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A Glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η
of the same-side 2D peak in minimum-bias angular correlations from

√
sNN = 200 GeV Au-Au

collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial
flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a
narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing
measurements to predictions for particle production, spectra and correlations from the Glasma model
and from conventional fragmentation processes. We conclude that the Glasma model is contradicted
by measured hadron yields, spectra and correlations, whereas a two-component model of hadron
production, including minimum-bias parton fragmentation, provides a quantitative description of
most features of the data, although η elongation of the same-side 2D peak remains undescribed.

PACS numbers: 12.38.Qk, 13.87.Fh, 25.75.Ag, 25.75.Bh, 25.75.Ld, 25.75.Nq

I. INTRODUCTION

The systematics of measured hadron spectra and two-
hadron correlations in p-p and more-peripheral A-A colli-
sions can be described quantitatively by a phenomenolog-
ical two-component data model including soft and hard
components defined in terms of final-state (FS) hadron
transverse momentum pt or collision centrality based on
some integrated final-state hadron multiplicity [1–6]. The
identified hard component of angular correlations con-
sists of a same-side (on azimuth, defined below) 2D peak
and an away-side ridge [2, 4, 5]. A notable feature of
correlations from more-central 200 GeV Au-Au collisions
is strong elongation on η of the same-side 2D peak [4, 5].
The phenomenological two-componen model is ob-

served to have a close correspondence with theoreticalt
models of hadron production in which soft and hard com-
ponents are defined in terms of the initial-state (IS) four-
momentum transfer [7–13]. In theoretical descriptions
the soft component arises from longitudinal fragmenta-
tion of participant projectile nucleons as a result of IS
soft momentum transfers (e.g. diffractive hadron scatter-
ing [13]). The hard component arises from minimum-bias
large-angle parton scattering and transverse fragmenta-
tion as a result of IS (semi)hard momentum transfers
(e.g. jet formation [10]).
Conventional theoretical descriptions of soft and

hard components combine parton distribution functions
(PDFs) [hard component, perturbative QCD (pQCD)]
with “limiting fragmentation” (parton splitting cascade,
DGLAP [14, 15]) at larger momentum fraction x and a
phenomenological nonperturbative approach (e.g. Lund
string model [8]) at smaller x. Examples of Monte Carlo
models combining both aspects are PYTHIA for p-p col-
lisions [9] and HIJING for A-A collisions [10]. The cor-
respondence between phenomenological and theoretical

two-component models has been tested and elaborated
in several studies [3, 5, 6, 16–18]. However, conventional
QCD theory does not currently describe η elongation of
the same-side 2D correlation peak.

An alternative theory description of longitudinal (soft)
particle production in more-central A-A collisions is
based on the Color Glass Condensate (CGC) [19]. The
CGC model invokes a statistical ensemble of classical
color charges (sources) at larger x and a radiated classi-
cal color field at smaller x described as a Glasma. There
is obviously a correspondence between Glasma vs Lund
strings at smaller x, and color radiators vs pQCD parton
splitting cascade at larger x. We wish to explore those di-
chotomies by quantitative comparisons of Glasma theory
with the systematics of spectrum and correlation data.
Glasma flux tubes coupled with radial flow have been
proposed as a possible mechanism for η elongation of the
same-side 2D peak, described then as a “soft ridge.”

In a previous study we considered the relation be-
tween Glasma flux-tube predictions and angular corre-
lation phenomenology on pseudorapidity η and azimuth
φ for same-side correlations in p-p and Au-Au collisions,
specifically the soft ridge [20]. That study concluded that
whereas pQCD-based descriptions of jet-related angular
correlations are in quantitative agreement with many as-
pects of angular correlation data the description based
on Glasma flux tubes is contradicted by correlation data
in several ways.

In the present study our primary goal is to examine the
relation between Glasma predictions [21, 22] and mea-
sured hadron (and inferred gluon) two-particle correla-
tions but extend the analysis to correlations on transverse
momentum pt (or transverse rapidity yt defined below) as
well as additional aspects of angular correlations. We find
further discrepancies between CGC-Glasma predictions
and data. We conclude that even if conjectured radial
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flow played a role in nuclear collisions the Glasma flux-
tube model does not correspond to physical processes
that might, in the presence of such flow, produce the
observed same-side 2D peak elongation on η and its cor-
responding pt structure.

This article is arranged as follows: Sec. II reviews anal-
ysis methods applied to RHIC hadron data, Sec. III de-
scribes gluon correlations predicted by the Glasma flux-
tube model, Sec. IV describes measured hadron correla-
tion and spectrum data, and Sec. V compares predicted
Glasma gluon correlations with the hadron data.

II. ANALYSIS METHOD

We review technical aspects of STAR correlation anal-
ysis applied to nuclear collisions at the Relativistic Heavy
Ion Collider (RHIC). Method details are provided in
Refs. [2–5, 23–26]. Topics include A-A collision geometry,
two-component models of hadron production, correlation
measures, 2D histograms, model functions for 2D χ2 fits
and the relation between fluctuations and angular corre-
lations.

A. A-A collision geometry

The initial-state A-A collision geometry can be de-
scribed by the Glauber model relating the A-A differ-
ential cross section to participant nucleon number Npart

and N-N binary-collision number Nbin [27]. A derived
projectile-nucleon mean path length ν = 2Nbin/Npart

is also defined. Through the measured A-A differential
cross section on charged-hadron multiplicity nch within
some angular acceptance the Glauber parameters can be
related to observed charged-hadron multiplicity nch.

Optical ǫopt [25] and Monte Carlo ǫMC [28] eccentric-
ities (IS azimuth quadrupole amplitude) have been in-
voked to model A-A eccentricity required for interpreta-
tion of the FS azimuth quadrupole measured by v2. The
former assumes a smooth matter distribution across nu-
clei whereas the latter assumes that point-like participant
nucleons are the determining elements. Recently it has
been proposed that higher multipoles of the inital geome-
try (e.g. sextupole) may produce corresponding structure
in the final state (e.g. “triangular flow”) [29].

A priori argument supporting ǫopt assumes that the
azimuth quadrupole emerges from interactions at small
x < 0.01 where one might expect onset of a smooth,
saturated glue system (e.g. Glasma) [30]. A posteriori

argument supporting ǫopt arises from a simple system-
atic trend ∝ Nbinǫ

2
opt observed for v22{2D} data which

accurately exclude contributions from jet structure (non-
flow) [25].

B. Two-component hadron production model

According to two-component hadron production mod-
els hadron spectra and correlations from nuclear colli-
sions can be decomposed (near mid-rapidity) into soft
and hard components arising respectively from longi-
tudinal fragmentation (mainly diffractive dissociation)
of projectile nucleons [8] and transverse fragmentation
of large-angle-scattered partons [9, 10, 12]. The terms
“soft” and “hard” in that case refer to the magnitude of
(and possibly exchanged particle carrying) the inital four-
momentum transfer between projectile hadrons (e.g. soft
and hard Pomeron exchange [11]). In an eikonal Glauber
description of A-A collisions soft production of hadrons
should scale with centrality as the number of participant
nucleons Npart whereas hard production should scale as
the number of N-N binary collisions Nbin [7].

C. Two-component data model

In phenomenological descriptions of spectrum and cor-
relation data soft and hard components are distinguished
on the basis of scaling with event multiplicity in p-p col-
lisions [1] and in A-A collisions [6], and by the details of
correlation structure on transverse momentum pt or ra-
pidity yt. For example, soft and hard components from
p-p collisions can be distinguished in pt × pt or yt × yt
correlations (defined below) [2, 3].
In more-peripheral A-A collisions the soft component

is observed to vary with centrality ∝ Npart and the hard
component varies ∝ Nbin, as expected from hadron pro-
duction models [7]. Those trends constitute the Glauber
linear superposition (GLS) reference for A-A spectra and
correlations [5, 16]. In more-central A-A collisions data
trends deviate strongly from the GLS reference. The
soft-component correlation amplitude is observed to fall
to zero in high-multiplicity p-p and more-central Au-Au
collisions. The hard-component yield fraction is a few
percent in minimum-bias p-p collisions [1] but increases to
about one third of the final-state hadron yield in central
Au-Au collisions [16]. The hard-component spectrum
shape deviates strongly from the p-p hard component
consistent with modified parton fragmentation [6, 17].

