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Heavy ion collisions at RHIC are well described by the (nearly ideal) hydrodynamics for average
events. In the present paper we study initial state fluctuations appearing on an event-by-event
basis, and the propagation of perturbations induced by them. We found that (i) fluctuations of
several lowest harmonics have comparable magnitudes, (ii) that at least all odd harmonics are
correlated in phase, (iii) thus indicating the local nature of fluctuations. We argue that such local
perturbation should be the source of the “Tiny Bang”, a pulse of sound propagating from it. We
identify its two fundamental scales as (i) the “sound horizon” (analogous to the absolute ruler in
cosmic microwave background and galaxy distribution) and (ii) the “viscous horizon”, separating
damped and undamped harmonics. We then qualitatively describe how one can determine them
from the data, and thus determine two fundamental parameters of the matter, the (average) speed of
sound and viscosity. The rest of the paper explains how one can study mutual coherence of various
harmonics. For that one should go beyond the two-particle correlations, to three (or more) particles.
Mutual coherence is important for the picture of propagating sound wave.

PACS numbers:

I. INTRODUCTION

Starting the introduction, let us note that the issues to
be discussed in this paper are somewhat similar in nature
to current trends in cosmology of the last decade, which
made it a really quantitative science. The sound horizon
scale has been seen on the sky, in correlations of cosmic
microwave background temperatures and in locations of
the galaxies.

Experimental data obtained in heavy ion collisions at
the Relativistic Heavy Ion Collider (RHIC) have found
the “Little Bang”, a hydrodynamical explosion driven
mostly by pressure of the new form of matter, Quark-
Gluon Plasma. Their experimental data for radial and
elliptic flows has been compiled in the so called “white pa-
pers” of RHIC experiments [1–4] in 2004, and compared
with predictions of relativistic hydrodynamics. The mod-
els which implemented freezeout via hadronic cascades
[5–7], as originally suggested in [8], were found to be es-
pecially successful. Very recent results from the Large
Hadron Collider (LHC) on elliptic flow [9] also turned
out to be in agreement with hydrodynamical predictions,
suggesting that QGP remains a good liquid even at LHC
(see e.g. [10]). Dissipative effects from the QGP viscosity
provide only small corrections at the few percent level,
see [11–13]. So, by now, we have quantitative overall
description of the “Little Bang”.

This paper is about small deviations from this aver-
age behavior. Such perturbations of the average explo-
sion can come from at least two different sources. The
one which we will study in this paper is due to quantum
fluctuations in the wave function of the colliding nuclei,
which creates “bumpy” distributions of matter, for any
collision, which one can decompose into a smooth average
plus local perturbations.

The smallness of the perturbation amplitude, with re-
spect to the local density of ambient matter, would sug-
gest the appearance of divergent sound waves, see Fig.1.
Similar to the circles from a stone thrown into a pond,
hydrodynamics tells us that initial perturbations should
become moving waves, with basically nothing left at the
original location at later time. This is the picture we are
going to work on in this paper.

Another one, to be studied in subsequent papers of
this series, are created by the energy deposited by jets
propagating through the medium. It has been recently
dramatically shown by the ATLAS collaboration [14] that
even jets with energy above 100GeV deposit large part
of their energy, and sometimes all of it, into the medium.
The first ideas were to look at the resulting perturba-
tions in the form of a Mach cone [15], driven by the view
that the energy is deposited more or less homogenously
along the jet path. However more recent developments
of the theory, based on AdS/CFT, have lead to the view
that the deposited energy grows rapidly with the dis-
tance travelled by the jet, with significant deposition at
the end point. Thus one may think of the second kind
of the “Tiny Bangs”, this time occurring in between the
beginning and the end of the “Little Bang”. Obviously
those should lead to sound circles of smaller absolute and
angular sizes.

An alternative idea, of randomly fluctuating shapes of
the produced initial fireballs, has resulted in an approach
in which different angular harmonics of that distribution
are treated separately. The realization that even central
~b = 0 collisions may have some fluctuating ellipticity has
lead to the discussion of the elliptic flow event-by-event
fluctuations, see [16] and many subsequent works. The
so called “triangular flow” related to the fluctuations in
the 3-ed harmonic of the flow has been recently studied
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FIG. 1: A sketch of the transverse plane of the colliding sys-
tem: the two concentric circles are the nuclear radius (inner)
and the final radius of the fireball (outer). The black spot in
the upper figure is an extra density due to initial density fluc-
tuations. The small perturbation becomes a circle of a sound
wave, which will be stopped at freezeout at thick circle (dis-
torted by radial flow). The part outside of the fireball does
not exist: the corresponding matter will actually be placed
near the edge of the fireball (thick dashed line). The angle
between the two thin lines corresponds to the angle between
two peaks in the resulting angular distribution.

in an important paper by Alver and Roland [17], with
many groups working in this direction now.

The main difference between our approach and that
is that we treat such fluctuations not as independent
(Gaussian) noise in different harmonics but as certain
local perturbations, resulting in certain evolving sound
fronts, reaching certain size, shape and diffusivity by the
moment of freezeout. In other words, we think that var-
ious harmonics are mutually coherent. One of the main
goals of this paper is to explain how this coherence can
be tested experimentally. We will also provide evidences
(based on Glauber model of the perturbations) that such
mutual coherence is present in this model.

(On one hand, one may argue that as soon as all the
perturbations are small and the equations are linear, it
is not important if one expands in harmonics before or
after the solution of hydro equations. So the solution to
hydro we will discuss in our next companion paper [18]
can be used for both “noise” and coherent scenarios.)

Let us also briefly recall the history of the theory ef-
forts. The propagation of sound on top of the fireball has
been discussed by J.Casalderrey-Solana and one of us in
[19]. In that paper the fireball expansion was modelled
by the Big-Bang-like overall expansion of the space, with
the same Friedman-Robertson-Walker metric as used for
cosmology. The focus of that paper was the effect of time-
dependent sound velocity, especially if the phase transi-
tion is 1st order and it can vanish at some interval of T .
The interesting finding was the creation of the secondary

– and convergent – sound waves. This idea was further
discussed in [20] in connection with the “soft ridge” is-
sue, but with the conclusion that if the current lattice
data on the speed of sound is correct, the effect of the
reflected wave is too small.

