Z
∑

i=1

r2i . (9)

This choice makes coupling between IS and IV monopole
vibrations small [42]. At each value ω, the imaginary
part has been set to γ = 0.5 MeV, and the FAM strength
function has been calculated according to [30]

S(f, ω) = −
1

πα
Im Tr

[

f(UXV T + V ∗Y TU †)
]

. (10)

Here, the external field in Eq. (4) is given by F = αf ,
where α is a parameter with dimension [α] = [F ][f ]−1.
Since for very small values of η the QRPA amplitudes X
and Y are proportional to α, S(f, ω) is independent of α.
Using a complex frequency ω + iγ, the resulting S(f, ω)
possesses the crossing symmetry S(f, ω) = −S(f,−ω)
[1]; hence S(f, ω = 0) = 0 is guaranteed. The strength
function obtained in MQRPA has been computed by av-
eraging QRPA diagonalization results with Γ = 2γ = 1
MeV. In the fully self-consistent framework, the MQRPA
and FAM-QRPA results should be identical.
The MQRPA and FAM-QRPA Jπ = 0+ strength func-

tions are compared in Fig. 1 for an oblate minimum in
24Mg. (In the prolate ground state of this nucleus, paring
correlations vanish.) To include the whole available space
of canonical wave functions in MQRPA, the results shown
in Fig. 1 were obtained using a relatively small single-
particle basis corresponding to Nsh = 5 HO shells. It is
clearly seen that both methods yield practically identi-
cal results. Increasing the number of basis states rapidly
increases the scale of the MQRPA scheme. For example,
with 20 HO shells and vcrit = 10−4, QRPAmatrices reach
dimension 32,039, requiring 16.4 GB memory. Lowering
the canonical cutoff to vcrit = 10−20 results in the matrix
rank 211,159, or 713.41 GB of memory. In contrast, the
memory required by FAM-QRPA, using the full space of
20 HO shells and without any truncations on a QRPA
level, is a modest 0.572GB.
The accuracy of any QRPA implementation can be

assessed by its ability to handle the spurious (zero-
energy) modes. In general, QRPA solutions should
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FIG. 1: (color online) The isoscalar (blue, dashed line)
and isovector (red, solid line) monopole strength function in
oblate-deformed and paired minimum of 24Mg obtained in
MQRPA within the full Nsh = 5 HO space (vcrit=0) and
FAM-QRPA (circles). The inset shows the presence of 0+

spurious mode at low-energy at three different values of vcrit
in MQRPA.

be properly orthogonalized against spurious modes by
means of a well-established procedure [26, 27]. For
the monopole case presented in Fig. 1, the configura-
tion space of FAM-QRPA seems to be sufficient to re-
move the 0+ spurious modes associated with particle-
number breaking almost exactly. This is indeed seen
in the inset of Fig. 1 which displays the low-energy IV
monopole strength in MQRPA for several values of vcrit.
The MQRPA response corresponding to vcrit=0 (full HO
space) shows the single low-energy peak carrying the
strength of about 2·10−6 e2fm4/MeV, and the low-energy
FAM-QRPA strength is of similar magnitude.

Figure 2 demonstrates that the FAM results practically
do not depend on the choice of the parameter η entering
the numerical derivatives in Eq. (6) for quite a large
range of values of η from 10−6 to 10−8. For η < 10−8

numerical noise starts to deteriorate the accuracy of the
calculation. Usually, the FAM solution is reached fairly
quickly, within 10-50 iterations assuming that the maxi-
mum difference between collective amplitudes in two con-
secutive iterations is less that 10−6.

In order to demonstrate the ability of FAM-QRPA to
treat heavy, deformed, and superfluid nuclei, Fig. 3 shows
the monopole strength distributions for the ground state
of 100Zr (previously studied in [43]) and fission isomer
in 240Pu. For the neutron-rich nucleus 100Zr, calcula-
tions were carried out in large configuration spaces of
Nsh = 18 and 20 of the stretched THO [41]. For the
superdeformed state of 240Pu, we took the stretched HO
basis with Nsh = 18 and 20. As demonstrated in Fig. 3,
by taking Nsh = 20, the computed monopole strength is
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FIG. 2: (color online) The performance of the FAM-QRPA
algorithm applied to the case of Fig. 1 for different values
of η in the frequency range of 24<ω<32MeV. The relative
accuracy is defined as ∆S/S where ∆S(η) = |S(10η)− S(η)|.
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FIG. 3: (color online) IS and IV monopole strength in the
deformed ground state of 100Zr (top) and the superdeformed
fission isomer 240Pu (bottom) in FAM-QRPA with Nsh=18
(dashed line) and 20 (solid line).

practically stable in the whole range of ω in the both cases
considered. As it is well known [44], due to its large defor-
mation, the IS monopole strength distribution splits into
two components. Here, as well as in other cases consid-
ered in this work, about 99% of the EWSR is exhausted
when integrating up to ω=50MeV. For 100Zr, the cal-
culated strength distribution nicely agrees with that of
Ref. [43]. Both examples nicely illustrate the applicabil-
ity of FAM-QRPA to the local QRPA approach used in
the context of the large-amplitude collective motion [19].