D. Correlation measures

Two-particle correlations are structures in pair-
density distributions on six-dimensional momentum
space (pt1, η1, φ1, pt2, η2, φ2). We visualize correlations
in 2D subspaces (pt, pt) and (η∆, φ∆) (defined below)
which retain almost all structure within a limited η
acceptance such as the STAR Time Projection Cham-
ber (TPC) [31]. We measure correlations with per-
particle statistic ∆ρ/

√
ρref = ρ0 (〈r̂〉 − 1), where ∆ρ =

ρ − ρref is the correlated-pair density, ρref is the
reference- or mixed-pair density, 〈r̂〉 is the (unit-normal)
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sibling/mixed pair number ratio and prefactor ρ0 =
n̄ch/∆η∆φ is the charged-particle 2D angular density
averaged over angular acceptance (∆η,∆φ) [4, 32]. Pair
ratio r̂ is averaged over kinematic bins (e.g. multiplicity,
pt, vertex position), and we assume factorization of the
reference pair density ρref ≈ ρ20.
The per-particle measure is an improvement over con-

ventional per-pair correlation function 〈r̂〉 → ρ/ρref or
〈r̂〉−1 → ∆ρ/ρref since it eliminates a trivial 1/nch trend
common to all per-pair measures (except for quantum
correlations). The intensive definition in terms of hadron
2D density ρ0(b) (b is the A-A impact parameter) rather
than multiplicity nch also eliminates a trivial dependence
on detector angular-acceptance factor ∆η∆φ. [24].

E. Transverse-momentum correlations on pt × pt

This analysis emphasizes comparison of Glasma flux
tube predictions of gluon correlations on pt or yt with
measured hadron correlations as a test of the theory. 2D
correlations on pt or transverse rapidity yt = ln[(pt +
mt)/mπ] (mπ is assumed for unidentified hadrons) are
complementary to 4D angular correlations in 6D two-
particle momentum space. yt is preferred for visualizing
correlation structure on transverse momentum. pt × pt
or yt × yt and angular correlations can be defined for
like-sign (LS) and unlike-sign (US) charge combinations
and also for same-side (SS) and away-side (AS) azimuth
subregions of angular correlations (defined below). Man-
ifestations of different correlation mechanisms (e.g. soft
and hard components) can be clearly distinguished in the
four combinations of charge-pair type and azimuth sub-
space, with distinctive forms for each of the LS and US
charge combinations and for SS and AS azimuth sub-
spaces [2, 3]. Data trends can also be compared quanti-
tatively with two-component hadron production models.
For correlations on (η∆, φ∆) the single-particle density

is uniform, and the prefactor is simply
√
ρref = ρ0(b)

averaged over the angular acceptance. For correlations
on pt × pt the pair ratio is r̂(pt1, pt2) and the prefactor

becomes
√
ρref =

√

ρ0(pt1) ρ0(pt2), the geometric mean
of single-particle pt spectra. The correct prefactor is es-
sential for proper comparison of predicted gluon correla-
tions and measured hadron correlations. The resulting
per-particle measure is a variant of Pearson’s normalized
covariance, a widely-used statistical measure.

F. Angular correlations on (η∆, φ∆)

Angular correlations can be formed by integrating over
the entire pt×pt pair acceptance (minimum-bias angular
correlations) or over subregions [2, 3]. Examples of the
latter include “trigger-associated” dihadron correlations
corresponding to asymmetric cuts on pt × pt [33].
Two-particle angular correlations are defined on 4D

momentum subspace (η1, η2, φ1, φ2). Within acceptance

intervals where correlation structure is invariant on mean
angle (e.g. ηΣ = η1+η2) angular correlations can be pro-
jected by averaging onto difference variables (e.g. η∆ =
η1 − η2) without loss of information to form angular au-

tocorrelations [24, 32]. The 2D subspace (η∆, φ∆) is then
visualized. Symbol ∆x is used as a measure of the detec-
tor acceptance on parameter x.
Angular correlations can be formed separately for LS

and US charge combinations, as well as for the charge-
independent (CI = LS + US) combination [4, 32]. The
pair angular acceptance on azimuth can be separated into
a same-side (SS) region (|φ∆| < π/2) and an away-side
(AS) region (|φ∆| > π/2). The SS region includes in-
tra jet correlations (hadron pairs within single jets), while
the AS region includes inter jet correlations (hadron pairs
from back-to-back jet pairs).

G. Angular-correlation model function

The hard component of angular correlations includes a
SS 2D peak at the angular origin and an AS 1D peak on
azimuth uniform on η∆ (within the STAR TPC accep-
tance). The minimum-bias SS 2D peak (intrajet correla-
tions) is well modeled by a 2D Gaussian. Except for p-p
and more-peripheral A-A collisions the AS peak (inter-
jet correlations) is conveniently modeled as an AS dipole
∝ cos(φ∆ − π). The soft component is modeled by a 1D
Gaussian on η∆ with r.m.s. width ≈ 1.
The combined model function including azimuth

quadrupole term cos(2φ∆) required to describe A-A an-
gular correlations within the STAR TPC is [4, 5, 25]

∆ρ
√
ρref

= A0 +A1D e
−

1

2

(

η∆
σ1D

)

2

(1)

+ A2D e
−

1

2

{(

φ∆

σφ∆

)

2

+
(

η∆
ση∆

)

2
}

+ AD [1 + cos(φ∆ − π)] /2 +AQ 2 cos(2φ∆),

where a narrow 2D exponential describing quantum cor-
relations and electron pairs from γ conversions [5] has
been omitted for clarity. The nonjet quadrupole ampli-
tude is expressed in terms of conventional parameter v2
by AQ{2D} = ρ0(b)v

2
2{2D}(b) [25].

Alternative correlation models have been introduced
recently which treat all 2D angular correlations as a 1D
projection on azimuth represented by a single Fourier se-
ries. What appears in Eq. (1) as a narrow same-side 2D
Gaussian (A2D) is then subsumed into the 1D Fourier se-
ries and may be reinterpreted as hydrodynamic flows [34].

H. Fluctuations from correlations

The direct relation between fluctuations and two-
particle angular correlations was established in Ref. [24]
and implemented for 〈pt〉 fluctuations in [35, 36]. Given
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variance σ2
n = 〈n2〉 − n̄2 the per-particle number fluctu-

ation measure ∆σ2
n(δx,∆x) ≡ (σ2

n − n̄)/n̄ is equivalent
to the integral up to scale (bin size) δx within some ac-
ceptance ∆x of per-particle number angular correlation
measure ∆ρ/

√
ρref defined on difference variable x∆ [24].

The negative binomial distribution (NBD) is a two-
parameter multiplicity distribution for some bin size δx
over some acceptance ∆x (which should be specified).
NBD parameters are mean multiplicity n̄ and parameter
k which can be interpreted as a number of independent
particle sources. In the NBD context ∆σ2

n(δx,∆x) = n̄/k
(correlated particles per independent source) represents
the integral up to a specific bin size (scale) of angular
correlations and typically increases monotonically with
increasing bin size, angular acceptance and correlation
amplitude. Measured fluctuations may arise from a su-
perposition of several physical mechanisms within a spe-
cific acceptance [24]. Fluctuation systematics (centrality,
collision energy, hadron species) are then difficult to in-
terpret. Only differential correlation analysis can distin-
guish individual correlation sources (see Sec. IV).

III. GLUON CORRELATIONS FROM GLASMA

Description of so-called “bulk” hadron production in
terms of a CGC Glasma is an alternative to conven-
tional parton distribution functions (PDFs) and longi-
tudinal fragmentation of projectile nucleons. According
to Ref. [21] bulk hadron production arises from low-x glu-
ons residing in the wavefunctions of projectile nucleons,
and “leading correlations are present already in the wave
functions of the colliding objects.”
If a characteristic energy scale (saturation scale Qs)

is large enough (Qs ≫ ΛQCD) the longitudinal system
may be divided into radiating color charges at larger
x (sources) and a (nominally boost invariant) saturated
classical field (Glasma) at smaller x. The transverse cor-
relation length for the Glasma field is 1/Qs, interpreted
as the transverse size of Glasma “flux tubes.”
Some features of angular correlations in more-central

Au-Au collisions, particularly η elongation of the SS
2D peak, are presently outside the scope of descriptions
based on QCD fragmentation (jets) and have instead
been interpreted as a “signal” for Glasma flux tubes in
the A-A initial state (IS) [21, 37]. η elongation of the
same-side peak is explained by interaction of initial-state
Glasma flux tubes with radial flow. Here we briefly sum-
marize predicted fluctuations and correlations expected
from Glasma theory.