In the same paper [20] it has been found that the usual
(unreflected) sound propagation should produce charac-
teristic “two-peak events”, with the angle between the
peaks reflecting the sound horizon and numerically being
about 1 radian. More specifically, this angle corresponds
to the angle at which two intersections of the fireball
boundary are seen from the fireball center. The Brazil-
ian group [21] has independently found such peaks with
the same angle, induced by a local perturbation. An-
drade et al have further pointed out that the two-peak
events lead to a three-peak correlation function, with the
side peaks separated by twice larger angle ∼ 2 rad. This
observation explained what has been found earlier, in the
average over many events, in “event-by-event” hydrody-
namical studies by the Brazilian group (see [22] and ref-
erences therein) and Werner et al [23]. Good agreement
between the shapes of the correlation function in “event-
by-event” pictures and single local perturbation indicate
that the former are more or less linear superpositions of
the latter ones.

Completing this introduction, let us note that this pa-
per was completed and submitted to archive in Aug.2010,
but it was submitted to PRC in June 2011 together with
its companion paper [18]. During this time there were ob-
viously many papers devoted to the subject. In particu-
larly, Glauber model predictions for several harmonics εn
and their root-mean-square fluctuations have been calcu-
lated independently several times. Qin et al. [24] paper
is an example, which also considered the influence of in-
elasticity fluctuations of the p+p reaction on the initial
density fluctuations. Significant experimental progress
resulted now in measurements of higher harmonics till
n = 9, by all five collaborations at RHIC/LHC. Yet the
main suggestion of this work – the measurements of the
mutual phases of those harmonics – still remains to be
done in the future.

II. SETTING UP THE PROBLEM

A. The main scales of the problem

Before going to specifics, let us formulate the prob-
lem in a more general form. Two generic scales of the
hydro approach are (i) the macroscopic scale R and the
microscopic scale l, being in the relation

l� R (2.1)

which ensures such macroscopic tools as thermo and hy-
drodynamics should work.

Now let us define two new scales. The first is the sound
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horizon

Hs =

∫ τf

τi

dτcs(τ) (2.2)

where the integral is taken from the formation of the hy-
dro system to its freezeout time. While in the Big Bang
τf ∼ 100000 years, in the Little Bang it is only ∼ 10 fm.
It is important, that in both cases at the freezeout the col-
lisions cannot support pressure any more, yet the sound
wave does not disapper: it just stops, and thus can be
observed. For the Big Bang this idea was suggested by
Sunyaev and Zeldovich 30 years ago [25]: who called the
sound horizon to be the “standard ruler” of the Universe.
Its current value, Hs ≈ 150 Mps, as seen in galaxy’s dis-
tribution and in CMB correlations, is excellent way to
measure the Hubble constant and lifetime of the Uni-
verse.

In the cosmology such scale corresponds to angles of
about 1 degree and thus l ∼ 200. In the Little bang we
deal with about 1 radian and m ∼ 3.

The second scale (not important in cosmology), which
we would like to call “the viscous horizon scale” Rv, sepa-
rates the wavelengths of the sound which are and are not
dissipated by the viscosity effects. The smooth fireball
and fluctuations are described by

Tµν = T̃µν + δTµν (2.3)

The textbook dispersion law for the sound, including the
viscosity term, is

ω = csk −
i

2

4η

3s

k2

T
(2.4)

The Fourier transform puts it into momentum form,
after which one can solve the time dependence using the
momentum-dependent dispersion relation as well as the
imaginary part induced by viscosity.

(One may add bulk viscosity to this expression as well,
but we keep the shear viscosity for now, assuming it is
dominant.)

δTµν(t) = e−
2
3
η
s
k2t
T +ik(x−tcs)δTµν(0) (2.5)

The first term in the exponent defines the new viscous
survival scale: harmonics with k � kv would be affected
little, and with k � kv be killed. The definition of this
scale is clear from the exponent

kv =
1

Rv
=

√
3Ts

2τfη
(2.6)

While the sound horizon determines the size of the
sound circles at freezeout, the viscous one determines
their width. Note that while the former increases lin-
early with time Hs ∼ t, this width Rv ∼

√
t. So, al-

though the spheres become more diffuse, they are also
relatively sharper as time goes by.

t=0

t=t f

FIG. 2: The two upper pictures correspond to initial time
t = 0: the system has almond shape and contains perturba-
tions (black spots). The two lower pictures show schemati-
cally location and diffuseness of the sound fronts at the freeze-
out time tf . The arrows indicate the angular direction of the
maxima in the angular distributions, 2 and 3 respectively.

(One may also ask a very good question how early hy-
drodynamical description of the perturbations may be
valid. We will not go into its discussion here, and only
state that the applicability limits of Navier-Stokes hy-
drodynamics is not determined by the kv scale, but by
the magnitude of the higher order terms in gradients,
resummed. The last word is added because of the issue
of alternating sign of the series, raised in “universal re-
summed hydrodynamics” paper [26]. For the last works
on the subject in the ads/cft context see e.g. [27], in
which the convergence of large class of non-equilibrium
evolutions to such universal behavior is indeed demon-
strated and its applicability limits discussed quantita-
tively.)

How can one measure the two scales, Hs and 1/kv,
defining the speed of sound and viscosity, experimentally?
One may change the geometry of the collision (by cen-
trality) and the size of the nucleus (by changing the beam
A), but an even better way is by observing many angular
harmonics of the flow. Note that the amplitudes of the
higher harmonics are damped by viscosity more, so, if
measured, they would provide a measure of the viscosity.