Conclusions.– In this work we applied the FAM-QRPA
method to describe the multipole strength in deformed
and superfluid nuclei. A new efficient method for the it-
erative solution of FAM-QRPA equations, based on the
Broyden mixing procedure [35], has been proposed. The
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algorithm is especially suited for multiprocessor tasks
since the QRPA strength distribution S(ω) converges
with typically 40 iterations regardless of ω.
The calculations have been presented for IS and IV

monopole modes. We first benchmarked FAM-QRPA
against the MQRPA approach of Ref. [21] and obtained
excellent agreement. As compared to the standard di-
agonalization method, FAM-QRPA offers excellent per-
formance, both in terms of memory and speed. Includ-
ing all the fields (both time-even and time-odd) required
by the fully self-consistent QRPA, the memory require-
ment for the FAM-QRPA module built on the top of the
DFT solver HFBTHO does not exceed 572 MB. This en-
ables us to handle axially-deformed heavy nuclei without
imposing any truncation on the QRPA level. The self-
consistency of FAM-QRPA, together with very large pair-
ing windows employed, results in a practical decoupling
of the 0+ spurious modes associated with the particle-
number symmetry breaking. The illustrative examples
have been presented for strongly deformed configurations
in 100Zr and 240Pu. It has been demonstrated that the
convergent result are obtained by taking a large basis of
20 HO (or THO) shells.
The proposed FAM implementation allows fast calcu-

lations of monopole strength for all axially deformed nu-
clei throughout the nuclear chart. The implementation
of the method to higher multipolarity modes is straight-
forward, and is in progress. Another future development
is the extension of the method to very weakly bound
systems. Here, the precise description of the low-energy
non-resonant continuum will require the departure from
the currently employed HO (or THO) basis by using the
Gamow HFB approach [45].
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and by KAKENHI of JSPS (No. 21340073 and No.
20105003).



6

[1] A. Bohr and B.R. Mottelson, Nuclear Structure, Vol. I
(W.A. Benjamin, New York, 1969); Vol. II (W.A. Ben-
jamin, New York, 1975).

[2] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer Verlag, New York, 1980).
[3] D. Rowe, Nuclear Collective Motion, Models and Theory

(Mathuen, London, 1970).
[4] D.M. Brink and R.A. Broglia, Nuclear Superfluidity:

Pairing In Finite Systems (Cambridge Univ. Press, Cam-
bridge, 2005).

[5] J. Dobaczewski et al., Prog. Part. Nucl. Phys. 59, 432
(2007).

[6] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod.
Phys. 75, 121 (2003).

[7] D. C. Langreth and J.P. Perdew, Phys. Rev. B 15, 2884
(1977).

[8] F. Furche, J. Chem. Phys. 129, 114105 (2008).
[9] J. Dobson, in Time-Dependent Density Functional The-

ory, Vol. 706, p 443 (Springer, Berlin Heidelberg, 2006).
[10] J. Harl and G. Kresse, Phys. Rev. B 77, 045136 (2008);

Phys. Rev. Lett., 103, 056401 (2009).
[11] F. Weigend et al., Chem. Phys. Lett., 294, 143 (1998);

M. Fuchs et al., Chem. Phys., 122, 094116 (2005).
[12] D.L. Freeman and M.J. Karplus, Chem. Phys. 64, 2641

(1976).
[13] G.E. Scuseria, T.M. Henderson, and D.C. Sorensen, J.

Chem. Phys. 129, 231101 (2008).
[14] S. Tretiak et al., J. Chem. Phys. 130, 054111 (2009).
[15] F. Dönau, D. Almehed, and R.G. Nazmitdinov, Phys.

Rev. Lett. 83, 280 (1999).
[16] Y.R. Shimizu, P. Donati, and R.A. Broglia, Phys. Rev.

Lett. 85, 2260 (2000).
[17] K. Hagino and G.F. Bertsch, Nucl. Phys. A679, 163

(2000).
[18] W. Nazarewicz, Nucl. Phys. A557, 489c (1993).
[19] N. Hinohara et al., Phys. Rev. C 82, 064313 (2010).
[20] J. Terasaki and J. Engel, Phys. Rev. C 82, 034326 (2010).
[21] C. Losa et al., Phys. Rev. C 81, 064307 (2010).

[22] J. Terasaki and J. Engel, arXiv:1105.3817v1 (2011).
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