A. Glasma gluon fluctuations and the NBD

In the Glasma model NFT = Q2
2S⊥ ≫ 1 is the

number of flux tubes in an A-A system with trans-
verse area S⊥ [21], and NFT = O(1)Npart [20]. Each
flux tube emits into N2

c − 1 color states for a total of

(N2
c − 1)NFT /2π independent Bose-Einstein color radia-

tors. Each radiator emits on average n̄g = O(1)/αs(Q
2
s)

gluons. In Eq. (3.2) of Ref. [21] the gluon total multiplic-
ity is given by N̄g = (fN/αs)Q

2
sS⊥.

The Glasma model is thus a two-tiered statistical sys-
tem. Fluctuations in the Glasma gluon multiplicity can
be modeled by a negative binomial distribution with pa-
rameters N̄g and k. According to the Glasma model in
Ref. [21] multigluon correlations in the classical limit ex-
pressed in terms of the variance of event-wise gluon num-
ber Ng have ∆σ2

Ng
≡ (σ2

Ng
− N̄g)/N̄g = N̄g/k = 0 or no

correlations. Averaging over A-A color source configu-
rations induces significant correlations, with N̄g/k 6= 0.
Correlations in p-p collisions are expected to be small
(k → ∞). However, that trend is inconsistent with data
(Sec. IVA). Glasma gluon fluctuations are further dis-
cussed in Sec. VIG.

B. Glasma predicted two-gluon correlations

Perturbative results from Ref. [22] are summarized by

C2(~p1, ~p2) → ∆ρ(~p1, ~p2) = ρ(~p1, ~p2)− ρref (~p1, ~p2)

∆ρ(~p1, ~p2)

ρref (~p1, ~p2)
=

1

k
=

κ2
Q2

sS⊥

ρref (~p1, ~p2) = ρ0(~p1)ρ0(~p2)

ρ0(~p) ∝ ln(pt/Qs)(Qs/pt)
4, (2)

with NBD parameter k ≈ (N2
c − 1)NFT/2π [21] and

κ2 = NFT /k ≈ 2π/(N2
c − 1) = O(1) approximately

constant for pt/Qs ≫ 1 [22]. Since k ≈ NFT we have
Ng ≈ ngNFT . The Glasma predicted energy dependence

is k ∼ Q2
s ∼ √

s
λ

[21]. As defined, κ2 has the per-
particle [4, 5, 24] structure n̄ch(r̂ − 1) → NFT (r̂ − 1).
For the perturbative case the only correlation source is
production hierarchy: multiple gluons associated with
each independent flux-tube radiator. Perturbative two-
gluon correlations are then independent of angle differ-
ences and factorizable on (pt1, pt2). A non-perturbative
calculation is required to determine correlations down to
small pt [22]. κ2 may then depend on pt and relative
angle φ∆, but not on η∆ if flux tubes are boost invariant.

IV. MEASURED HADRON CORRELATIONS

There is now an extensive phenomenology of hadron
correlations from which the underlying parton dynam-
ics may be inferred. The two-component data model de-
scribed here exhausts all differential correlation structure
in p-p and Au-Au collisions, and therefore all fluctuation
phenomenology. Fluctuation measures, as running inte-
grals of differential correlations, are consistent with cor-
relation measurements but retain less information [24].
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A. Correlations from p-p collisions

Figure 1 shows parametrizations of yt × yt and 2D an-
gular correlations from p-p collisions at 200 GeV [2, 3].
Charged-hadron correlations on yt × yt (left panel) with
yt ∈ [1, 4.5] or pt ∈ [0.15, 6] GeV/c integrated over the
STAR TPC angular acceptance |η| < 1 and 2π azimuth
include two well-separated peaked structures described
as the soft component and the hard component [1, 2].
The soft component is a 2D peak localized below 0.5
GeV/c (e.g. within yt1 + yt2 < 2). The hard component
is a second distinct 2D peak which dominates the comple-
mentary yt×yt space. The peak is centered near yt ≈ 2.7
(pt ≈ 1 GeV/c) and does not extend below 0.35 GeV/c in
p-p collisions. Corresponding structures are superposed
in minimum-bias angular correlations (right panel).
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FIG. 1: (Color online) Two-particle hadron correlation
histograms from 200 GeV p-p collisions based on data
parametrizations from Refs. [2, 18]. Left: yt × yt correlations
within the angular acceptance showing soft and hard com-
ponents, Right: pt-integral angular correlations on (η∆, φ∆)
showing a superposition of soft and hard components.

Figure 2 shows distinct structures in angular corre-
lations on (η∆, φ∆) corresponding to the soft and hard
components separated by cuts on pt × pt or yt × yt.
The soft component of angular correlations (left panel)
is a 1D Gaussian on η∆ with approximately unit r.m.s.
width characteristic of “short-range” correlations. The
soft component is almost entirely US pairs. Such struc-
ture is consistent with diffractive scattering and longi-
tudinal fragmentation of projectile nucleons to hadrons
(near mid-rapidity) in charge-neutral (US) combinations.
The hard-component peak on (yt, yt) corresponds to

two structures on (η∆, φ∆) (right panel), a SS 2D peak
centered at the angular difference origin and an AS ridge
centered at π on φ∆ and uniform on η∆. The SS 2D peak
is almost entirely US pairs (reflecting local charge conser-
vation during fragmentation), whereas the AS 1D peak
on azimuth (jet-jet ridge) is composed of equal numbers
of LS and US pairs (no interjet charge correlation).
The structure on (yt, yt) corresponding to the SS 2D

peak lies close to the main diagonal (yt1 ≈ yt2), whereas
that corresponding to the AS ridge is substantially broad-
ened relative to the main diagonal [2, 3]. Those system-
atics are consistent with large-angle parton (gluon) scat-
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FIG. 2: (Color online) Two-particle hadron correlation
histograms from 200 GeV p-p collisions based on data
parametrizations from Refs. [2, 18]. Left: Soft component
(longitudinal projectile nucleon fragmentation to US pairs),
Right: Hard component (large-angle-scattered parton frag-
mentation to US SS pairs and CI=LS+US AS pairs).

tering and fragmentation to back-to-back jet pairs, with
hadron local charge and momentum conservation.

B. Correlation evolution with A-A centrality

If A-A collisions were simply linear superpositions of
p-p (or N-N) collisions (eikonal model) we could extrap-
olate p-p correlation phenomenology according to the
Glauber model to describe A-A data. The eikonal model
provides a reference system denoted by Glauber linear

superposition (GLS), including participant scaling of the
soft component and binary-collision scaling of the hard
component [6, 7]. Correlation data from Au-Au collisions
at 62 and 200 GeV follow the GLS reference from pe-
ripheral collisions to an intermediate centrality and then
transition to substantially different behavior [5].
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FIG. 3: Left: Amplitude of the same-side 2D Gaussian fitted
to minimum-bias 2D angular correlation data from 200 GeV
Au-Au collisions [5]. Right: Fitted peak widths for the same-
side 2D Gaussian. GLS indicates a Glauber linear superposi-
tion reference extrapolated from measured p-p collisions [1].

