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Abstract

This paper gives a momentum-space representation of the Argonne V18 potential as an expansion
in products of spin-isospin operators with scalar coefficient functions of the momentum transfer.
Two representations of the scalar coefficient functions for the strong part of the interaction are
given. One is as an expansion in an orthonormal basis of rational functions and the other as
an expansion in Chebyshev polynomials on different intervals. Both provide practical and efficient
representations for computing the momentum-space potential that do not require integration or in-
terpolation. Programs based on both expansions are available as supplementary material. Analytic
expressions are given for the scalar coefficient functions of the Fourier transform of the electro-
magnetic part of the Argonne V18. A simple method for computing the partial-wave projections

of these interactions from the operator expressions is also given.

PACS numbers: 21.45.Bc¢ ,21.30.Cb



I. INTRODUCTION

The Argonne V18 potential [1] is one of a number of nucleon-nucleon interactions [2][1][3]
that provide a quantitative description of experimental two-body observables below the pion-
production threshold. It is distinguished from the other realistic interactions because it is
expressed as an operator expansion with local configuration-space coefficient functions. This
representation has advantages when used in variational Monte Carlo calculations. On the
other hand, there are a number of calculations that require a realistic interaction that are
more naturally performed in momentum space. These include some Faddeev calculations,
relativistic few-body calculations, and calculations involving electromagnetic probes. In the
momentum representation the variable conjugate to the relative coordinate is the momentum
transfer. In calculations, both momenta appear, which requires either an interpolation or
a separate Fourier transform for each pair of momenta. Fourier transforms of the V18
potential have been used in some applications [4]. The purpose of this paper is to provide
useful, tested and reproducible analytic approximations of the Fourier transform of the
Argonne V18 potential for use in momentum-space calculations. The analytic forms allow
for a direct calculation of the momentum-space interaction for any pair of initial and final
momenta. In keeping with the traditional Argonne form, the momentum-space potential
is given as a linear combination of products of spin-isospin operators with scalar functions
of the momentum transfer. The resulting momentum-space potential has 24 terms. The
additional six operators appear because the Fourier transform of the terms involving the
operators L2V;(r) and (L - S)?V;(r) each become a sum of two different momentum-space
operators with different coefficient functions. In this work the Fourier transform is given
for the strong part of the Argonne V18 potential, without the electromagnetic terms. This
part of the potential must be treated numerically. The electromagnetic terms have analytic
Fourier transforms, which are discussed in Appendix 3. The partial-wave projection of the
momentum space potential is discussed in Appendix 2. It is constructed from the operator
expressions by integrating over the angle between the initial and final momentum vectors,
however unlike the configuration-space partial-wave projection, the integrals involve both

the operator and the scalar coefficient functions.



The Argonne V18 potential has the form

V= iVn(r)On (1.1)

where V,,(r) are rotationally-invariant coefficient functions of the relative coordinate of the

nucleons and the O,, are the eighteen spin-isospin operators given in Table 1.,

Table 1: Argonne V18 spin-isospin operators

in coordinate-space

Term|spin-isospin Operator in r-space
O, I
O, (11 72)
O (01 -02),
Oy (01-02)(T1 - T2)
Os | Si2=3(01-1)(02-T) —01-09
Og Sia(T1 - T2),
O7 (L-S)
Os (L-S)(11-72)
Oy (L-L)
O1o (L-L)(1y-712)
On (L-L)(o1-02)
O19 (L-L)(oy-02)(11 - T2)
O3 (L-S)?
O (L-S)*(11 - 7T2)
O1s Ty = (37'1z7'2z - T 7')
O16 (01 -02)T12
O17 NIPYAD)
O1s (712 + 722)
In this table T}, is the isotensor operator Tis := 37,79, — 71 - To. While the isospin

operators, T;, factor out of the Fourier transforms, the operators L? L - S, (L -S)? and the
tensor operator S, contribute to the Fourier transform.
The Fourier transform of this potential can be expressed as a linear combination of

24 momentum-space operators with scalar coefficient functions of the momentum transfer.