For central collisions at RHIC/LHC the hierarchy re-
lation between all those four scales is

R ∼ Hs > Rv > l (2.7)

As some representative numbers let us mention
8, 6, 1, 1 fm (at freezeout), respectively. However for mid-
central collisions the width (the shorter size) of the “al-
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mond” Rx becomes comparable or smaller than Hs. As a
result, one expects the sound wave to traverse the whole
fireball and deposit some amount of (entropy) density to
its opposite side. In this case one expects 3-peak events:
see Fig.2 for explanation. So, one of our suggestions to
experimentalists is to study the centrality at which cer-
tain changes in harmonics amplitudes and phases may
occur.

III. THE INITIAL STATE FLUCTUATIONS

A. Generalities

Let us start with a comment on what we would call
the “initial state”. This term is currently used in at least
three different settings:
(i) The wave function of the colliding nuclei, expressed
either in terms of the nucleons (their positions in the
transverse plane just prior to the collisions) or in terms
of partonic degrees of freedom (positions and longitudi-
nal momenta). Another version of it is the “Color Glass
Condensate” (CGC) described as an ensemble of classi-
cal gauge fields.
(ii) The state just after the (Lorentz contracted) nuclei
passed each other. It is either the partonic state, includ-
ing partons newly produced in a collision; or the so called
GLASMA, in the classical field description.
(iii) The state after approximate equilibration is reached,
so that macroscopic (hydrodynamical) description can be
started.

It is the last one which we mean in this work, as we
would apply hydrodynamics as a tool, translating prop-
erties of the initial conditions into the final state observed
in the experiment. Therefore our “initial state” should
correspond to about one unit of the relaxation time af-
ter the actual collision, or numerically at a proper time
of the order of 1/2 fm/c. Thus the inhomogeneity of the
initial wave functions should be already smoother than at
time zero, by this (so far poorly understood) relaxation
process.

As we detail below, this state will be described by some
“average” or zeroth-order shape of the fireball (depending
of course on the impact parameter, the colliding nucleus
and the collision energy), plus “fluctuations” character-
ized in the first order by an ensemble of small pertur-
bations of the average shape described by Fourier coef-
ficients and phases {εn, ψn}. Generic expressions would
include the zeroth order ensemble-average deformations
< εn > and deviations which have no average but fluctu-
ations δε2n =< ε2n > − < εn >

2.
The simplest situation, happening for the second har-

monics and sufficiently peripheral collisions, is that the
average is much larger than the fluctuations, < ε2 >�
δε2. If so, one may assume Gaussian form of the fluctu-
ations with the width given by δε2. But in general the
situation is quite different, the odd harmonics are always
due to fluctuations and also, for near central collisions,

for all n both terms in εn come from fluctuations. Till
n < 10 they are comparable in magnitude εn ∼ 1/10 with
wide fluctuations. (The distributions are obviously non-
Gaussian because they are all positive by definition.) All
of those should in principle be provided by some “initial
state models”, of which we select Glauber model as the
simplest example.

The separation of the initial state fluctuations from all
other fluctuations (e.g. fluctuations during the hydro-
dynamical evolution, hadronization and the freezeout) is
possible because of the fundamentally different number of
relevant degrees of freedom defining their magnitude. As
we will detail in the next section, the so called Glauber
fluctuations due to various number of “wounded” (or par-
ticipant or interacting) nucleons are of the order of

εn ∼
1√
Np

(3.1)

where the number of the participant nucleons Np ∼
O(100), being limited from above by the total nucleon
number 2A ∼ 400.

Further fluctuations are determined similarly, but with
the number of participants Np substituted by the much
larger number of partons involved, or the total multiplic-
ity Nhadrons ∼ 104 (for RHIC and LHC it is factor 2
different). That is why one may, to certain accuracy,
ignore all later-time fluctuations and assume that ob-
servable fluctuations in particle spectra and correlation
functions are one-to-one translated from the initial state
ensemble. Thus we use hydrodynamical equations as a
fully deterministic tool, by itself producing no random
numbers at all.

Furthermore, for near-central collisions all δεn are
small, of the order of several percents. So, independently
of their possibly complicated distributions and cross cor-
relations, the hydrodynamics applied in linear approxi-
mation should be quite reliable tool. Thus hydro equa-
tions can be linearized and the linear response coefficients
δvn/δεn calculated. If so, it does not matter what the
actual magnitude of the deformation δεn is. Also the
linearized perturbations do not interact with each other.

Although we will focus on those calculations in our
next paper, let us note here two things. One simple fact is
that while angles ψn of the fireball deformations indicate
the maxima of the distribution (the corners of triangle,
square and other polygons), hydro flow goes along their
sides. Therefore the observed flow angles ξn are rotated
from the deformation angle as follows

ξn = ψn +
π

n
(3.2)

Our second comment is that higher harmonics n os-
cillate with time, displaying acoustic sound properties.
At freezeout this leads to their certain signs, and these
phases should be added to this relation as well.
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B. Fluctuations in the Glauber model: the
amplitudes

Our “Glauber model” is a bit different from that used
widely by experimentalists. Both assume that initial
state fluctuations originate from the nuclear wave func-
tions. The “usual Glauber” uses randomly placed coordi-
nates of the individual nucleons in the nuclear wave func-
tion. However, the nucleons themselves are complicated
objects and their interactions are also strongly fluctuat-
ing: since there are studies of that we decided to include
this source of fluctuations also. This changes numbers
a bit, but was found not to be important for any of the
qualitative conclusions to be reached.

The nucleon fluctuations we included via the fluctu-
ating NN cross sections are to a certain degree known
and studied via diffraction, see [28] for the details and
earlier references. Naively, from the well known fact of
a nucleon being made of quite a large number of par-
tons one might conclude that those fluctuations are small,
O(1/Npartons): but this is not the case. In our simula-
tion we have assumed the cross section σNN to be the
random Gaussian variable with the variance

wNN =
< σ2

NN > − < σNN >2

< σNN >2
≈ 0.25 (3.3)

First, like in [17], we simulate a large ensemble of col-
lisions and calculate the magnitude of the εn for several
lowest harmonics (up to 6). Their definition is via the
Fourier expansion for a single particle distribution

f(φ) =
1

2π

(
1 + 2

∑
n

εncos(n(φ− ψn))

)
(3.4)

where the εn are the participant anisotropies and the ψn
are the angles between the x axis and the mayor axis of
the participant distribution.