Figure 3 summarizes centrality variation of SS 2D peak
parameters. Deviations from the GLS reference extrapo-
lation above the transition point include a rapid change
(within one 10% centrality bin) in the rate of increase
(slope on centrality measure ν defined in Sec. II A) of SS
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and AS jet-related peak amplitudes, a rapid increase in
the SS 2D peak η∆ width and a significant decrease in
the φ∆ width. The SS 2D peak aspect ratio transitions
from nearly 2:1 elongation on azimuth to 3:1 elongation
on pseudorapidity [3]. Jets in p-p collisions are nearly as
anomalous as those in central Au-Au collisions. Those
trends have been interpreted quantitatively in terms of
modified parton fragmentation in more-central Au-Au
collisions [17].
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FIG. 4: (Color online) Left: Angular correlations from 200
GeV Au-Au collisions with centrality ν = 6 (b = 0) with
nonjet fit components (quadrupole, 1D Gaussian on η∆) sub-
tracted to reveal nominal jet correlations. The vertical zero
is the estimated true zero offset for these overlapping jet cor-
relations. Right: The previous histogram with the away-side
dipole term subtracted to isolate the same-side 2D jet peak
extrapolated to η ∈ [−2, 2].

Figure 4 shows jet structure in 200 GeV central (b = 0)
Au-Au collisions extrapolated from measured centrality
trends. The nonjet quadrupole measured by v2{2D}
is zero with small upper limit in that case [25]. The
AS 1D peak on azimuth is uniform on η∆ within the
STAR TPC acceptance, as is the nonjet quadrupole. In
Fig. 4 (right panel) the η∆-independent components have
been subtracted, leaving the SS 2D peak (extrapolated to
|η∆| = 4) as the remaining correlation component. The
SS 2D peak for minimum-bias (pt-integral) data is always
consistent with a 2D Gaussian (no additional structure).
Although “trigger-associated” dihadron correlations do
reveal non-Gaussian (on η∆) SS features, those data are
subsets of the minimum-bias ensemble and should reflect
the same basic fragmentation process.

C. Relation to hadron spectra and yields

Soft and hard components of two-particle correlations
have counterparts in single-particle hadron pt spectra.
The p-p pt spectrum hard component [1] corresponds
quantitatively to the hard component in Fig. 1 (left
panel). p-p spectra and correlations form a simple system
quantitatively consistent with all aspects of pQCD down
to zero hadron momentum and 3 GeV parton energy [17].
In a minijet context the pt spectrum hard component

(single-particle fragment distribution) is the marginal
projection of the correlation hard component on pt × pt

or yt × yt (fragment pair distribution [2]). For all Au-Au
centralities the measured correlation hard component on
pt×pt [38] is quantitatively consistent with the hard com-
ponent inferred from measured pt or yt spectra [6]. The
hard-component peak on pt × pt or yt × yt persists as a
distinct structure with mode near pt = 1 GeV/c even in
central Au-Au collisions [23, 26, 38]. For both spectra
and correlations, suppression at larger pt ∼ 10 GeV/c
is accompanied by much larger enhancement at smaller
pt ∼ 0.5 GeV/c [6]. Suppression and enhancement trends
on Au-Au centrality are closely (anti)correlated [17].

The integral of the SS 2D peak in angular corre-
lations (all jet-related hadron pairs) combined with a
pQCD dijet cross section can be converted to a hard-
component hadron yield. Variation of the calculated
hard-component yield with centrality explains evolution
of the Au-Au total hadron yield with centrality, revealing
that about one third of the total yield in central Au-Au
collisions is included in resolved minijets [16]. Analysis
of the pt or yt dependence of the SS 2D η-elongated peak
in angular correlations [23, 26, 38] shows that this struc-
ture corresponds to the hard-component peak on pt × pt
or yt × yt near pt = 1 GeV/c for all Au-Au centralities.
This critical feature of Au-Au correlation data is com-
pared to Glasma model predictions in the next section.

V. GLASMA FLUX TUBES vs HADRON DATA

The Glasma model is a one-component (soft) model of
gluon production near mid-rapidity emphasizing more-
central A-A collisions. There is no (semi)hard parton
(gluon) scattering to mid-rapidity. The Glasma model
competes with the two-component (soft plus hard) model
of hadron production inferred from yields, spectra and
two-particle correlations derived from p-p and A-A col-
lisions [1–6]. We provide direct comparisons between
Glasma predictions and measured hadron spectrum and
correlation data as a test of Glasma relevance to the
hadronic final state in nuclear collisions. We consider
spectrum and correlation trends on (η, φ), pt or yt, A-A
centrality and collision energy.

A. Glasma single-gluon spectrum

The number of Glasma flux tubes is expected to scale
with A-A centrality as Q2

sS⊥ ≈ Npart [20]. The cor-
responding gluon production should then be compared
with the soft component of hadron production which does
follow Npart scaling [1, 6]. The inclusive single-gluon
spectrum in Fig. 3 (left panel) of Ref. [22] is well rep-
resented by

dNg

dp2t
= erf(pt/0.3 GeV/c)

1/p2t

{(1/5)2 + (p2t/33)
2} 1

2

, (3)
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whereas the soft-component charged-hadron spectrum
for p-p and all centralities of A-A is the Lévy distribution

2

npart

d2nch

dηmtdmt

=
45

{1 + (mt −mπ)/n T }n
, (4)

with T = 0.145 GeV and n = 12.8 [1, 6].

pt (GeV/c)

p t2   d
N

g 
/ d

p t2

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

0 2 4 6 8 10

dN
g/

dp
t2 ,  

dn
ch

/ m
td

m
t [

(G
eV

/c
)-2

]

pt, mt−mπ  (GeV/c)

1/pt
4

1/mt 
12.8

Ng × 1/6

nch

∆η = 1

10
-4

10
-3

10
-2

10
-1

1

10

0 2 4 6 8 10

FIG. 5: Left: Gluon pt spectrum from Glasma flux-tube
model (with added factor p2t ). Right: Comparison of hadron
mt spectrum soft component from Ref. [1] (dashed curve) and
gluon pt spectrum from Glasma flux-tube model (solid curve).

Figure 5 (left panel) shows Eq. (3) which compares
well with Fig. 3 (left panel) from Ref. [22] where the
spectrum has been scaled by factor p2t to show details
at smaller pt. The Glasma expectation for the gluon
spectrum trend is ∝ ln(pt/Qs)(Qs/pt)

4 at larger pt/Qs

with Qs ≈ 1 GeV [22].
Figure 5 (right panel) shows a comparison between the

Glasma gluon spectrum ∝ 1/p4t and the per-participant-
pair hadron spectrum soft component∝ 1/m12.8

t at larger
pt and mt respectively. The mt spectrum integrates to
dnch/dη = 2.5 (NSD p-p collisions). The gluon spectrum
in Eq. (3) has been divided by 6 to approximate the same
η density for the shape comparison. The hard gluon spec-
trum has no observed Npart-scaling counterpart in the
hadronic final state. There is no correspondence in the
gluon spectrum to the measured hard component scaling
as Nbin in hadron spectra [1, 6] or to the large-angle-
scattered parton spectrum varying as 1/p6.5t [17].

B. Glasma and NBD k-parameter systematics

Figure 6 (left panel) shows k data from Fig. 3 of
Ref. [21] plotted as 1/k which increase by factor 2 from
RHIC to LHC energies. For “short-range” (localized on
η) angular correlations we do expect 1/k (representing
per-pair angular correlations) to decrease with increasing
system size (e.g. A-A centrality). In the CGC model the
k ∼ Q2

s parameter is expected to increase monotonically
with collision energy, or equivalently 1/k should decrease
with collision energy. The observed strong increase of
1/k with energy contradicts the Glasma expectation.
In Fig. 6 (right panel) corresponding product

(1/k) dnch/dη measures per-particle angular correlations
integrated on scale up to the angular acceptance (in this
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FIG. 6: Left: Energy dependence of negative binomial dis-
tribution (NBD) parameter k from Ref. [21] plotted as 1/k
for p-p collisions and angular acceptance |η| < 1 or ∆η = 2,
Right: The same data plotted as (1/k) dnch/dη measuring the
integral of angular correlations within the anglar acceptance.
The curves are based on ln(

√
s/13.5 GeV) (see text).

case ∆η = 2 and ∆φ = 2π). We conclude that integrated
angular correlations in p-p collisions from whatever mech-
anism increase with collision energy faster than log(

√
s).

