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Experimental details of a virtual Compton scattering (VCS) experiment performed on the proton at the 

MIT-Bates out-of-plane scattering facility are presented.  The VCS response functions P LL− PTT /ε  and 

P LT  have been measured at Q2= 0. 057 GeV 2 /c2 . The generalized electric and magnetic 

polarizabilities, ( )2Qα and, ( )2Qβ  and the mean square electric polarizability radius, 2
αr , are obtained 

from a dispersion analysis of the data. The results are in good agreement with )O(p3  heavy baryon chiral 

perturbation, and indicating the dominance of mesonic effects in the polarizabilities.  
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PACS numbers: 13.60.Fz, 14.20.Dh, 13.40.Gp, 13.40.-f,  

 

1. Introduction 

The topic of hadron polarizabilities has generated considerable theoretical and experimental 

interest [1].  Although the electric and magnetic polarizabilities of the proton, α and β , are known with 

reasonable accuracy from real Compton scattering (RCS) [2], very little is known about the distribution of 

polarizability density inside the nucleon. The dominant pion loop diagrams for the proton polarizability and 

the proton E.M. form factor are shown in Fig. 1.  The presence of an additional electromagnetic vertex in 

the polarizability diagram relative to the form factor diagram implies that the proton polarizability 

distribution will not be identical to the proton charge distribution. To measure a polarizability density it is 

necessary to use the virtual Compton scattering (VCS) reaction [3], where the incident photon is virtual.  

At low 2Q it has long been assumed [4] that the generalized electric polarizability, )α(Q 2 , 

should decrease monotonically with increasing Q2
with a length scale given by the pion range, where 

Q2
 is the 4-momentum transfer to the nucleon. By contrast, most theoretical predictions for the 

generalized magnetic polarizability predict that )( 2Qβ  should rise with increasing 2Q , and then decrease. 

The cancellation of negative long-range diamagnetism of the proton, due to the pion cloud, with the 

positive short-distance paramagnetism of the proton, due to the quark core, causes the predicted peaked 

behaviour for )( 2Qβ .  

RCS [2] and VCS experiments at Mainz [5] and JLab [6] did establish that )Q( 2α  is falling off 

with increasing Q2
, and that  )( 2Qβ  is relatively flat at low Q2

.  However, the Mainz data [5] and 

more recent data from Bates [7] at Q2= 0.057GeV 2
 suggests there is a peaking of )α(Q 2  in the 

region of 2GeV=Q 0.32 , a trend confirmed by new data from Mainz [8] at 2GeV=Q 0.332    In this 

paper the experimental details of a VCS experiment [7] performed on the proton using the out-of-plane 

scattering facility at the MIT-Bates Linear Accelerator are presented. The data were taken at sufficiently 
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low 2GeV=Q 0.0572  that the data have sensitivity to the mean square electric polarizability radius of 

the proton, as well as providing a test of chiral perturbation theory.   

2. The VCS reaction 

The relationship between VCS cross sections and the polarizabilities is most easily seen in the low 

energy expansion (LEX) of the unpolarized VCS cross section [3] 

)q(O),,,q(qdd 2
0

BornBH5VCS5 ′+φθεΦΨ′+σ=σ +                                           (1) 

where )q(q ′  is the incident (final) photon 3-momenta in the photon-nucleon C.M. frame, ε  is the photon 

polarization, )(φθ  is the C.M. polar (azimuthal) angle for the outgoing photon, and Φ  is a phase space 

factor. BornBH5d +σ  is the cross section for the Bethe-Heitler + Born amplitudes only, i.e. no nucleon 

structure, and is exactly calculable from QED and the nucleon form factors. The Bethe-Heitler and Born 

diagrams for the VCS reaction are shown in Fig. 2. The polarizabilities enter the cross section expansion at 

order )q(O ′  through the term 0Ψ , given by [9]  