The participant anisotropies are calculated from

εn =

√
〈rn cos (nφ)〉2 + 〈rn cos (nφ)〉2

〈rn〉
(3.5)

This expression is calculated in the center of mass of the
participant nucleons for each event. Therefore the dipole
moment n = 1 made out of the average coordinates

< x >= 〈r cos (φ)〉 = 0, < y >= 〈r sin (φ)〉 = 0 (3.6)

are zero by definition.
The 2-d shape of the event can in principle be ex-

panded in the double Taylor series in x, y or in double
series over moments rmcos(nφ), rmsin(nφ) with integer
m,n. An even better definition would be to follow the
customary statistical trick and write the distribution as
the exponent containing the “generating function” of the
angular dependence expended in harmonics

P = F1(r)exp(F2), F2 =
∑
n>0

rnεncos(n(φ− ψn) (3.7)
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FIG. 3: Average anisotropies (a) and their variations (b), as a
function of centrality expressed via the number of participants
Npart

In this way the positivity of the distribution function, as
well as inclusion of trivial higher order effects are ensured.

Since the dipole m = n = 1 term is zero by construc-
tion, we define the first odd deformation ε1, ψ1 using the
term of the expansion m = 3, n = 1 which appears to-
gether with the triangular deformation m = n = 3

ε1 =

√
〈r3 cos (φ)〉2 + 〈r3 cos (φ)〉2

〈r3〉
(3.8)

The anisotropies calculated in this way are plotted in
figure 3 for n = 1, 6. The plot shows that the eccen-
tricity has the largest value for the well known elliptic
deformation ε2 and a nonzero value of triangularity ε3,
in agreement with the results reported in [17]. Note that
for the near-central collisions Npart > 300 the elliptic
deformation is no longer dominant, and it is also due
to fluctuations. This conclusion becomes evident as one
looks at the lower plot in Fig.3, which shows the varia-
tions of these εn.

One observation coming from these results is that all
other deformations (except for ε1, small because the “true
dipole” remains zero) are all comparable, ranging from
O(1/10) for central collisions to 0.3 -0.5 for most periph-
eral ones. While in the central bins these perturbations
can be considered small and treated as Gaussian random
variables, it is clear that for most peripheral bins (when
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the number of participants is smaller) the fluctuations
are large and thus must be non-Gaussian.

Another consequence is that there is absolutely no
ground to single out ε3: in fact both ε4 and ε5 are larger
that ε3 and ε6 is about of the same order as ε3.

The last point is that their variations (the lower plot)
are all comparable to the magnitude. Yet the definition
of deformations are such that they are always positive, for
each event. This is one more reason why the amplitudes
cannot have Gaussian distribution, deviating from it at
least for the smallest values.

C. Fluctuations in the Glauber model: the angles

The angles ψn are defined by:

tan (nψn) =
〈rn sin (nφ)〉
〈rn cos (nφ)〉

(3.9)

and to calculate ψ1 we use:

tan (ψ1) =

〈
r3 sin (φ)

〉
〈r3 cos (φ)〉

(3.10)

Using these expressions we obtain the distribution of the
ψn’s for the first six harmonics as shown in Figs 4, 5. In
order to better understand the behavior of these angles
we will now study their correlation.

(Note that our angle definition is different from the one
by Alver-Roland [17]: we do not include extra phase π/n
between the flow and deformation directions, see below.)

Let us comment on these distributions, starting from
the even ones.

The most obvious one is a distribution of the sec-
ond (elliptic) harmonic: as seen in Fig.4 the angle ψ2

is strongly peaked at π/2, corresponding to an elonga-
tion of the system in the y direction, as of course one
expects from the overlap “almond” of two nuclei. The
distribution of the 4-th angle ψ4 in Fig.5 shows peaks
at angles 0 and π/2: but since quartic symmetry of the
4-th harmonics it simply means that the maxima of the
distribution tend to be aligned with the coordinate axes
x and y. The distribution of the 6-th harmonics is dif-
ferent: it is peaked at the angle π/6. This means that it
has no maximum at x direction but rather in y. In con-
clusion, all even harmonics are strongly correlated with
the reaction plane, all of them producing maxima along
the y (out-of-plane) direction.

The distribution of the angle ψ1 is nonzero at all angles,
which means it is not very strongly correlated with the
reaction plane. It has two maxima, at ±y directions, to
be called “tip” fluctuations. Although the contribution
from angles 0, π or x-directions is about twice smaller,
it also makes an important contribution: we will call it
“waist” fluctuations. Note that while the area of the
“waist” is larger than “tips”: and yet its contribution is
smaller.
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0

100

200

300
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Ψ3HradL
FIG. 4: Distribution of the angles ψn for the first three har-
monics, the centrality bin used is 100 < Npart < 300.

The distribution over ψ3, ψ5 in these figures looks com-
pletely uncorrelated with the reaction plane. (This fact
has also been noticed in [17] and by others.) However,
further scrutiny shows that they are in fact well corre-
lated with ψ1, see Fig. 6 (in which we included points
repeated by periodicity). The distribution can be crudely
characterized by some “bumps” plus “stripes” connecting
them.

The interpretation of the “bumps” is that all of them
correspond to events with additional “hot spot” at the
“tips” of the almond. It is a very natural place for maxi-
mal fluctuations, for two reasons. First, this is where the
participant density in both nuclei is near zero. Second,
because of the factor r3 they have larger weight than all
other places.
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FIG. 5: Distribution ofψn for the harmonics 4-6, the centrality
bin used is 100 < Npart < 300.