Given the measured energy dependence of pt angu-
lar correlations [35], nonjet azimuth quadrupole cor-
relations [25] and minijet angular correlations [5] in
p-p and Au-Au collisions at and below 200 GeV we
characterize the k data based on the energy trend
ln(

√
s/13.5 GeV). The solid curve in the right panel

is (1/k) dnch/dη = 0.18{ln(√s/13.5 GeV)}1.75. The
hadron yield increase with energy is well described
above 200 GeV by dnch/dη ≈ 0.88{ln(√s/13.5 GeV)}.
The solid curve in the left panel is therefore 1/k =
0.21{ln(√s/13.5 GeV)}0.75, generally consistent with
QCD processes (e.g. minijet production) but inconsistent

with the flux-tube expectation k ∝ √
s
λ
with λ > 0 [21].

C. Glasma gluon pt × pt correlations

Figure 7 (left panel) shows Fig. 2 (right panel, AS
pairs) of Ref. [21]. Fig. 2 (left panel, SS pairs) of Ref. [21]
includes self pairs along the diagonal but is otherwise sta-
tistically equivalent to the right panel. The cited figure
shows a plan view of κ2 on (pt1, pt2) relative to saturation
scale Qs ≈ 1 GeV/c. The histogram is replotted here in
isometric view on pt in units GeV/c.
Fig. 7 (left panel) is analogous to correlations plotted

on yt × yt (Fig. 1, left panel). κ2 prefactor Q2
sS⊥ in Eq.

(5.1) of Ref. [21] is equivalent to n̄ch in n̄ch{r̂(pt1, pt2)−1}
in the notation of Sec. II D. Thus, κ2 should be com-
pared with per-pair measure ∆ρ/ρref (yt, yt) [39] which
increases dramatically at larger yt, strongly contradict-
ing the Glasma prediction plotted in Fig. 7 (left panel).
Figure 7 (right panel) shows the κ2 histogram in

the left panel multiplied by prefactor
√

ρref (pt1, pt2) =
√

ρ0(pt1)ρ0(pt2), where ρ0(pt) is the hadron soft compo-
nent in Eq. (4) divided by 2π to form a 3D density. Pref-
actor ρ0(b) = n̄ch/∆η∆φ appropriate for angular correla-
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FIG. 7: (Color online) Left: Data from Fig. 2 (right panel) of
Ref. [21] plotted in isometric view showing predicted Glasma
two-gluon correlations. Right: The same data with prefactor
√

ρref (pt1, pt2) based on a hadron spectrum soft component.

tions is replaced by the geometric mean of single-particle
pt or yt spectra appropriate for pt × pt correlations. The
plotted histogram is proportional to per-particle measure
∆ρ/

√
ρref (pt1, pt2) and thus directly comparable with

per-particle correlation data. The result is consistent
with measured soft-component pt × pt correlations.
Figure 8 (left panel) shows the Glasma data in Fig. 7

(left panel) with the prefactor formulated using the gluon
spectrum defined by Eq. (3), which is much harder than
the hadron spectrum. The result is still generally consis-
tent with soft-component pt × pt or yt × yt correlations.
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FIG. 8: (Color online) Left: Glasma predictions in the form
∆ρ/ρref from Fig. 7 (left panel) multiplied by prefactor√
ρref =

√

ρ0(pt1, b)ρ0(pt2, b) (gluon spectra) to obtain the
per-particle form ∆ρ/

√
ρref . Right: The yt × yt histogram in

Fig. 1 (left panel) transformed to pt with the proper Jacobian.

Figure 8 (right panel) shows the p-p parametrization
in Fig. 1 (left panel) representing data in Refs. [2, 3] re-
plotted on (pt1, pt2) with pt ∈ [0.2, 5] GeV/c and with
the proper Jacobian. The hard-component peak mode
is near 1 GeV/c as expected, and the soft-component
peak is just visible near the origin. The shape of the
hard component on pt × pt projected to 1D is in quan-
titative agreement with the hard component inferred di-
rectly from p-p single-particle pt spectra in Ref. [1] (Fig.
10, left panel). Similar structure is observed for Au-Au
collisions at all centralities, including that corresponding
to the same-side ridge in angular correlations [23, 26, 38].
This comparison reveals that the Glasma flux-tube

model and its purported explanation of the same-side
η-elongated ridge is strongly contradicted by measured
hadron pt × pt correlations. The Glasma histogram cor-
responds qualitatively to the soft component of measured
hadron correlations. There is no corresponding hard-
component peak, no large-angle parton scattering, in the
Glasma model. The qualitative difference persists even
when a prefactor derived from a hard gluon spectrum is
introduced.
One might argue that the intervening hadronization

process could invalidate such a comparison. The max-
imum hadron momentum per gluon would result from
direct 1 → 1 correspondence as in local parton-hadron
duality (LPHD) [40] (but observed local charge conser-
vation is not then respected). Fragmentation (1 → 2 or
more) should actually reduce the mean hadron momen-
tum relative to the Glasma spectrum. There is thus no
possibility, within the Glasma model of “bulk” hadron
production, to generate a counterpart to the observed
pt × pt or yt × yt hard component.

D. Glasma pt × pt correlations and radial boosts

A proposed mechanism for formation of the SS 2D peak
in angular correlations from more-central Au-Au colli-
sions is radial boost of Glasma flux tubes. We can then
ask what would be the effect of conjectured radial flow on
the predicted κ2(pt1, pt2) in Fig. 7 (left panel)? Does ra-
dial flow also produce the nominal hard-component struc-
ture in pt × pt correlations, as in Fig. 8 (right panel)?
Starting with the 2D histogram in Fig. 7 (left panel)

the following procedure was applied with two pt spec-
trum models ρ0(pt) (prefactor NFT is ignored to simplify
terminology, κ2 → ∆ρ/ρref). Reference ρref (pt1, pt2) =
ρ0(pt1)ρ0(pt2) was formed and numerator ∆ρ = ρrefκ2
was then obtained from the histogram in Fig. 7 (left
panel). Azimuth angles were randomly sampled. ∆ρ
and ρref were boosted from (~pt1, ~pt2) to (~p′t1, ~p

′
t2) by

〈βt〉 = 0.6 (maximum mean value inferred from cen-
tral Au-Au collisions [41]). Boosted ∆ρ/ρref → κ2 was
then recovered. The actual procedure was based on a
Monte Carlo sampling (107 samples) of κ2, (pt1, pt2) and
(φ1, φ2) to construct boosted histograms. The two ρ0(pt)
spectrum shapes were a Maxwell-Boltzmann (M-B) with
Teff = 0.15 GeV and the gluon spectrum of Eq. (3).
Results are shown in Fig. 9 for the two cases. For those

boost conditions the κ2(pt1, pt2) distribution is changed
modestly, mainly an increase at larger pt from 1 to 2
or 2.5 which cannot possibly match the hard-component
structure evident in Fig. 8 (right panel) when converted

to the per-particle form
√

ρref (pt1, pt2)κ2(pt1, pt2).

E. Glasma gluon azimuth correlations

Figure 10 (left panel) reproduces Fig. 5 (right panel)
of Ref. [21] which is related indirectly to angular cor-
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FIG. 9: (Color online) Correlations from Fig. 7 (left panel)
boosted by mean radial speed 〈βt〉 = 0.6 (see text). Left:
Single-particle spectrum is Maxwell-Boltzmann with Teff =
0.15. Right: Single-particle spectrum is defined by Eq. (3).

relations plotted on (η∆, φ∆) [2–5]. The left panel in
Ref. [21] includes extraneous self pairs (“large delta func-
tion peaks”) along one axis which are removed in the
right panel. The horizontal axes are magnitudes of sum
and difference vectors ~pt1 + ~pt2 and ~pt1 − ~pt2 relative to
Qs = 1 GeV. One axis corresponds to parallel pairs, the
other to antiparallel pairs. Correlation structure seems to
indicate a preference for momenta parallel and antipar-
allel (near the axes). The plot is interpreted to indicate
that a “collimation effect” might be present in the initial
state of p-p collisions, which might in turn explain the
“ridge” observed in 7 TeV p-p collisions [42].
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FIG. 10: (Color online) Left: Histogram from Fig. 5 (right
panel) of Ref. [21] showing two-gluon correlations on vector-
momentum sum and difference. Right: The Jacobian from
φ∆ to cos(φ∆) plotted as a surface on (x+, x−

) (see text).