3



There are 24 operators because the L-L and (L-S)? operators have two distinct contributions
in momentum space. In appendix 1 it is shown that the potential matrix element (k'|V|k),

with q := k’ — k, has the following five types of contributions:

1 I
! / e RO (g = T / " olan)Vy(r)dr. (1.2)
(2m)3 ! 272 J, !
2 L-S
! / eI FV, (1)L - SeMTdr = ik x K) - S / " (qr)V;(r)ridr.  (1.3)
(27)? ’ 2m2q Jo T ’ ’
3 L L
1 —ik’-r ik-r
)7 e Vi(r)L - Le™"dr =
/ / 1 > - / 1 > -
—(k'xk)-(k ><1<)27T2q2 /0 Jz(qr)‘/j(r)r4dr+2(k-k)%zq /0 Jilgr)Vi(r)ridr. (1.4)
4. (L-S)?
1 —ik/-r 2 ik
o) e Vi(r)(L - S)%e™ T dr =
he 1o , <
—(S'(kxk))Qﬁqz/0 Ja(qr)V;(r)ridr + (k XS)-(1<><S)27T2q/0 Jilgr)Vi(rridr.
(L.5)
5. 512:3(f-01)(f"-02)—01-02
(271_)3 /e‘lk .TV(T) (3(1‘ . 0'1)(1' . 0'2) — 01 '0'2) (& k dr =
L[~
~ (a-on(a-0) ~ 01-03) s [ lan)V i (16)
0

These expressions are used to represent the momentum-space interaction as a sum
of scalar functions of ¢ := |q| multiplied by spin-isospin operators. These
scalar coefficient functions of the momentum transfer that multiply the spin-

isospin operators have the form of one of the integrals listed in Table 2:



Table 2: Momentum-space scalar coefficient functions

Scalar coefficient function dim indices
f/m(q) = # fooo Jolqr)Viu(r)r?dr |MeV fm3|m € {1,2,3,4,15,16,18}
Vin(q) == sezz Jo 1 (qr)Viu(r)r®dr |MeV fm®|m € {7,8,9b,10b, 11b, 12b, 13b, 14b}

(9)
(@) = 52 Jo J2(qr)Vin(r)r*dr|MeV fm™|m € {9a, 10a, 11a, 12a, 13a, 14a}
(q) == ﬁ I5” g2(qr) Vi (r)r2dr|MeV fm®|m € {5,6,17}

where V,,(r) is the m™ potential in the expansion (1.1) and V,,4(q) and V,.,(q) are the two
different functions that appear in (1.4) and (1.5). These functions have finite limits as ¢ — 0
in spite of the 1/¢' coefficients since the Bessel function j;(¢r) vanishes like ¢' as ¢ — 0.
The strong interaction contribution to the 24 scalar coefficients listed in Table 2 are numer-
ically computed. The computational methods are discussed in section 3. Programs that
compute these scalar coefficients are available as supplementary material to the electronic
version of this paper. Quantities, like the binding energies in the test calculations, exhibit
small sensitivities (in the sixth significant figure) to the precision of input constants. In the
supplementary programs these constants are taken from the original V18 potential.

The supplementary programs are ¢ source codes. For a given input ¢ they produce four
arrays corresponding to the four types of integrals in table 2. The index m on the array
corresponds to the m values (without the a or b) in table 2. When one of the intergals in
table 2 has no contribution for a particular m value the entry is set to zero. Both programs
calculate the same quantities using the two different methods descibed in this paper.

The electromagnetic contribution to each of these operators can be represented in terms
of known special functions. These contributions are important for precise low-energy cal-
culations and can be added to the strong interaction coefficient functions when they are
needed. The analytic expressions for the electromagnetic terms are given in Appendix 2.

The resulting momentum-space potential has an operator expansion of the form

(K |V[k) =" Vou(q)Om (1.7)

meS

where S = {1,2,3,4,5,6,7,8,9a,9b, 10a, 10b, 11a, 11b, 12a, 12b, 13a, 13b, 14a, 14b, 15, 16, 17,18}

and the 24 operators O,, are given in Table 3.