)q(PV
)q(P

)q(PV),,,q( LT2
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where )(qPLL , )(qPTT , and )(qPLT  are VCS response functions. The response function )q(PLL is 

proportional to )Q( 2α , )q(PLT  is proportional to )Q( 2β  + spin-polarizability term, and )q(PTT  is 

proportional to spin-polarizability terms. The terms 1V  and 2V  are kinematic functions.  The Bates VCS 

experiment was designed to make an azimuthal separation of ε− TTLL PP  and LTP  by taking data  

simultaneously at °=θ 90  at the azimuthal angles φ = 90, 180 and 270 degrees.  At fixed θ  the VCS cross 

sections at °=φ 90  and °270 are equal and the kinematic function 2V  goes to zero. Therefore, the 

polarizability effect 0Ψ  is proportional to ε− TTLL PP . At °=φ 180  both 1V  and 2V  are non-zero, and 

the polarizability effect is proportional to a weighted sum of εPP TTLL /−  and LTP . All of the data were 

taken with 240=q  MeV/c, and 0.9=ε , which corresponds to 2GeV=Q 0.0572 .   At these 

kinematics the percentage of εPP TTLL /− that comes from )α(Q 2 is estimated [4] at 92%, with the 
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remainder coming from the spin-polarizabilities. The percentage of P LT  that comes from )β(Q2  is 

estimated [4] at 69%, with the remainder coming from the spin-polarizabilities.  Table 1 lists the incident 

beam energies and the corresponding C.M. final photon energies in the experiment.  At 43=q'   MeV/c 

the polarizability effect is negligible in the cross sections, and at 115=q'  MeV/c the polarizability effect 

is approximately 20%.  

3. The MIT-Bates VCS experiment 

This experiment was the first to use extracted high duty-factor beam from the MIT-Bates South 

Hall Ring. The extracted beams had duty factors of approximately 50%, with currents up to 7 Aμ . The 

target was a closed circulating loop of liquid hydrogen, where the liquid hydrogen circulated vertically in a 

1.6 cm diameter tube through the electron beam spot. The target cell wall was 4.3 mμ  thick havar in the 

region where the beam passed through the target cell wall.  

The full Out-of-Plane Spectrometer (OOPS) system with gantry was used for proton detection 

[10]. The OOPS proton detection system consists of four identical vertically bending dipole-quadrupole 

spectrometers. The gantry support system allows one OOPS to be positioned above the scattering plane and 

another OOPS to be positioned below the scattering plane. An additional OOPS was positioned in the 

scattering plane using a satellite support system.  The standard drift distance from the target to the OOPS is 

1.4 m. A new OOPS optics tune using a 2.5 m drift distance was developed for running at final photon 

energies 43=q' and 65=q' MeV/c because the OOPS were at angles so close together that they would 

mechanically interfere with each other at the shorter drift distance.  Data taken at higher 'q  used the 

standard 1.4 m drift for the OOPS.  

The standard OOPS trigger is a three-fold coincidence of three plastic scintillators in the OOPS 

focal plane, where the scintillators have thicknesses of 0.16 cm, 0.48 cm, and 0.48 cm. Since the lowest 

proton kinetic energy in the experiment was 30 MeV, there was concern that the protons might stop in the 

first two trigger scintillators, and for this reason, the OOPS trigger was modified to a coincidence of the 

first two scintillators in the OOPS focal plane. A GEANT simulation of the OOPS trigger predicts a trigger 

efficiency of approximately 99%.   
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The OHIPS electron spectrometer used a new focal plane [11] that increased the momentum 

acceptance of the spectrometer from 9% to 13%, which served to increase the acceptance in 'q . Beam-

optics studies were performed to measure OHIPS transport matrix elements over the extended focal plane 

instrumentation. A montecarlo based on the program Turtle [12] was used to calculate acceptance. The 

montecarlo utilized spectrometer matrix elements from the beam-optics studies, and the multiple scattering 

model [13] from GEANT4. Good agreement was achieved between measured and calculated angular and 

momentum distributions.  