There are two kinds of “stripes”, with positive and neg-
ative slope in Fig. 6. The latter ones simply follow from
ψ1 distribution, while the former one is indeed a nontriv-
ial correlation between the angles whose origin we cannot
explain. We will continue to discuss its manifestation a
bit later. The correlation of ψ5 with ψ1 is very similar.
The “bumps” at ψ5−ψ1 ≈ 0 again mean ±y the direction
or the “tips”. The plot has similar “stripes”.

Going a bit ahead of ourselves, let us study the “reso-
nant” combinations of angles, as well as angles and am-
plitudes. As we explain below, those particular combi-
nations of the amplitudes and phases of two harmonics
are

< εn1
εn2

cos (n1ψn1
− n2ψn2

) > (3.11)

FIG. 6: Scatter plot of the ψ3 vs ψ3 −ψ1 (above), and of the
ψ5 vs ψ5 − ψ1 (below), for 100 < Npart < 300.

especially in the case when n1, n2 differ by two units.
We have studied two first examples of the kind, with odd
harmonics 1,3,5.

One interesting distribution, shown in Fig.7, is that
over the cos term itself, for the particular combination of
the 1-3 phases. It consists of two clearly different parts:
a very narrow peak near −1 and wide flat distributions
between -1 and 1. This plot demonstrates a qualitative
feature of the phase distribution which was pointed out
above. One explanation of the peak near -1 (the an-
gle combination is π) comes from the fluctuations at the
“tips” of the almond, when both ψ1 and ψ3 are strongly
correlated close to π/2. However, the second interesting
correlation seen as “positive slope lines” in Fig.6a be-
cause for them ψ1 − 3ψ3 = π as well. A similar situation
happens for other odd harmonics.

The average value of the combinations (3.11) for 1-3
and 3-5 harmonics as a function of centrality are shown
in Fig.8. All values are negative, as the sign is dominated
by a peak in cos near -1: the other component more or
less averages out. We thus conclude that experimental
measurements of the amplitude of such correlations, with
the magnitude and the sign, will be especially sensitive
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FIG. 7: Scatter plot of cos(3ψ3 − ψ1)
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FIG. 8: Correlators 〈ε1ε3cos (ψ1 − 3ψ3)〉 (top) and
〈ε3ε5cos (3ψ3 − 5ψ5)〉 (bottom)as a function of the number
of participants. The error bars are omitted since they are
smaller than the dots.

to the “almond tip” fluctuations.

Summarizing the observed pattern: we have found that
all odd angles are well correlated with each other, form-
ing the “stripes” and “bumps” shown in Fig.6. The fluc-
tuations and correlations seem to be stronger from the
“tips”of the almond.

D. Comments on other initial state fluctuations

So far the only source of fluctuations included has been
(i) the coordinate part of the nuclear wave function pre-
scribing the nucleon positions in the transverse plane,
and (ii) the event-by-event fluctuations of the NN cross
section. We found that the former effect dominates and
the latter only provides small corrections.

While other sources of fluctuations clearly are subject
for future studies, we still provide some comments on
those.

One important type of “initial state” fluctuations is of
course hard parton scattering events, resulting in jet pro-
duction. The rate of those very strongly depend on the
exact definition of the cutoff beyond which the momen-
tum transfer involved is characterized as “hard”. There
are vastly different opinions on where this boundary is
theoretically, and experimentally it depends on whether
such events are triggered by single large-pt hadron or by
some jet-finding algorithms. Jet production and quench-
ing is of course of high interest, but those should be stud-
ied only in a small fraction of all collisions selected by
separate triggers. For global fluctuations those can safely
be ignored, as the probability of “hard” events is smaller
than that of the fluctuations we study.

In the Glauber approach that we used, the local den-
sity of produced matter is assumed to be simply pro-
portional to the local density of all participant nucleons,
Np(A1) + Np(A2). However, when this density is high
enough, it has been argued that the so called “satura-
tion” phenomenon should take place, because of parton
absorbtion processes in the wave function. Other ex-
pressions for local matter density have been proposed,
e.g. ∼ min(Np)ln(max(Np)/min(Np)) by Kharzeev,
Nardi,Levin, where min and max refer to the smaller and
the larger of the two. Those are typically the amplitudes
of the fluctuations.

A well known approach to their description is the so
called “glasma”, which calculates those color fields from
random color charges of the leading (larger x) partons of
the two colliding nuclei. Asymptotically (in a very large
nuclei or at very high energy) McLerran and Venugopalan
[29] argued that at a particular location in the transverse
plane the color charges of partons must be uncorrelated
because they come from different nucleons. Therefore it
is usually assumed that their color charges fluctuate as
random variables. If so, the resulting fluctuations are
small, as the total number of partons is very large.

Application of such ideas usually keep the average val-
ues of those, such as A1/3 or so. The point of our
comment is a warning, that such simplified ideas can-
not be used for determining the fluctuations. It has been
known for a long time, that while at very small x the
partons, mostly gluons, become numerous, they are still
very tightly correlated in the transverse plane. The size
of the “gluonic spot” in the nucleon has been known for
a long time from diffractive form factors, and in more re-
cent form, from HERA photon diffraction into J/ψ. This
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spot is small, and therefore bright. As documented e.g.
in [30] (their Fig.23), the gluon density at the center of
the nucleon is about as high as in the center of Ca40.
Therefore, a large number of gluons does not yet imply
that all of them merge in the transverse plane into a more
or less homogeneous distribution: the positions of the in-
coming nucleons still remain the dominant source of the
initial state fluctuations.

As the “gluonic spots” from single nucleons remain the
source of initial state fluctuations, one may ask if numer-
ous partons coming from it may be correlated in their
quantum numbers, forming specific large-amplitude color
fields. One particular kind of such fields got special atten-
tion: those are the topologically nontrivial gluonic con-
figurations called the QCD sphalerons [31]. They are glu-
onic field configurations which originate from excitations
of the topologically nontrivial vacuum fields (instantons).
While they rapidly explode into multiple gluon state,
they strongly violate CP and chiral symmetries locally,
producing in particularly ±2Nf ( ≈ 6) units of chirality
per sphaleron.