Table 3: Argonne V18 momentum-space

spin-isospin operators

term |spin-isospin operator

0, |I

Oy |(T1-72)

03 (01-02)

Os |(o1-02)(T1-T2)

—(3(a-01)(a-02) — ¢*01 - 02)

Os |—(3(a-01)(a 02)—61201'02) (T1-T2)
O; |ilk xk')-S

Os |i(k xK')-S(71-712)

Og, |—(K' x k) - (K x k)

Ogy, |2(K k)

O100 |— (K x k) - (K x Kk)(771 - T2)

Ovop [2(K" - k) (71 - T2)

O114 |— (K x k) - (K’ x k)(01 - 02)

O11p |2(K' - k) (07 - 09)

Or2q |— (K x k) - (K x k)(01 - 02)(T1 - T2)
O1 12(K - k) (01 - 02)(T1 - T2)

O134|—(S - (k x K'))?

Oz [(K' xS) - (k x S)

O14a |— (S (k x K))2(71 - T2)

O |(K' xS) - (k x S)(T1 - T2)

O15 |T1z

O |(01-09)T1o

Oir |=(3(a-a1)(q-03) — ¢°01-09) Ty
O1g |(T1z + T22).

The Argonne V18 potential in momentum-space has the dimension [MeV fm?3]. Dividing
by hcin [Mev— fermi| can be used to convert the momentum-space potential to a consistent

set of units, [(fm)?].



II. NUMERICAL FOURIER BESSEL TRANSFORMS

This section summarizes an accurate numerical computation of the integrals in Table 2.
These computations are used to test the accuracy of the approximations discussed in the
next section.

Because the configuration-space potential falls off asymptotically like e™"" the radial
integrals are evaluated with a finite cutoff at 20 fm. The Fourier-Bessel transforms are
evaluated for momentum transfers ¢ < 100 fm~!. With these cutoffs the maximum value of
x := ¢r that can appear in the argument of the spherical Bessel functions in the integrals
in Table 2. is x,,.. = 2000. To evaluate these integrals the zeros of the spherical Bessel
functions jo(x), j1(x), and jo(z) for 0 < x < 2000 are computed for each fixed value of g.
For each value of ¢ the integrals are expressed as sums of integrals between successive zeros
of the spherical Bessel function that appear in the integral. If ¢ is such that gr is never
a zero of jj(qr) for 0 < r < 20fm then the integral over r is performed using a 100 point
Gauss-Legendre quadrature on the interval [0, 20 fm]. If ¢ is such that ¢r has zeros of j;(qr)
for 0 < r < 20fm, then the integrals between zeros [gr;, qri11] are computed using 20 Gauss-
Legendre points when r;,7 < 5 fm, 40 Gauss-Legendre points when 5 fm < r;pq < 10 fm

and 80 Gauss-Legendre points when 10 fm < r;;; < 20 fm. For further details see [5].

III. APPROXIMATIONS

This section discusses two approximations of the potential functions Vm(q) in Table 2 by
expansions in known elementary functions. The first method approximates these potential
functions by linear combinations of Chebyshev polynomials on three distinct intervals of
momenta, for momenta up to 100 fm~!. The second approach approximates these potential
functions by a finite linear combination of orthonormal functions of the momentum transfer
that have analytic Fourier-Bessel transforms. The configuration-space basis functions are
associated Laguerre polynomials multiplied by decaying exponentials. These functions have
analytic Fourier transforms that are rational functions of the momentum transfer [8]. In
both approaches the coefficients of the expansion function are stored. The basis functions at
any point can be generated efficiently by recursion and the potentials can be expressed as a

finite linear combination of the basis functions. Both methods lead to efficient and accurate



approximations to the momentum-space potential.
Figures 1 and 2 show the potential functions for the central and tensor parts (V;(¢) and

Vs(q)) of the interaction to illustrate the structure of typical potentials.

A. Chebyshev expansions

This section discusses the Chebyshev basis. The functions Vm(q) are replaced by a Cheby-
shev polynomial approximation on the interval g € [a, b] using [6]
100

a—l—b 2
Nco/2+ch n(—7— b—aq) (3.1)

where

T, (x) = cos(ncos™*(z))) (3.2)

are Chebyshev polynomials and the coefficients ¢, are computed using a Clenshaw-Curtiss

quadrature [6] :

2[1
N2

V(D) + Zf/ (EEhy b;acos(ﬂj/N))cos(njﬂ/N) + ()" %f/ (@)]  (3.3)

Cp =

with N = 101. The functions f/m(q) are evaluated at the quadrature points ¢; = “T“’ +

b_T“ cos(mj/N) using the methods discussed above. This is repeated for ¢ in each of three
intervals, [a,b] = [0, 10],[10,50], [50,100] and the 101 expansion coefficients associated with
each of these three intervals are stored. The Chebyshev polynomials are computed using

the recurrence relations
Thir(z) = 22T, (x) — Ty -1 (), To(x) =1, Ti(z) = x. (3.4)

For ¢ larger than 100 fm~' V,,(q) is approximated by 0.