The coordinate axes in Fig. 10 represented by x+, x−
are defined by

x2± ≡ |~pt1 ± ~pt2|2 = 4p2t [1± sin(2ψ) cos(φ∆)]/2, (5)

where pt1 =
√
2pt sin(ψ) and pt2 =

√
2pt cos(ψ) define pt

and ψ (polar coordinates in Fig. 7). The axes extend to
2pt,max = 6 GeV/c, twice the maximum single-particle
momentum in the pair sample. The plotting variables can
be inverted to sin(2ψ) cos(φ∆) = (x2+ − x2−)/(x

2
+ + x2−)

(normalized difference diagonal) and 4p2t = x2++x2− (sum
diagonal). The sum diagonal measures the quadratic
mean of two transverse-momentum magnitudes. The dif-

ference diagonal measures angle φ∆ between pairs of mo-
menta. For projection to space (x+, x−) an average over
sin(2ψ) would be determined by the (slowly varying) dis-
tribution in Fig. 7 (left panel). There is no sensitivity to
elongation on η∆, to a SS ridge per se.

The apparent correlation structure is symmetric about
φ∆ = π/2, and the angular distribution seems to be
sharply peaked toward the AS limit as well as toward
the SS limit (“collimation effect even in the absence of
radial flow” [21]), but the plot is misleading. Figure 9
(right panel) of Ref. [22] shows the same correlation mea-
sure κ2 plotted directly on φ∆ for pt1 ≈ pt2 ≈ 3 GeV/c
[therefore sin(2ψ) ≈ 1]. The distribution on φ∆ is nearly
uniform (variation within ±10%). The relation between
plots on (x+, x−) and on φ∆ appears to be the Jacobian
1/ sin(φ∆) from φ∆ to cos(φ∆).

Figure 10 (right panel) shows the surface 1/ sin(φ∆)
plotted on (x+, x−). The detailed agreement with the
left panel is evident. The structure in Fig. 10 (left panel)
therefore does not imply significant correlation on the
actual azimuth difference φ∆, no inherent collimation ef-
fect in the initial state which might for example explain
the SS ridge in p-p collisions at 7 TeV as suggested in
Ref. [21]. In contrast, measured p-p hadron correlations
depend strongly on φ∆ for hadron pt > 0.5 GeV/c and
weakly for pt < 0.5 GeV/c (hard and soft components re-
spectively), again contradicting the Glasma prediction.

F. Glasma azimuth correlations and radial boosts

A central issue for this study is the Glasma-model
conjecture that the η-elongated SS 2D peak observed in
minimum-bias angular correlations (“soft ridge”) repre-
sents formation of a 1D ridge on azimuth from boost
of Glasma flux tubes emitting isotropically in their rest
frames. Given the boost kinematics the peak on azimuth
should be narrower for lower-pt gluons (hadrons), and
conversely for higher-pt gluons (hadrons). That trend is
opposite to what is actually observed for dihadron num-
ber correlations with applied pt cuts [2, 33], and for pt
angular correlations [35, 36]. In contrast, the observed
data trends are well explained by jet formation, where
higher-pt particles contribute a narrower SS peak struc-
ture. Boosted Glasma flux tubes are thus contradicted by
pt systematics of the SS 2D peak width. Furthermore, it
was shown in Ref. [43] that a very large and problematic
radial boost velocity (βt = 0.96) is required to achieve
the narrow (0.65) azimuth width observed in the data.

The detailed SS peak shape on azimuth also provides
important evidence. The Glasma model requires averag-
ing SS peak widths over a broad radial-boost distribution
and a pt spectrum. Such averaging invariably leads to
long tails relative to the fundamental peak distribution
(e.g. Sec. IV-A of Ref. [44]). No such tails are observed in
the data. A narrow 1D peak on azimuth with near-ideal
Gaussian shape is observed for all Au-Au centralities [5].
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G. Glasma gluon pseudorapidity correlations

In Fig. 4 (left panel) of Ref. [21] a Glasma prediction
for gluon correlations on η∆ is compared with measured
Au-Au hadron correlations [45]. The Glasma prediction
is essentially uniform on η∆ for η∆ ∈ [−4, 4]. A “short-
range” correlation peak introduced from PYTHIA (p-p
collisions) to accommodate the heavy ion data is extra-
neous to the Glasma prediction. No explanation is given
for how a Glasma-based prediction of gluon correlations
is related quantitatively to triggered dihadron correla-
tions. Predicted variations at larger η∆ are outside the
η acceptance of most detectors.
Measured correlation structure on η∆ provides essen-

tial model tests. For all minimum-bias (pt-integral) an-
gular correlations from all Au-Au centralities measured
within the STAR TPC acceptance the SS 2D peak is
consistent with a 2D Gaussian with large curvature on
η∆ (e.g. [4, 5]). In the static Glasma flux-tube scenario
there is no variation on η. The measured SS curvature on
η∆ must then (in the Glasma model) result from strong
η dependence of conjectured radial flow which is said to
drive appearance of the SS 2D peak. However, the nonjet
quadrupole nominally associated with elliptic flow shows
no such η dependence within the STAR TPC accep-
tance [25]. If a hydro interpretation is imposed on both
the SS 2D peak (radial flow) and the nonjet quadrupole
(elliptic flow) a major discrepancy emerges between two
hydro manifestations. The Glasma model and jet-related
η∆ structure are further discussed in Ref. [20].

H. Glasma theory comparison with hadron data

In Eq. 5.3 of Ref. [22] angular correlation data in the
form ∆ρ/

√
ρref [4, 5] are compared with Glasma flux-

tube predictions in the form

∆ρ
√
ρref

(φ∆ = 0) =
dN

dy

∆ρ

ρref

(

γB − 1

γB

)

(6)

=
κ2

13.5αs

(

γB − 1

γB

)

,

where the LHS is evaluated as 1/
√

2πσ2
φ∆

= 0.62 with

σφ∆
= 0.64. But that is the amplitude for a unit-normal

Gaussian, not what was actually measured in Refs. [4, 5].
The boost factor including γB is applied without justi-
fication to correlation amplitude ∆ρ/ρref which has no
structure on φ∆. A SS 2D peak with large curvature on
η∆ is implicitly compared to a 1D ridge uniform on η∆.
And the Glasma prediction scales as Npart whereas the
measured peak amplitude increases faster than Nbin.
Because ∆ρ/ρref = κ2/NFT Eq. (6) as written implies

that the gluon density per flux tube is (1/NFT ) dNg/dy =
1/13.5αs ≈ 1/7, since it is assumed that αs ≈ 0.5 (Q =
0.8 GeV [46]). However, if factor 1/2π which belongs in
the first line (to match the LHS definition in Sec. II D)

is restored we obtain (1/NFT ) dNg/dy ≈ 1 compared to
hadron dnch/dη = 2.5 for NSD p-p collisions (Lund string
fragmentation). If we now insert those values into the
first line of Eq. (6) we obtain

∆ρ
√
ρref

(SS peak) =
1

NFT

dNg

dy

κ2
2π

(

γB − 1

γB

)

(7)

or κ2 ≈ 0.7× 2π

γB − 1
γB

.

The κ2 estimate is larger by factor 2π than that from
Ref. [22]. Aside from the comparison method and the as-
sumed radial flow boost the Glasma prediction is a factor
2π too small relative to measured angular correlations,
whatever the Au-Au centrality (unspecified in Ref. [22]).

VI. DISCUSSION

According to Ref. [21] correlations best reveal the A-A
initial state (IS) dynamics (compared to integral yields
and spectra). The Glasma picture of the IS in heavy ion
collisions should be the natural framework to understand
correlation mechanisms. In particular, Glasma flux tubes
should explain the “ridge” encountered in more-central
Au-Au collisions. To test that conjecture we contrast
Glasma theory predictions of gluon correlations from
Refs. [21, 22] with alternative models and with hadron
fluctuation and correlation data.