As pointed out in [32], such strong local CP violation
induces special event-by-event fluctuations in the CP-odd
observables, e.g. they should induce charge asymmetry
along the magnetic field. Clearly those should be looked
at in special studies.

Another coherent color field configurations which de-
serve to be specially studied are (colorelectric) flux tubes.
In pp collisions the view that a field created by longitu-
dinally separated charges makes a flux tube is a conse-
quence of confinement, and thus must happen in vac-
uum. Many popular event generators are based on the
Lund model, cleverly parameterizing flux tube produc-
tion and decay. In AA low energy collisions many flux
tubes are produced, and their possible fluctuations into
the so called “color ropes” has been studied, initiated by
the paper of [33]. If two elementary color charges can be
combined, they may either cancel each other or produce
higher representations of the SU(3) group, in which case
the rope energy (and entropy, after its decay) is propor-
tional to its flux squared. Further applications of these
ideas for strangeness production in AA collisions can be
found in [34].

Studies of the flux tubes lay dormant till recent discov-
ery of the so called “hard ridge”1 by STAR collaboration
at RHIC. One possible origin of it [20] is hydro-carried
longitudinal flux tube, created at the hard collision point.
This explanation may work provided the flux tubes sur-
vive as such till freezeout: as was argued in that paper
this indeed should happen at the periphery of the fireball,

1 Note that “hard ridge” should not be confused with the “soft
ridge”. The latter, as discussed in this and other papers, is natu-
rally explained as a combined effect of “harmonic flows” induced
by Glauber fluctuations. Hard ridge, associated with the az-
imuthal direction of the hard trigger particle, does not yet have
a widely accepted explanation.

where matter is not far from the deconfinement transi-
tion, forming a kind of “dual corona” of the QGP fireball
similar to Solar corona full of flux tubes.

IV. HARMONICS AND THEIR RELATIVE
PHASES EXTRACTED FROM CORRELATIONS

A. Central collisions: two versus many-particle
correlators

Let us for simplicity start with idealized central col-
lisions: if the impact parameter is negligible, one may
think of the overall system as completely symmetric in
azimuthal angle φ.

A particular event has certain perturbation which
breaks this symmetry. Its (2-dimensional) distribution
over transverse momenta of the secondaries, can be de-
composed into Taylor series of the momenta px, py or into
the angular harmonics

dN

dp2
tdφ

= f(pt)

[
1 +

∑
n>0

(2ancos(nφ) + 2bnsin(nφ))

]
an =< cos(nφ) >, bn =< sin(nφ) > (4.1)

(Note that instead of the square bracket one can also
use the exponent of the sum, which will include trivial
higher order effects and enforces positivity of the distri-
bution: but we would assume all vn to be very small, for
simplicity.)

Instead of using the a, b pair, one may also introduce
the moduli and the phases writing it as 2vncos[n(φ −
ξn)] with positive vn. In order to simplify subsequent
formulae, we however prefer to write it using the complex
exponent

dN

dp2
tdφ

= f(pt)

(∑
n

vne
inφ−inξn

)
(4.2)

where the sum goes over all integer n, positive and neg-
ative, with v0 = 1 and v−n = vn.

Before going any further, let us give an example of
such decomposition for shapes we are interested in. We
already mentioned that the sound circles from point per-
turbations lead to a two-maxima distribution, with angle
about 1 rad. To make the points, we select the angle be-
tween the peaks to be exactly 2π/3, put them at certain
positions and give an arbitrary width, for plotting conve-
nience. The result is shown in Fig.9(a) as a (black) solid
curve.

We then do the Fourier decomposition and find that
for symmetry reasons all coefficient of sinusoidal waves
are zero bn = 0. To understand the relative magnitude
of harmonics one can plot the Fourier “power spectrum”,
of the squares a2

n versus n, see Fig.9(b). (This is the infor-
mation which is included in the two particle correlation
function,see below.) The first lesson is that “triangular”
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FIG. 9: (color online) (upper) Two-peaked solid (black ) curve
is the example of single particle angular distribution to be dis-
cussed. The (red) dashed curve is the sum of 3,6,9 harmonics,
while the (blue) dash-dot ones is the contribution of all other
harmonics with n < 10. (lower) The corresponding “power
spectrum” of the harmonics, a2n versus n.

harmonics 3,6,9... of the type 3k, k integer, are signifi-
cantly enhanced relative to other ones. The reason for
that becomes apparent if one compares the sum of such
modes (the red dash curve) and the rest of harmonics (the
blue dashdotted curve) with the original shape. “Trian-
gular” harmonics get a coherent enhancement from the
three-horn distribution they describe, while the main role
of the rest of the harmonics is to cancel this non-existing
third horn and non-existing negative region in between
the horns. This interpretation is confirmed by the signs
of the harmonics an: all “triangular” ones are positive,
all others negative. So, if one would like to reconstruct
the distribution from its Fourier series, one may for ex-
ample find the amplitudes from the power spectrum and
the relative signs (phases) of the harmonics.

At the end of chapter 3 we suggested that periph-
eral enough collisions would result in three-peak distribu-
tions, as the sound wave will be able to cross the fireball
along its shortest direction. If this happens, and the am-
plitude of all three would be the same, then the magni-
tude of “non-triangular” harmonics (other than 3,6,9...)
drops further, as there is no need to cancel the non-
existing peak.

But why not observe the two-peak event shapes them-
selves? The reason is that there are multiple perturba-
tions in any event, with random position in the transverse
plane. The contribution of an individual fluctuation is
very small, so that they can only be studied by finding
statistically significant correlations of the particles. Re-
member than there is ∼ 109 sample of available events
with ∼ 103 particles per events: two-particle correlators
use up to ∼ 106 pairs of those in an event.