For the potentials V4(q), Vis(¢) and Vi7(¢) it was necessary to add additional Cheby-
shev expansions intervals between zero and ten fm~!. For f/}l(q) 21 polynomials were used
on [0,.2]fm™", 31 polynomials were used on [.2,.5]fm™!, 41 polynomials were used on
[.5,2.0]fm™" and 71 polynomials were used on [2.0,10.0]fm~'. For Vi(¢) 31 polynomials
were used on [0,.5] fm™!, 41 polynomials were used on [.5,2.0] fm ™" and 41 polynomials were
used on [2.0,10.0]fm~". Similarly for Vi7(¢) 31 polynomials were used on [0,1.0]fm™", 51

polynomials were used on [1.0,5.0]fm~! and 51 polynomials were used on [5.0,10.0] fm ="
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This method provides an accurate and efficient representation for computing a momentum
space V18 interaction. One of the supplementary programs (argonne_chebyshev.c[7]) uses

this method to compute the 24 coefficient functions in Table 2.

B. Rational basis functions

While the method of the previous section gives accurate results, a more straightforward
approach is to represent the potential directly as an expansion in basis functions that have
analytic Fourier transforms. In order to represent the potential, each of the scalar potentials
Vm(q), is approximated by an expansion in known basis functions. A method to compute
both the expansion coefficients and a recursion formula to compute basis functions are given
below.

The functions V,,(r), rV,,(r), and 72V, (r) that appear in the integrands of the integrals in
Table 2 are expanded using an orthonormal set of radial functions that have analytic Fourier-
Bessel transforms [8]. These functions are associated Laguerre polynomials multiplied by
decaying exponentials in configuration space. Their Fourier-Bessel transforms have power-
law fall of in momentum space. In addition, they vanish at the origin in a manner that can
be used to explicitly cancel the factors 1/q and 1/¢? that appear in the definitions of Vi, in
Table 2. Both sets of basis functions can be generated efficiently using recursion relations.
The cancellation of the factors 1/q and 1/¢* can be directly incorporated into the recursion
that generates the momentum-space basis functions so the final expression for the potential
does not require a special treatment for ¢ near 0.

The radial basis functions for different values of [ are given below. The dimensionless
parameter x := Ar is used in the basis functions, where A is a scale parameter that can be
chosen to improve efficiency. The parameterization of the Argonne V18 interaction uses the

value A = 7(fm)~!. The configuration-space basis functions are

1
(1) = ——2' LT (22)e™" (3.5)
an
where
o - m n+a ™
Ly =Y (-) poor} (3.6)
m=0 n—m :



and the normalization coefficient is

N, = A‘3(%)2l+3

Fn+a+1)
n!

These functions satisfy the orthogonality relations

/OO ¢nl(r>¢ml(r>r2dr = 6mn
0

They have analytic Fourier-Bessel transforms given by

Sni(q) = \/%/000 31(gr) g (r)r3dr.

For y = q/A the qgnl(q) can be expressed in terms of Jacobi polynomials:

-1 y! et y? —1
Puld) = VN, T (y2 7
with normalization coefficient
- A3 T(n+1+30(n+1+3)
"T20@n+2043) nll(n+20+3)
and
Pd)(4) = MNa+n+1) 2: n\I'la+pf+n+m+1)
nll(a+B+n+1) =\ 2mM(a+m +1)

These functions satisfy the orthogonality relations

/0 (Zgnl(q)éml(q>q2dq = Omn-

(x —1)™.