The final state photon in the reaction was identified through missing mass and time-of-flight 

techniques. Because the duty factor of the beam was less than 100%, the experimental time-of-flight (TOF) 

distribution shown in Fig. 3 panel (a) does not exhibit the flat accidental distribution typically observed at 

high-duty factor facilities such as Jefferson Laboratory or MAMI at Mainz; in this case accidentals peak 

under the coincidence peak.  The first step in the analysis was to make an approximate subtraction of 

accidentals by cutting on the coincident peak in the TOF distribution. The coincident and accidental 

missing mass squared (MM
2

) distributions are shown in Figs. 3-b and 3-c, respectively. The result of 

subtracting the accidental 2MM  distribution from the coincident 2MM  distribution is shown in Fig. 3-

d, where the subtraction weighting factor is given by the timing widths of the accidental and coincident 

TOF bins.  The subtraction of accidentals at this stage is only approximate because the accidental events 

are peaked in the TOF distribution. The peak in the subtracted 2MM  distribution, shown in Fig. 3-d, 

contains the coincident VCS events, and the background under this peak contains unsubtracted accidentals 

and coincident p)XeA(e, ' events on the havar target cell wall.  Empty target runs were not taken because 

electron beam heating would have caused damage to the target cell wall. Photon yields were obtained by 

fitting the subtracted 2MM  distributions using a radiated, real-photon line shape calculated with the 

montecarlo, and an empirical background shape that accounts for both the unsubtracted accidentals and 

coincident target background events. Polynomial and skewed Gaussian shapes for the background gave 

identical yields within errors to a fit that used the accidental 2MM  distribution (see Fig. 3-c) for the 

background shape. For simplicity, the accidental 2MM  distribution was utilized for background fitting in 
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the subtracted 2MM  distribution, and Fig. 3-d shows a typical fit. Photon yields were obtained by 

subtracting the fitted background distribution from the accidentals subtracted 2MM  distribution, and then 

summing counts over the real photon peak. Radiative corrections were applied to the data [14], 

approximately 22% in these kinematics.  

The VCS cross sections are shown in Fig. 4 with the statistical and systematic errors combined in 

quadrature. The dominant errors are statistical for all of the VCS cross sections. The largest systematic 

errors in the cross sections are the OOPS tracking efficiency and the luminosity measurement, and these 

errors are presented in Table 2. The OOPS tracking efficiency is measured by taking the ratio of events 

with a good track in the OOPS drift chambers to the number of OOPS trigger events. The uncertainty in the 

tracking efficiency results from the statistical errors in these numbers. The luminosity measurement was 

limited primarily by uncertainties in subtracting pedestal charge from the measured Faraday Cup charge. 

The systematic error in the luminosity was estimated by calculating the ratio of the measured charge to the 

number of electron singles events in OHIPS for each data production run of approximate duration one hour. 

The standard distribution of the mean of these ratios over each VCS data set was taken as the uncertainty in 

the luminosity. Uncertainty in the incident beam energies, estimated at 0.1± % [15], introduces an 

uncertainty in the response functions and polarizabilities through the beam energy dependence of 

Born+BHσd 5 .  The fractional variation in Born+BHσd 5 due to the beam energy uncertainty, presented in 

Table 2, is comparable to the OOPS tracking efficiency uncertainty.  The cross sections with statistical and 

systematic errors are presented in Table 3. 

4. Low-Energy-Expansion Analysis of the data 

An analysis of the data was performed using the low-energy expansion (see Eq. 1). The dotted 

lines in Fig. 4 are the Bethe-Heitler+Born (BH+Born) calculations, i.e. no polarizability effect, using 

Hoehler form factors [16]. The agreement between data and the BH+Born calculation is good at low 'q , 

while at higher 'q  the out-of-plane data falls significantly below the calculation because of the destructive 

interference between the BH+Born and polarizability amplitudes. The in-plane cross sections show a much 

smaller deviation from the BH+Born cross sections at high 'q . This smaller deviation from the BH+Born 
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for the in-plane cross sections results from 1V  and 2V  in Eq. (2) having the same sign, and 

εPP TTLL /− positive and LTP  negative. Therefore the charge and magnetic polarizabilities interfere 

destructively at )O(q'  for the in-plane cross sections. Because of this cancellation the LEX analysis of the 

in-plane data for LTP  will not be reliable, and it will be necessary to use a dispersive analysis that includes 

all orders in q'
. 