A. Glasma and “bulk” hadron production

The CGC model describes “bulk” hadron production
in terms of a longitudinal color-field system (Glasma flux
tubes) approximating a dense gluonic system near mid-
rapidity in A-A collisions. There is no transverse parton
dynamics in the model, no large-angle parton scattering
and fragmentation to jets. The Glasma model is a one-
component (soft) model. Mid-rapidity gluons are pro-
duced by emission from independent Bose-Einstein radia-
tors (flux tubes) longitudinally boost invariant over some
interval and with transverse correlation length ∼ 1/Qs.
The Glasma model is formally similar to the Lund

string model [8]. The probability distribution of large-x
color-charge field sources is analogous to a parton distri-
bution function (PDF) [21]. However, the Glasma model
does not provide an absolute prediction for hadron pro-
duction, only relative trends on A-A centrality and en-
ergy. The relative centrality trend (Sec. VIE) is contra-
dicted by spectrum data [20].
In contrast, the Lund string model does provide quan-

titative predictions of several aspects of nonperturbative
soft particle production in p-p and more-peripheral A-A
collisions [9, 10]. The soft component observed in NSD
p-p collisions [1] (where “bulk” particle production is un-
likely) appears to play a role even in central Au-Au col-
lisions [6], describing spectrum data quantitatively when
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supplemented by a hard component (jet fragments) de-
scribed by pQCD [17]. In more-central Au-Au collisions
the hard component contributes about one third of the
total hadron production [16]. Correlations in all colli-
sion systems require a two-component model including
both soft production (Lund strings ≈ flux tubes) and
(semi)hard parton scattering and fragmentation [2, 5].

B. Gluon correlations inferred from hadron data

Measured hadron correlations near mid-rapidity
(Sec. IVA) exhibit apparent local charge and momen-
tum conservation consistent with single-gluon parents
common to two or more daughter hadrons, favoring a
(1 → 2) process. Hadron correlations seem to “point
back” to single-parton (gluon) precursors. Hadron cor-
relations from (2 → 1) coalescence would require that
several parent partons conspire to produce observed two-
hadron local net-charge and momentum correlations.
Hadron spectrum structure can be combined with an-

gular and pt × pt correlations consistent with the two-
component model of hadron production to reconstruct
the parent parton population near mid-rapidity. Hadron
correlation data suggest that partons from dissociated
projectile nucleons comprise a minimally-correlated low-
pt gluon population fragmenting longitudinally to charge-
neutral hadron pairs which locally also conserve trans-
verse momentum. That population produces the hadron
correlation soft component which indicates no significant
correlation among parent gluons.
A scattered-gluon spectrum near mid-rapidity pre-

dicted quantitatively by pQCD [17] can be combined with
measured fragmentation functions [46] to predict hadron
fragment distributions consistent with measured hadron
hard components [6], thus confirming a parton spectrum
with lower bound near 3 GeV. Hadron correlation struc-
ture on pt × pt or yt × yt is consistent with that un-
derlying parton spectrum. Analysis of hadron angular
correlations indicates that scattered partons are corre-
lated as momentum-conserving back-to-back recoil pairs,
including an acoplanarity distribution depending on the
initial-state parton kt spectrum, but are otherwise uncor-
related. Even in central Au-Au collisions the pt spectrum
of SS 2D peak hadrons and correspondence with the AS
1D ridge compel interpreting the SS 2D peak in terms of
large-angle scattering of energetic (> 3 GeV) gluons.

C. Glasma gluon correlations on pt or yt

Hadron correlations on pt × pt or yt × yt impose key
constraints on any theoretical attempt to describe the
SS 2D peak structure. yt × yt correlations from p-p col-
lisions have a detailed quantitative correspondence to
pQCD calculations and to spectrum hard components
(Sec. IVA). Decomposition of yt × yt correlation struc-
ture according to combinations of SS and AS azimuth

subregions and LS and US charge combinations reveals
quantitative correspondence with expected features of
parton scattering and fragmentation [1–3, 6, 17, 46].

Per-pair measure κ2 from Ref. [21] plotted in Fig. 7
already reveals major disagreement between Glasma glu-
ons and hadron per-pair p-p correlations from Ref. [39].
Whereas the latter greatly increase in amplitude with
larger yt the Glasma prediction in Fig. 7 generally de-
creases to a constant asymptotic value near unity. If both
results are converted to per-particle measures as in Fig. 8
the large discrepancy is again apparent, but the mea-
sured hard-component structure appearing in the right
panel [2, 3] corresponds quantitatively with pt spectrum
structure [1, 6] and pQCD calculations [17].

Because it lacks a parton large-angle scattering mecha-
nism the Glasma model cannot describe measured yt×yt
correlations in p-p or more-central Au-Au collisions. The
Au-Au case is quantitatively different from p-p colli-
sions but still qualitatively incompatible with the Glasma
model. Ironically, the Glasma model produces a very
hard gluon pt spectrum as in Eq. (3), but nothing that
corresponds to the observed hadron spectrum hard com-
ponent which scales with Nbin, not Npart.

D. Glasma gluon azimuth correlations

Figure 10 (left panel) gives the impression that static-
model gluon correlations are sharply peaked near paral-
lel and antiparallel momentum configurations, suggesting
that a SS ridge (“collimation”) is already inherent in the
Glasma model without invoking radial flow. In Sec. VE
the apparent peaked structure is identified as the Jaco-
bian for the transformation φ∆ → cos(φ∆). Glasma cor-
relations on η∆ are also structureless within |η∆| < 4.
Thus, the static Glasma model predicts no significant
gluon angular correlations for any conditions, in contrast
to measured p-p and Au-Au hadron angular correlations.

According to the theory any hadron correlation struc-
ture on azimuth must result from a conjectured radial
boost. However, formation of a SS ridge via radial flow is
inconsistent with hadron data. Coupling boost-invariant
flux tubes with boost-invariant radial flow would produce
correlations on φ∆ alone. The measured large SS curva-
tures on η∆ would require strong variation of radial flow
on z, contradicting the measured uniform nonjet azimuth
quadrupole within the STAR TPC acceptance [25].

The radial boost mechanism should produce a nar-
rower structure on azimuth for lower-pt particles. The
measured hadron SS peak is narrower on azimuth for
higher-pt particles [2], consistent with expectations for jet
formation. There is no mechanism in the Glasma model
for formation of the AS 1D peak on azimuth which tracks
very closely with SS 2D peak properties vs A-A central-
ity. In contrast, the AS 1D peak and its systematics are
consistent with expected back-to-back jet correlations.
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E. Glasma centrality dependence

The centrality dependence of measured spectra and
correlations from Au-Au collisions has been extensively
studied [4–6, 17, 38]. The systematics of three SS 2D
peak parameters challenge the Glasma flux-tube model.
The SS 2D peak (hard component) amplitude scales
as Nbin in more-peripheral A-A collisions (as predicted
for jets) and increases more rapidly than Nbin in more-
central Au-Au collisions above a sharp transition on cen-
trality [5]. The Glasma flux-tube number NFT scales
with A-A centrality as Q2

sS⊥ ≈ Npart. Any Glasma
flux-tube contribution to the per-hadron SS 2D peak
should actually decrease with increasing A-A centrality
as Npart/2nch ∝ 1/[1+x(ν− 1)]. The measured SS peak
amplitude increases at least as fast as ν/[1+x(ν−1)] [5].
Thus, centrality dependence of the SS 2D peak amplitude
is incompatible with Glasma expectations.

In the Glasma model the observed SS peak structure
narrow on azimuth must result from conjectured radial
flow (Sec. VE). But the magnitude of the radial boost
and its effect on flux tube emission must conspire to pro-
duce the same SS 2D peak azimuth width σφ ≈ 0.65
over a broad range of Au-Au centralities where the re-
ported radial flow magnitude βt is changing from 0.25 to
0.6 [41]. And the azimuth width must remain constant
through and beyond the sharp transition where the am-
plitude and η width of the SS 2D peak (which must also
depend on radial flow) change rapidly [5].

The conflicting constraints on conjectured radial
flow systematics are inconsistent with observed nonjet
quadrupole v2{2D} systematics which show no corre-
spondence to the sharp transition in SS 2D peak char-
acteristics [25]. The nonjet quadrupole is uniform on
η∆ within the STAR TPC acceptance. Any radial flow
would have to be very nonuniform within the same ac-
ceptance to produce the SS 2D peak curvature on η∆. If
the two phenomena are hydro manifestations they seem
to be incompatible.