(3.7)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

These basis functions can be generated by using the recursion formulas for the associated

Laguerre functions and Jacobi polynomials

(n+1)Lo. (z)=2n+a+1—-2)Ly () — (n+ o)Ly _(x)

and

2n+1)(n+a+ B+ 1)2n+a+ B)PYD(x) =

(3.14)

[(2n+a+B+1)(a® = 57) +2(2n+a+B)2n+a+ B+ 1)2n+ a+ f+2)|P1(z)

—2(n+a)(n+B)2n+a+ B +2)P D ().
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These recursion relations can be modified to incorporate the normalization constants (3.7)
and (3.11) directly into the recursion. The recursion for the normalized radial basis functions

with (z = Ar) is given by:

— 1 1 3/2,1 —x
Po(r) = \/(2l+1)!\/22l+3A z'e (3.16)
2043 — 22
ou(r) = s —=—¢u(r) (3.17)
2n+1420 -2z (n—1)(n+ 14 2I)
Gri(r) = T ¢n 1( \/ n(n+2 1 20) Gn—24(T). (3.18)

Similarly, the normalized momentum-space basis functions with (y = ¢/A) are generated by

the recursion:

Pu(q) =
1 1 l 1
V(21 + 3)! \/_\/ _ 2l+3\/ ] 2lT+1y(y2+1)2l+2 (3.19)
~ 1 y? —1 20+5 ~
oulq) = (§+(l+2)y2+1)\/(l+2+%)(l+1+%)¢0l(q> (3.20)
(gnl(cﬁ =
(2n+ 20+ 3)n(n+ 20 + 2)
@2n+20+1)(n+1+3)(n+1+3)
L2n 420+ D)2+ 2)( +1)+(2n+2z+1)(2n+2Z)(2n+2l+2)(y2—1)(5 @
on(n + 20+ 2)(2n + 20)(y2 — 1) n-1d
B (2n+20+3)(n—1)n(n+1+20)(n+ 20 + 2)
@n+20—1D)(n+1+3)(n+1+35)n+1+35)(n+1—-3)
n+l+Hn+1-H2n+20+2)-
O D (3:21)
Replacing ¢ (q) in (3.19) by da(q) := éu(q)/q" given by
doilq) =
! ! ! - ! (3.22)

A
/(@21 +3)! \/_\/ .2l+3\/ Coaen (Y1)

2
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to start the recursion in equations (3.20)-(3.21) generates ¢n(q) := dni(q)/q', which are well-
behaved as ¢ — 0. Seventy expansion coefficients are used to construct the momentum-space

potential for each value of m

W/ Gno(r) Vi (r)r?dr— m € {1,2,3,4,15,16,18} (3.23)

n = 53 / G (7 yrédr m e {7,8,9b,10b, 11b, 12b, 13b, 14b} (3.24)
=52 / Pra(r yridr  m e {9a,10a,11a,12a, 13a, 14a} (3.25)

- %2/ Gna(r yr?’dr  m € {5,6,17}. (3.26)

The integrals are approximated using an 80 point Gauss-Legendre quadrature between 0
and 10fm. The basis functions ¢,,;(r) are generated using (3.16-3.18). The scale parameter
in the recursion for ¢,;(r) is taken as A = 7fm™".

The 70x24 expansion coefficients ¢, are stored. The momentum-space potential func-

tions are then given by

VM(Q) - Z Cnmqgnl(Q) (327)

where the reduced expansion functions QASnl(q) = ngnl(q) /q' are generated recursively using
(3.20-3.22).
The full momentum-space potential in operator form is given by

V=> Vulq)On (3.28)

meS

where O,, are the 24 operators in Table 3 and ¢ = V&2 + k2 — 2k’ - k.
One of the supplementary programs (argonne_rational.c [9]) uses this method to compute

the 24 coefficient functions in Table 2

IV. TESTS

Two tests are performed on the potentials. First, the momentum-space coefficient func-
tions, f/m(q), computed using the accurate numerical Fourier Bessel transforms, the Cheby-
shev expansion and the rational basis function expansion are compared. For the second test

both representations of potential are used to compute the deuteron binding energy and wave
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functions. These results are compared to a direct calculation of these quantities using the
partial-wave expansion of the original configuration space potential.

The results of the first test are shown in Tables 4-7, which list values of the Fourier-
Bessel transforms of the 24 radial functions computed using these three different methods
for momentum transfers of 1,5,15 and 25 fm .