The dashed lines in Fig. 4 are fits to the cross section data using the LEX analysis, i.e. Eqn. (1). 

These fits give 2
TTLL GeV±±=εPP −− 3.44.854.5/ , and 2

LT GeV±±=P −− 1.42.920.4 , with 

the first error statistical and the second error systematic. Systematic errors were propagated into the LEX 

analysis using a montecarlo technique, where the parameters in Table 2 are randomly varied within their 

limits, and the incident beam energy at each q'
 setting was varied within an uncertainty of 1.0± %. A 

LEX analysis was performed at each variation of parameters, the parameter variation and data fitting being 

repeated thousands of times.  The standard deviations of the resulting distributions for εPP TTLL /−  and 

LTP  were taken as the systematic errors in the response functions. A LEX analysis using the Friedrich-

Walcher form factors [17] gives identical results, within errors, to the analysis presented here using the 

Hoehler form factors 

The LEX result for εPP TTLL /−  is shown in Fig. 5 along with results from Mainz and Jefferson 

Lab, where the statistical and systematic errors have been combined in quadrature. Also shown in the figure 

is the parameter free )( 3pO calculation in heavy baryon chiral perturbation theory (HBChPT) [4], which 

is in good agreement with experiment for εPP TTLL /− .  The LEX result for LTP  is not shown in   Fig. 5 

because of the cancellation of the polarizability effect at )(qO ′  for the in-plane cross sections, which  

makes necessary a dispersive approach to extracting LTP  from the data.  

5. Dispersion Analysis of the Data 

A dispersion analysis of the data was performed using the VCS dispersion model [18].  The VCS 

amplitudes are obtained from the MAID Np πγ →*   multipoles [19], and unconstrained asymptotic 
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contributions to 2 of the 12 VCS amplitudes. For fitting VCS data a dipole anstatz has traditionally been 

used [18] to parameterize the asymptotic contributions,  

222

Nexp
2N2

)Q1(
)Q()Q(

α

π
π

Λ+
α−α=α−α                                                         (3) 

with a similar parameterization defined for )( 2Qβ . In this equation expα  is the experimental electric 

polarizability from RCS, πNα in the calculated πN  contribution to the electric polarizability at 02 =Q , 

and )( 2QNπα is the calculated Nπ  contribution to the electric polarizability at the experimental  2Q . 

The only free parameter in Eqn. 3 is αΛ . It is important to note that there is no loss of generality by using 

the dipole parameterization of Eqn. 3, and any 2Q  parameterization can be used. The parameters αΛ  and 

βΛ  are fit to the experimental cross sections at one 2Q  point, and the solid curves in Fig. 4 show the best 

dispersion fits to the VCS cross sections.  Once αΛ  and βΛ  have been fit to the data, the polarizabilities 

)( 2Qα and )( 2Qβ are obtained from Eqn. 3, and its generalization for the magnetic polarizability. The 

response functions εPP TTLL /− and LTP are found by summing the asymptotic terms with calculated 

πN dispersive contributions. 

The best fit response functions from the dispersion analysis are  

2
TTLL GeV±±=εPP −− 3.44.946.7/  and 2

LT GeV1.4±4.2±8.9=P −− , where the first error 

is statistical and the second is systematic. Since the sensitivities of the response functions to the systematic 

errors are approximately the same for the dispersion and LEX analyses, the systematic errors for the 

dispersion analysis are taken from the LEX monte carlo analysis. The fitted values for αΛ  and βΛ  are 

given in table 4, along with results from the Jefferson Lab dispersion analysis.  The Jefferson Lab 1-a 

analysis utilizes data taken below pion threshold, and the 1-b analysis utilizes data taken between one and 

two pion threshold.  