Say, if the elementary perturbation is local (delta-
function-like in the transverse plane): its angular position
in the transverse plane is the only meaningful azimuthal
orientation. The perturbations have random positions in
the transverse plane, which we express as

ξn = ξp + ξ̃n (4.3)

where the tilde indicates the angle relative to the pertur-
bation and ξp is the random phase due to location of the
perturbation. As ξp is a random variable, all observables
should be averaged over it.

What we want to show is that the way the correlations
work out is quite different for (i) the two-body and (ii)
the many-body (three or more) correlation functions. In-
deed, in order to get the two-body correlation function
one has to take a the square of the single-body distribu-
tion (4.2) ∑

n1,n2

vn1
vn2

exp[in1φ1 + in2φ2

−in1ξ̃n1
− in2ξ̃n2

− i(n1 + n2)ξp]

and average it over ξp randomly distributed over the cir-
cle. As a result, in the double sum above only the terms
satisfying

n1 + n2 = 0 (4.4)

survive. The double sum collapses into a single sum with
the squared amplitude ε2n. Second, the sum becomes a
function of the angular difference between the angles
∆φ = φ1 − φ2, as expected from the symmetry. And,
last but not least, all the phases ξn disappear. Therefore,
two-particle correlators carry the same information as the
“power spectrum” of the harmonics (we used above for
the example).

This facts are of course well known. The harmonics of
the 2-body correlator are

C2(∆φ) =<
d2N

dφ1dφ2
> |ξp (4.5)

cn∆ =

∫
d(∆φ)C2(∆φ)cos(n∆φ)∫

d(∆φ)C2
=< v2

n > (4.6)

or squared amplitudes of the original harmonics,
averaged over the events.

This is e.g. how Alver and Roland [17] and others have
obtained their estimates for the “triangular” flow.
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However, the situation is different for manybody (three
or more) correlation functions. Indeed, if the single-body
distribution (4.2) is cubed (or raised into higher power),
one finds a triple sum in which random phases appears
as exp[i(n1 +n2 +n3)ψp], leading now to the “triangular”
condition2

n1 + n2 + n3 = 0 (4.7)

Eliminating one of them (e.g. n3) one finds the double
sum∑
n1,n2

vn1
vn2

vn1+n2
exp{i[n1(φ1 − φ3) + n2(φ2 − φ3)

−n1(ξ̃n1
− ξ̃n1+n2

)− n2(ξ̃n1
− ξ̃n1+n2

)]}

in which the relative phases of different harmonics are
still present. Therefore one can is still able to measure the
relative phase of harmonics experimentally, by focusing
on the corresponding combinations

< vn1
vn2

vn3
cos(n1ξn1

+ n2ξn2
+ n3ξn3

) > (4.8)

in which three integers must satisfy the condition (4.7).
Obsiously the number of solutions to the condition (4.7)
is larger than number of harmonics, so all phases can be
found. Experimentally, the price to pay is related to the
smallness of the harmonics, which in such observables
appear in the third (or higher) power. This makes it is
more difficult to measure, as the values extracted should
be larger than the statistical noise.

( It is at this point instructive to get back to our
example of the two-peak distribution introduced above
and see what those combinations of phase are in this
case. One interesting solution to the condition (4.7) is
1+2=3, which relates “enhanced” third harmonic with
“subleading” 1 and 2. The sign of this average is de-
fined by cos(ξ1 + 2ξ2 − 3ξ3), and since in our example
ξ1 = ξ2 = π, ξ3 = 0 this combination of phases leads
to cos(ξ1 + 2ξ2 − 3ξ3) = −1. But if one wants to mea-
sure the “enhanced” harmonics themselves, like in the
3 + 3 = 6, 6 + 3 = 9 etc, the corresponding cos would
be close to 1 instead. Proceeding in this way one should
be able to find such signs and conclude if the two-peak
distributions are or are not close to reality.)

Although hydro calculations is a subject of another
paper, let us briefly discuss how comparison to theory
should be done, assuming that the corresponding aver-
ages for some set of n1, n2, n3 are experimentally mea-
sured. There are two steps to be done. First, using the

2 Long after this paper has been posted we learned that a similar
condition was proposed to be used to look for non-Gaussianity of
the fluctuations of CMB. Our integers conjugated to azimuthal
angle are then promoted to 2-d angular momenta li on the sky,
and so the condition means that three vectors can make a closed
triangle. Thus the “triangular” name. To our knowledge, non-
Gaussianity of the Big Bang is not yet observed.

(linearized) hydro one can approximate flow harmonics
by initial ones, time the ratios

< vn1vn2vn3cos(n1ξn1 + n2ξn2 + n3ξn3) > (4.9)

= (
vn1

εn1

)(
vn2

εn2

)(
vn3

εn3

) < εn1εn2εn3cos(n1ξn1 + n2ξn2 + n3ξn3) >

Second, one should change the flow angles we call ξn to
the deformation angles ψn. One simple step is phase shift
by (3.2), the angle between flow and initial deformation.
Note however that in each three terms ni in numerator
and denominator cancel, leaving only 3π or simply the
total sign change

cos(n1ξn1 + n2ξn2 + n3ξn3) = (4.10)

−cos(n1ψn1 + n2ψn2 + n3ψn3)

The last step is to check for the direction (sign) of the
flow: as we will see in [18] flow direction at freezeout
oscillates as a function of n, so this sign should also be
included in the phase. The resulting correlation of the
amplitudes and orientations of the initial state fluctua-
tions can be calculated from initial state model, as we
have done above for the first three harmonics resonance
1 + 2 = 3 as well as 3 + 2 = 5.

In fact it is not necessary to take Fourier moments of
the correlation functions, but plot the correlation func-
tions themselves. (This is especially useful if the experi-
mental angular coverage in azimuth is incomplete.)