These results are shown in Tables 4,56 and 7 for all 24 operators and a representative
range of the momentum transfers. The columns labeled RFExp show the scalar potential
functions using the rational function expansion, the columns labeled CExp show the same
quantities using the Chebyshev expansion, while the columns labeled NF'T show the results
of the direct numerical Fourier transform. Figures 1-24 plot the difference of the approximate
Fourier transforms with an accurate Fourier Bessel transform divided by half of the sum of

these quantities. The solid curves are for the rational function expansion and the dotted

curved are for the Chebyshev expansion.
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Table 4: Values of scalar coefficients at 1 fm~—!

n RFExp

CExp

NET

1 6.789973x1071
2 -4.019392x 107!
3 -1.692090x 107!
4 2.358519x107"
5 7.216739x1073
6 2.857732x107!
7 -5.511547x107!
8 -1.678888x 107!
9 1.741415%x1071
10 -3.272988x 1072
11 1.999136x102
12 -7.414060x 103
13 9.084422x1072
14 1.245017x107"
15 1.122388x1072
16 -1.214926x 102
17 2.403290x103
18 6.124964x107°
19 1.304278x1072
20 -1.702409x 1072
21 -7.227244x1073
22 -7.849686x 1073
23 4.518193x1072
24 3.980251x 1072

6.789977x 107"
-4.019392x 107!
-1.692090x 10~

2.356704x107"

7.218217x1073
2.860471x107!
-5.511547x 1071
-1.678888x 1071

1.741415%x 1071
-3.272987x 1072

1.999136x 102
-7.414060x 1073

9.084424x10~2

1.245017x 107"

1.122389x 102
-1.216021 x 102

2.420818x 1073

6.124964x 1073

1.304274x 1072
-1.702401 x 1072
-7.227256x 1073
-7.849707x1073

4.518262x 1072

3.980269x 102

6.789977x 107"
-4.019392x 107!
-1.692090x 10~

2.356705x107"

7.218217x1073

2.860467x 107!
-5.511547x 107!
-1.678888x 1071

1.741415%x 1071
-3.272987x 1072

1.999136x 102
-7.414060x 1073

9.084424x10~2

1.245017x 107!

1.122389x 102
-1.216031x 102

2.420818x 1073

6.124964x 1073

1.304274x 1072
-1.702401 x 1072
-7.227256x 1073
-7.849707x1073

4.518262x 1072

3.980269x 102
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Table 5: Value of scalar coefficients at 5 fm~!

RFExp

CExp

NET

1.160699 x 10°
-1.360382x 1072
-1.148807x 1071
-1.065288x 107"

4.489757x 1073
4.405849x 1073
-4.623736x 1072
-1.871380x 102
2.471311x1072
1.480758 %1073
6.027203x 103
1.465070x 1073
5.222260x 1073
8.233502x 1073
4.828280x 103
-4.815794x1073
1.656921 %106
4.274306x10~*
4.273833x1073
1.791462x10~*
9.672551x10~*
1.814761x10~*
1.620319%1073
1.790086x 1073

1.160699 x 10°
-1.360382x 1072
-1.148807x 1071
-1.065203x 107"

4.489763x 1073
4.405371x1073
-4.623736x 1072
-1.871380x 102
2.471311x1072
1.480758 %1073
6.027203x 103
1.465070x 1073
5.222260x 1073
8.233502x 1073
4.828280x 103
-4.815305%x1073
1.627533x10°6
4.274306x10~*
4.273832x1073
1.791461x10~*
9.672550x10~*
1.814761x10~*
1.620318x1073
1.790085%x 1073

1.160699 x 10°
-1.360382x 1072
-1.148807x 10711
-1.065203x 10~
4.489763x 1073
4.405370x1073
-4.623736x 1072
-1.871380x 102
2.471311x1072
1.480758 %1073
6.027203x 103
1.465070x 1073
5.222260x 1073
8.233502x 1073
4.828280x 103
-4.815305%x 1073
1.627533x10°6
4.274306x 10~
4.273832x1073
1.791461x10~*
9.672550x10~*
1.814761x10~*
1.620318 %1073
1.790085%x 1073
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Table 6: Value of scalar coefficients at 15 fm™!