An alternate fitting procedure was also applied to obtain αΛ  and βΛ , where simulated events are 

distributed within the experimental acceptance using event weighting given by the dispersion analysis cross 
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sections. The number of accepted simulation events are compared with the experimental number of counts, 

and then αΛ  and βΛ  are varied to minimize chi-squared. The values of αΛ  and βΛ  obtained from the 

count based analysis, 0.13
0.08 0.53 ±  and 22.0

12.00.41±  , respectively, agree within errors with the cross section 

based analysis.  

The dispersion results for εPP TTLL /− and LTP  are shown in Fig. 5 with the statistical and 

systematic errors combined in quadrature. The figure shows that the dispersion result for εPP TTLL /−  is 

in near agreement with the LEX analysis and the HBChPT predictions.  The dispersion result for LTP  is 

also in good agreement with the HBChPT prediction.    

The dashed curves in Fig. 5 are the dispersion model calculations for εPP TTLL /− and LTP  

assuming the dipole choice of Eqn. 3 and fitted values of αΛ  and βΛ . By construction, the dispersion 

calculations go directly through the RCS and MIT-Bates data points. For LTP ,  there is relatively good 

agreement between the dispersion calculation and the JLab 1-a, 1-b, and Mainz data points. Based on this 

comparison, the dipole anstatz of Eqn. 3 appears to be a good approximation for representing )Q( 2β .  

Further evidence for this is seen in the βΛ  fit values shown in table 4, where the MIT-Bates and JLab 

results agree within their statistical and systematic errors.  For εPP TTLL /−  there is also relatively good 

agreement between the dispersion calculation and the JLab 1-a and 1-b data points; the fitted αΛ  values 

from MIT-Bates and JLab are in agreement. However, there is a significant gap between the dispersion 

calculation for εPP TTLL /−  and the Mainz data points, indicating that the dipole assumption of Eqn. 3 is 

a poor approximation in this intermediate Q2 range.   

The spatial dependence of the induced polarization in an external electromagnetic field has 

recently been calculated in the light-front frame [20]. By adding a Gaussian to the asymptotic term in Eqn. 

3 for )( 2Qα , the authors of [20] were able to obtain a good fit to the experimental data for 

εPP TTLL /− . The calculation of the induced polarization in a proton with definite light-cone helicity 

shows that without the Gaussian asymptotic term, the induced polarization becomes small at distances 
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beyond  0.5 fm, whereas with the Gaussian term there is a pronounced structure in the induced polarization 

at transverse distances of 0.5 to 1 fm.   

The dispersion model fit of the MIT-Bates data gives 3fm±±=α 4100.60)0.877.85( −× , 

and 3fm±±=β 4100.49)1.482.69( −× . These results are shown in Figs. 6a and 6b with the 

statistical and systematic errors combined in quadrature, along with previous results from RCS [2], Mainz 

[21] and JLab [6]. The MIT-Bates results for α  and β  are in near agreement with the HBChPT prediction, 

shown as the solid curves in Figs. 6a and 6b.  The theoretical errors for the HBChPT calculation of 

)Q( 2α and )Q( 2β  at 2GeV=Q 0.062  are estimated [22] to be comparable to the errors for an 

)O(p4 calculation [23] of α  and β ,  approximately 2.0±  and 3.6±  in units of 3fm410− , 

respectively.   

A fully dispersive analysis of the Mainz data [5] [8] for α  and β  is in progress, but not published 

[21], and the “Mainz 2000” points shown in Figs. 6a and 6b are actually derived from a LEX analysis of 

the first Mainz VCS experiment [5].  In that analysis the proton spin-polarizabilities were calculated using 

dispersion theory, and the spin-polarizability contributions were subtracted from the LEX response 

functions [21].  We performed a similar analysis using the new Mainz response functions [8], and the 

polarizabilities obtained are 3fm±±=α 4100.980.628.22 −× and 

3fm±±=β 4101.150.373.55 −× .  These results are shown in Figs. 6a and 6b as “Mainz 2008” data 

points.  