F. Glasma energy dependence

Per-particle fluctuation measure (σ2
N − N̄)/N̄ = N̄/k

represents an integral of angular correlations [24]. Thus,
NBD parameter k in the form N̄/k represents a cor-
relation integral of differential per-particle number an-
gular correlations, including the SS 2D peak nominally
described by Glasma flux tubes. The predicted energy
trend for parameter k in the Glasma model is k ≈ NFT ∝√
s
λ

increasing monotonically with
√
s, implying that

1/k should decrease slightly with energy. The observed
trend in Fig. 6 is 1/k ∝ [ln(

√
s/13.5 GeV)]0.75, and

the SS 2D peak amplitude itself is observed to increase
with energy approximately as ln(

√
s/13.5 GeV) [5, 35],

strongly contradicting Glasma expectations.

G. Glasma gluon fluctuations and correlations

The statistics of generic two-tiered particle production
can be described as follows: If N particles result from
event-wise production of K sources, each emitting n par-
ticles (all are fluctuating random variables) then [20]

σ2
N − N̄

N̄
=

σ2
n − n̄

n̄
+ λ

σ2
n1n2

n̄
+ n̄

[

σ2
K − K̄

K̄

]

+ n̄,(8)

illustrating the additivity of per-particle (co)variance
measures [24]. It is assumed that K-n covariance is
zero. That expression could describe gluon emission from
Glasma flux tubes, hadron emission from Lund strings
or fragmentation of large-angle-scattered partons. The
terms on the RHS are interpreted in terms of jet pro-
duction in Ref. [20] (Sec. V-A). The first term represents
intra source correlations, the second inter source corre-
lations, the third represents non-Poisson source number
fluctuations and the last term represents the hierarchy
process apart from any source or particle correlations.
In the Glasma model the following are equivalent:

K → k ≈ NFT ≈ Npart the number of flux tubes,
n → ng, the number of gluons per independent color
source, and N → Ng ≈ ngNFT the total radiated gluon
number. Independent color sources (≈ flux tubes) are
assumed to be Poisson distributed with no intersource
correlations, in which case the second and third terms on
the RHS of Eq. (8) are zero. We then have from Eq. (2)

κ2 = NFT

∆ρ

ρref
→ NFT

σ2
Ng

− N̄g

N̄2
g

(9)

=
σ2
ng

− n̄g

n̄2
g

+ 1,

where the first term in the second line is the per-pair
measure of all intrasource (per flux tube) correlations,
explaining why κ2 tends to unity at larger pt: intrasource
correlations go to zero in the perturbative limit. In the
limit where exactly one gluon proceeds from one flux tube
(no statistical hierarchy) σ2

ng
= 0, n̄g = 1 and κ2 → 0.

Equation (9) contrasts dramatically with hadron data.
NFT ≈ Npart, κ2 = [Npart/ρ0(b)][ρ0(b)/k] and both fac-
tors have been measured. The first factor (centrality de-
pendence) decreases ∝ 1/[1+0.1(ν−1)] [16]. The second
factor (energy dependence) plotted in Fig. 6 (right panel)
increases strongly with

√
s and is identified with several

contributions from jet correlations in [20].

H. Glasma flux tubes vs minijets in p-p and Au-Au

The mechanism for η-elongation of the SS 2D peak in
more-central Au-Au collisions [4, 5] is a major problem
for QCD theory at RHIC. Does the elongated peak arise
from nonperturbative modification of parton scattering
and fragmentation in a large A-A system, or does a novel
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process based on Glasma flux tubes and conjectured ra-
dial flow manifest as an elongated ridge? Survival of co-
pious parton scattering and fragmentation (minijets) in
more-central Au-Au collisions [16, 17, 44, 47] contradicts
claims for formation of a flowing partonic medium with
small viscosity [48, 49]. Thus, an alternative explanation
for the SS 2D peak by a mechanism other than parton
scattering and fragmentation is sought.

The SS 2D peak has been characterized as a “soft
ridge” [37], and η elongation is described as “long-range”
correlations, confusing polar angle measure η and longi-
tudinal momentum pz represented by longitudinal rapid-
ity yz. A causal argument is then invoked that only a
process occuring at early times can produce long-range
rapidity correlations. Glasma flux tubes are said to be in-
herently long-range (boost invariant) and established at
early times. They are thus characterized as a “natural”
explanation for the η-elongated SS 2D peak [21].

However, while the Glasma model seems to describe
qualitatively a few features of the SS 2D peak in more-
central Au-Au collisions, there are substantial discrepan-
cies between the flux-tube model and measured hadron
spectrum and correlation systematics. Major issues in-
clude: (non)existence of conjectured radial flow and in-
consistency with observed azimuth quadrupole systemat-
ics, disagreement with the energy and centrality depen-
dence of hadron spectra and correlations, disagreement
with most features of measured hadron pt and angular
correlations, especially η dependence of the SS 2D peak,
absence of the pt × pt hard-component structure identi-
fied with the η-elongated SS 2D peak and absence of an
AS 1D ridge in the Glasma model.

In contrast, the two-component soft+hard (=minijet)
hadron production model of spectra and correlations has
been quantitatively applied in combination with pQCD
predictions to data from p-p and Au-Au collisions with
good success [1, 2, 6, 16, 17]. It provides a self-consistent
quantitative description of many aspects of nuclear col-
lisions based on pQCD and measured properties of el-
ementary e+-e− and p-p collisions [1, 6, 16, 17, 46].
Corresponding two-component Monte Carlos also de-
cribe many features of hadron data quantitatively [9, 10].
Most relevant to the present analysis, the two-component
hadron production model continues to describe the SS
2D peak volume (sum of fragment pairs) for all Au-Au
centralities [16].

The only manifestation not currently described by the
two-component model is η elongation of the SS peak in
more-central A-A collisions. However, deviations from
symmetric jet structure (e.g. η elongation) are not con-
tradicted by QCD and are not inconsistent with mea-
sured jet characteristics in elementary collisions, for in-
stance p-p collisions [3] and three-jet events in e+-e− col-
lisions [50, 51]. In contrast, Glasma flux tube theory
predicts specific pt structure contradicted by data and
an η structure inconsistent with a bounded SS 2D peak
and thus cannot predict a defined number of correlated
pairs that could be related to theory.

VII. SUMMARY

Observed strong elongation on η of the same-side 2D
peak in minimum-bias angular correlations from Au-Au
collisions has been attributed to Glasma flux tubes cou-
pled with radial flow to form a narrow structure or ridge
on azimuth. In the present study we have tested that
conjecture by comparing Glasma predictions for particle
production, spectra and correlations with conventional
hadron production models and with measurements. We
find a number of contradictions between the Glasma
model and spectrum and correlation data.
The A-A centrality dependence of the Glasma model is

defined by flux-tube number NFT , approximated by the
number of nucleon participants Npart. The Glasma one-
component model of gluon (hadron) production therefore
has no correspondence to observed hard-component fea-
tures in spectra and correlations which scale with central-
ity as the number of N-N binary collisions Nbin. There is
no relation to p-p and peripheral A-A spectrum and cor-
relation systematics described quantitatively by pQCD.
The same-side 2D peak in angular correlations is asso-

ciated with a prominent peak on pt × pt or yt × yt cor-
relations with quantitative correspondence to the hard
component in measured pt spectra, all scaling as Nbin.
The hard-component peak remains visible near pt = 1
GeV/c from p-p to central Au-Au collisions. The Glasma
model predicts structure similar to observed soft compo-

nent correlations which are unrelated to the same-side 2D
peak. No hard-component structure on pt × pt or yt × yt
correlations is observed from the Glasma model, and the
Glasma single-gluon spectrum scaling with Npart has no
correspondence in hadron pt spectra.
The static Glasma model exhibits no significant angu-

lar correlations, relying on coupling to conjectured ra-
dial flow to develop a peak structure on azimuth. How-
ever, such a correlation mechanism would produce peak
azimuth-width dependence on particle pt (e.g. trigger-
associated cuts) opposite to the observed trend (consis-
tent with pQCD jet structure). Radial flow would also
have to exhibit strong variation on z to produce the large
observed same-side peak curvature on η∆, which would
be inconsistent with measured nonjet quadrupole system-
atics. And the Glasma model has no mechanism to ac-
count for the away-side 1D peak on azimuth naturally ex-
plained by back-to-back jet correlations scaling as Nbin.
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