Defining the 3-particle correlator as for the 2 particle
one, with the averaging over the perturbation angle

C3(φ1, φ2, φ3) =<
d2N

dφ1dφ2dφ3
>ψp (4.11)

One finds it for central collisions to be a function of the
two angle differences, say φ1 − φ3, φ2 − φ3. The corre-
sponding 2d plots for the 2-peak and 3-peak distributions
look quite different, and should be relatively easy to sep-
arate.

B. Mid-central collisions and the two-body
correlators relative to the event plane

Nonzero impact parameter violates axial symmetry
and creates “directed flows”, e,g, the famous elliptic flow
with nonzero < v2 > 6= 0. By mid-central collisions we
mean a centrality region in which < ε2 > is large itself,
and is also large compared to its fluctuations (recall that
it is not so for central and very peripheral collisions). For
example, ε2 is 0.5 (0.3) for Np = 100 (200) participants,
with δε2 ≈ 0.1. Furthermore, as seen in Fig.4b, its angle
ψ2 is very much directed at ±π/2 (the tips of the al-
mond) and therefore (using (3.2 for n = 2) the flow angle
is peaked “in-plane”, ξ2 = 0, π, as indeed observed.

If so, for one of the harmonics being the second e.g.
n3 = ±2 one can approximate a product of three defor-
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mations as follows

< vn1
vn2

vn3
cos(n1ξn1

+ n2ξn2
+ n3ξn3

) > (4.12)

≈ (
vn1

εn1

)(
vn2

εn2

)(
v2

ε2
) < ε2 >< εn1

εn2
cos(n1ξn1

+ n2ξn2
) >

by factoring out large and non-fluctuating < ε2 > from
two other harmonics which are small and fluctuating.
Note that the resonance condition now means n1 ± 2 =
n2, and that by putting ξ2 = 0 we have selected a frame
in which the (experimentally determined reaction plane)
is the x axis.

Basically the lesson here is that for mid-central col-
lisions the “reaction plane” plays the same role as the
third body, so we are reduced to two small fluctuating
and correlated harmonics. The simplest nontrivial ex-
ample of resonance condition of the kind is 3-1-2=0 (re-
cently studied by Teaney and Yan [35]), while the next
is 5-3-2=0.

We had already calculated the combinations of two
fluctuating harmonics with the appropriate cosines
above, for these two cases, in the Glauber model. They
are by no means small: for example for the centrality bin
with [100..300] participants they are

< ε1ε3 cos (3ψ3 − ψ1) >∼ −0.015 (4.13)

< ε3ε5 cos (3ψ3 − 5ψ5) >∼ −0.05 (4.14)

and therefore we expect it to be observable, with about
as large statistics as needed for the usual quadratic fluc-
tuations.

V. SUMMARY

In this work we have (i) discussed the setting, iden-
tifying the main scales of the problem. Then (ii) we
studied in detail the initial state fluctuations originat-
ing from nucleon positions, emphasizing existence of the
nontrivial phase relations between different harmonics.
Finally, (iii) we discussed correlations functions of 2 and
many hadrons, pointed out the principle difference be-
tween them, with the latter allowing to measure experi-
mentally the relative phases of these harmonics.

Let us now recapitulate the lessons from this study in
a bit more detail.

Unfortunately, the perturbations we speak about are
too small to be measured directly, on event-by-event ba-
sis, and should be instead reconstructed from the statis-
tically obtained correlation functions. One good thing
coming from it is that many independent fluctuations
from local perturbations in a single event and in the
ensemble are treated by correlation function, in which
all trivial uncorrelated effects are statistically subtracted
and absent.

Traditionally the initial state perturbations and final
state corrections to collective flow are considered in a
form of their angular harmonics, which we call εn, vn,

respectively. Their relation is calculated by the hydrody-
namics: the details of that in the linearized form is the
subject of our companion paper [18].

Most papers on the subject consider εn, vn as inde-
pendent random variables, which are incoherent fluctu-
ations, added in quadratures, and ignored their phases
ξn, ψn. We however pointed out that while it can be
done so for the two-particle correlations, it is not so in
general. Correlators of many (3 and more) particle cor-
relations include those phases of, as do two-body corre-
lations relative to event plane for mid-central collisions.
Many different “triplets” n1, n2, n3 related by the “tri-
angular condition” between them can be measured, pro-
viding experimental opportunity to find out if and how
the perturbations are correlated. This needs to be done,
to refine models of the initial state. The magnitude of
few such terms we have estimated in the Glauber model,
and they are comparable in magnitude to the terms al-
ready studied. We also presented theoretical toy models,
in which phases between harmonics are especially simple.

Coherence in phases of the deformations imply the
interferences between the harmonics of the flow. Only
adding them together one can follow how small “hot” (or
“cold”) spots created by quantum fluctuations of inter-
acting nucleons propagate away from the point of origin.
Only in this way one can understand the role played by
the “hydrodynamical causality”, insisting that large part
of the fireball should remain completely unaffected by
the perturbation since the signal cannot possibly reach
it before the freezeout. Only a complete Green function,
collecting all hydro harmonics, describes these shapes of
propagating waves, as we detail in [18].

There are two basic scales defining those perturbations,
the sound horizon Hs (2.2) and the “the viscous horizon
scale” Rv (2.6). The former gives the size of the pertur-
bation, stemming from a local perturbation, the second
its width. We have for example argued that by chang-
ing the centrality of the collisions, one can change the
relation between the (smaller) fireball size and the sound
horizon: this should dramatically change the shape of the
event (see Fig.4 for explanation).

It is an important objective of the experimental heavy
ion program in general to measure these two scales, ex-
tracting experimental values of the speed of sound and
viscosity. One specific idea proposed in this work is that
by changing centrality one can locate transition when
Hs and the smaller size of the overlap region are equal,
observing the change of shape of the underlying event,
from those with two peaks to three-peaks ones. If found,
it would be a very spectacular confirmation of the view
that sound waves can travel large distances ∼ R dur-
ing heavy ion collisions. It will also put to rest various
models which assume significantly shorter freezeout time
than predicted by hydrodynamics.
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