The dashed curve in Figs. 6a and 6b is a dispersion model calculation using the same αΛ  and βΛ  

parameters as the calculation shown in Fig. 5. The dotted and dash-dotted curves are the πN and 

asymptotic contributions to the polarizabilities, respectively. Fig. 6b shows that the πN  term from the 

)1232(Δ resonance is paramagnetic (positive), whereas the asymptotic contribution is diamagnetic 

(negative). The dispersion calculation for α  falls significantly below the Mainz data points at 

22 /0.33 cGeV=Q 2 , while the dispersion calculation for β  is in relatively good agreement with the 

Mainz and JLab I-a data points.  
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6. Mean-square polarizability radii 

The mean square electric polarizability radius 2
αr    is given by, 

( )
0Q

2
2exp

2
2
α

2

Q
dQ

d6=r
=

α
α
−                                                   (4) 

2
αr   was determined using the dispersion analysis fit to the experimental data,  where )Q( 2α is given 

by Eqn. 3., with αΛ fixed by the fit to the experimental data, and )( 2QNπα given by the dispersion 

calculation. Evaluating Eqn. 4 using the functional form of )Q( 2α given by Eqn. 3 gives 

2+
α fm=r 0.39

0.59
2 2.02− , which is in good agreement with the HBChPT prediction [24] of  2fm1.7 . The 

error is statistical only. The experimental value is significantly larger than the proton mean square charge 

radius [25] of 2fm± .0140.757 , showing that mesonic effects are the dominant effect in describing the 

electric polarizability. It is interesting to note that the experimental mean-square radius is in good 

agreement with an uncertainty principle estimate for the size of the pion cloud, 

( ) 222 fm2mcr =>≈< π . The dominant pion loop diagrams for the proton form factor and the 

proton polarizability are shown in Fig. 1. The additional electromagnetic vertex in the polarizability 

diagram relative to the form factor diagram serves to increase the range of the interaction by approximately 

70% as compared to the charge form factor.  

Mean-square electric and magnetic polarizability radii are presented in Table 5.  Also shown in the 

table are mean-square radii for the πN and asymptotic contributions to the polarizabilities. Because the 

error on the MIT-Bates )Q( 2β  is large compared to expβ , the data doesn’t place a useful constraint on 

2rβ .  The mean-square radii for the asymptotic and πN contributions to )( 2Qα are approximately 

equal, and are close to 2fm0.1 .  Although errors in the mean-square radii for the asymptotic (diamagnetic) 

and  πN (paramagnetic) contributions to )Q( 2β are relatively large, there is a suggestion in the data that 
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the diamagnetic mean-square radius is larger than the paramagnetic mean-square radius, which supports a 

conceptual view of the proton as having long-range diamagnetism, due to the pion cloud, and short-distance 

paramagnetism, due to the quark core.  

 

7. Summary and  conclusions 

The experimental results are summarized in Table 6. Because of the cancellation of the 

polarizability effect at )(qO ′  for the in-plane cross sections, the LEX result for LTP  is not shown in 

Table 6. The MIT-Bates VCS experiment supports two strongly held concepts about the proton 

polarizability. The first is that the electric polarizability is dominated by mesonic effects. This is confirmed 

by the large size of 2
αr relative to the proton charge radius. The second is the cancellation of 

paramagnetism by diamagnetism in the proton, a conjecture that is critical in all explanations of the small 

size of β  relative to α , since in HBChPT the sizes of the polarizabilities are predicted to be of the same 

order. Because paramagnetism from the Δ (1232) resonance is predicted to be nearly independent of 

Q2
in this low Q2

 range, the predicted paramagnetic-diamagnetic interference will also have a relatively 

flat dependence on Q2
.  The data does indicate that )β(Q2 is relatively flat as a function of Q2

, in 

agreement with the HBChPT prediction.   

The data for εPP TTLL /−  and )Q( 2α  show that )α(Q 2  does not have a monotonic, dipole-like 

dependence over the
2Q  interval from 0.05 to 1 2GeV . This is a wholly unanticipated discovery, at odds 

with what has long been known about the 
2Q behavior of the proton charge and magnetic form factors.  A 

fit to the data for εPP TTLL /−  using a light-front calculation [20] indicates that there is pronounced 

structure in the induced polarization at transverse distances of 0.5 to 1 fm, whereas the traditional dipole 

anstatz of Eqn. 3 gives no structure at transverse distances beyond 0.5 fm. 

With the closing of the MIT-Bates Linear Accelerator for experimental nuclear physics, the Mainz 

accelerator is the only remaining facility world-wide that is suitable for VCS studies at low to medium 
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Q2
.  A new program of studies at Mainz to measure the unpolarized VCS response functions 

εPP TTLL /−  and P LT  over the interval from Q2= 0.1  to 0.5 GeV 2
will be essential to pin down 

the behavior of )α(Q 2 and )β(Q2 in this interesting region.    



 

TABLE 1. VCS kinematics. )(EE fi  is the incident(final) electron energy in MeV, eθ is the 

laboratory electron scattering angle in degrees, and )q(q'  is the incident(final) photon C.M. 

three-momentum in MeV/c. The angle θ  is the C.M. polar angle between 'q  and q in degrees, 

and φ  is the azimuthal angle of the outgoing photon in degrees. Angles are shown for the in-

plane, below-plane and above-plane OOPS’s.  

Electron Scattering Kinematics In-plane Below-plane  Above-plane 

iE  fE  eθ  q 'q  θ  φ  θ  φ  θ  φ  

568.3 493.7 25.77 237 43 108.6 180.0 123.9 62.4 123.9 297.6 

610.4 510.8 24.52 240 65 90.0 180.0 90.0 90.0 90.0 270.0 

632.4 511.6 23.64 240 84 90.0 180.0 90.0 90.0 90.0 270.0 

651.2 512.3 22.76 240 100 90.0 180.0 90.0 90.0 90.0 270.0 

669.2 513.0 21.82 240 115 90.0 180.0 90.0 90.0 90.0 270.0 

 
 
TABLE 2.  Systematic errors. The first column gives the final photon C.M. momentum. The 

second and third columns are the percent uncertainties for the OOPS tracking efficiencies, and the 

fourth column is the percent uncertainty in luminosity.  The last two columns show the percent 

uncertainty in the Bethe-Heitler + Born cross section assuming ± 0.1 % uncertainty in the incident 

beam energy.  The units of φ are degrees.  

'q  
(MeV/c) 

Oops Tracking Eff. 
Uncertainty (%) 

Luminosity 
Uncertainty (%) 

Born+BHσd 5 (%) 

 180=φ  90=φ  270=φ 180=φ 90=φ 270=φ 180=φ  90,270=φ
43 2.2 2.5 3.2 0.14 0.37 0.65 1.6 1.8 

65 1.9 1.5 1.4 0.32 1.1 1.1 

84 2.5 1.9 1.7 0.42 1.0 1.1 

100 0.9 0.7 0.7 0.23 0.9 0.9 

115 0.9 1.3 1.3 0.20 0.7 0.8 



 

TABLE 3.   VCS cross sections in units of ( )2srGeVnb ⋅/ . The errors are statistical and 

systematic, respectively. The units of φ are degrees.  

'q  
(MeV/c) 

180=φ  90=φ  270=φ  

43 5.73 ± 0.29 ± 0.16 10.68 ± 0.50 ± 0.33 11.48 ± 0.64 ± 0.42 

65 2.19 ± 0.18 ± 0.05 5.53 ± 0.18 ± 0.10 5.34 ± 0.21 ± 0.10 

84 1.61 ± 0.13 ± 0.04 3.95 ± 0.17 ± 0.09 3.95 ± 0.14 ± 0.08 

100 1.16 ± 0.06 ± 0.02 2.86 ± 0.07 ± 0.04 2.87 ± 0.08 ± 0.04 

115 0.99 ± 0.05 ± 0.01 n/a 2.32 ± 0.16 ± 0.04 

 
 

TABLE 4. Fitted values for αΛ  and βΛ  from VCS dispersion analyses in units of GeV.  The 

errors shown for this experiment are statistical only; errors shown for the JLab I-a and I-b analyses 

are statistical and systematic, respectively.  

Experiment αΛ   βΛ  

MIT-Bates 0 . 60± 0.17
0 .11  0 . 51± 0 .39

0 . 15  

JLab I-a 0.741 ± 0.040 ± 0.175 0.708 ± 0.041 ± 0.114 

JLab I-b 0.702 ± 0.035 ± 0.037 0.632 ± 0.036 ± 0.023 

 

TABLE 5.  Electric and magnetic mean square radii. The radii have unit of 2fm . The errors 

are statistical only. 

 2
αr  2

βr  
Full Dispersion 

0.39
0.592.02+

−  36.5
13.044.67- +

−  

Asymptotic 
0.38
0.581.03+

−  17.6
40.138.42- +

−  
πN  0.99±0.05 3.76±1.65 

 
 



 

 
TABLE 6. VCS response functions, polarizabilities, and electric polarizability mean square radius.  

The response functions have units of 2GeV − , polarizabilities have units of 3fm410− , and the 

mean square radius has units of 2fm . The errors are statistical and systematic, respectively. 

Observable LEX analysis Dispersion analysis HBCHPT [4]  

P LL− PTT /ε  54.5 ± 4.8 ± 3.4 46.7 ± 4.9 ± 3.4 56.9 
P LT   -8.9 ± 4.2 ± 1.4 -6.5 

)=α(Q .0602   7.85 ± 0.87 ± 0.60 9.27 

)=β(Q .0602   2.69 ± 1.48 ± 0.49 1.59 
2
αr   0.39

0.592.02+
−  1.7 
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Fig.1. Dominant pion loop diagrams for (a) the proton polarizability, and (b) the proton 

electromagnetic form factor.  

(a) (b) (c)

 

Fig. 2. Feynman diagrams for the VCS amplitude. Figure (a) shows the structure dependent, 

non-Born term, figure (b) the Bethe-Heitler amplitudes, and figure (c) the Born amplitude.  

 

 



 

 

Fig. 3. Panel (a) shows the time-of-flight (TOF) distribution between the detected electron and 

proton. Panels (b) and (c) show the missing-mass squared ( 2MM ) distributions cut on the 

coincident peak and the accidental portions of the TOF distribution, respectively. Panel (d) shows 

the result of subtracting the distribution in panel (c) from the distribution in panel (b), where the 

weighting factor is given by the timing widths of the accidental and coincident TOF bins. The 

curves in panel (d) show peak and background fitting to the subtracted 2MM  distribution, as 

explained in the text.  
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Fig. 4. VCS cross sections as a function of average 'q . The dotted curves are Bethe-Heitler + 

Born, the dashed and solid curves are fits with LEX and dispersion analyses, respectively.  



 

 

Fig. 5. VCS response functions from this experiment, RCS [2], Mainz 2000 [5], Mainz 2008 [8], 

and JLab [6]. The solid curves are )O(p3  HBChPT [4] with 0.9=ε .  The dashed curve is a 

dispersion model calculation that is fit to the RCS and MIT-Bates data points.  
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Fig. 6. Panels (a) and (b) show results for )α(Q 2
 and )β(Q2 , respectively. The references are 

the same as in Fig. 5 except for Mainz [20]. The solid curves are )O(p3 HBChPT [4].  The 

dashed curve is the full dispersion calculation that is fit to the RCS and MIT-Bates data points. 

The dotted and dash-dotted curves are the πN and asymptotic contributions to the dispersion 

analysis fit,  respectively.  

 