RFExp

CExp

NFT

9.321365x10~*
4.123439x107°
-1.924812x107°
-6.648375%x 107"
-9.010902x10~6
1.026393x 1075
5.541260x107°
2.632043x107°
-1.962835x 1076
-9.304609x 1077
-6.015901x 1077
-1.047669x 1077
-4.725022x 1076
-1.527634x 1076
2.942747x1076
-2.895027x 1076
-2.865458 x 10710
9.986465x 1078
-2.604487x1077
-6.335039%x 1078
-7.055132x1078
-1.454468 x 1078
-3.115148 %1077
-1.394089x 1077

9.321031x10~*

4.123387x107°
-1.924669x 1077
-6.643904x 1077
-9.010512x 106

1.026324x107°

5.540856 % 10~°

2.631901x107°
-1.962585x 1076
-9.304846x 107
-6.015363x10~7
-1.047529%x 1077
-4.725152x 1076
-1.527584x 1076

2.942623x10~°
-2.892432x 106
-3.049671x10~1°

9.985107x10~%
-2.604660x 107"
-6.334951x 108
-7.055521% 1078
-1.454569% 1078
-3.115089x 107
-1.394129%10°7

9.321031x10~*

4.123387x107°
-1.924669% 1077
-6.643770x107°
-9.010512x 106

1.026323x107°

5.540856x107°

2.631901x107°
-1.962585x 107
-9.304846x 107
-6.015363x10~7
-1.047529%x 1077
-4.725152x 1076
-1.527584x 1076

2.942623x10°
-2.892244 %1076
-3.061292x 1010

9.985107x10~8
-2.604660x 107"
-6.334951x 108
-7.055521%x 1078
-1.454569% 1078
-3.115089x 107
-1.394129%10~7
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Table 7: Value of scalar coefficients at 25 fm~—!
RFExp CExp NFT

n
1 -1.386301x107° -1.383431x107° -1.383431x107°
2 -6.108349x107® -6.010007x107% -6.010007x10~®
3 8.598072x107" 8.595154x 1077 8.595154x10~"
4
5
6

1.014189x107%  1.003839x107° 1.003915x10~°

-4.600082x 1077 -4.599210x10~" -4.599210x10~"

4.739733x1077  4.738710x1077  4.738711x107"
7 2.443040x107%  2.442088x107% 2.442088x107®
8 9.428095x107?  9.412965x107? 9.412965x10~?
9 -1.534834x107® -1.533919x107% -1.533919x10~®
10 3.457372x1071% 3.607579x1071% 3.607579x10~1°
11 -3.619628x107? -3.613201x10~? -3.613201x10~*
12 -1.005784x107? -1.003137x107% -1.003137x10~"
13 4.666338x1077  4.709390x107?  4.709390x10~?
14 -3.274714x107% -3.270324x107? -3.270324x10~*
15 -5.425469x107% -5.415686x107% -5.415686x10~%
16 5.452722x107% 5.398602x107% 5.399643x10~%
17 -2.888773x 10712 -4.263050x10~1? -4.213031x 10~ '?
18 -5.852151x107? -5.841440x107? -5.841440x10~*
19 -2.512190x 10710 -2.555613x107'? -2.555613 x 10~ 1
20 7.827015x107"* 7.411785x107"* 7.411785x10~"
21 -5.864134x 107" -5.980761x 10~ -5.980761x 10~
22 -1.617550x 10~ -1.652711x 10~ -1.652711x 10~
23 8.297311x107 " 8.271942x10~* 8.271943x 10~
24 -5.322500x 107" -5.424546x 10~ -5.424546x 10~

These tables show generally good agreement among the three methods of computation.
At 1fm~! and 5fm~! the Chebyshev expansion agrees with the direct numerical Fourier
transform to between 5-7 significant figures for all 24 potentials. There is similar agreement

at 15fm~! and 25fm~! except in potentials 17. The agreement between the potentials
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calculated using the rational function expansion do not agree with the direct numerical
Fourier transforms as well as the Chebyshev expansion. The accuracy depends on the
particular potential and gets worse as the momentum transfer increases. Thus for precision
calculations the Chebyshev expansion is preferred.

Figures 1-24 provide a more complete picture of the nature of the errors in both approx-
imations. Spikes in the errors occur near points where the potentials change sign. Some
of the errors near zero are enhanced because the some of the plotted potential are divided
by powers of the momentum transfer. For these terms the operators include compensating
powers of the momentum transfer that vanish near the origin, so the contribution of the
error in the full potential near the origin is reduced. The rational function expansions have
larger relative errors near higher and lower values of the momentum transfer. This is not
surprising because the basis functions are not local. The Chebyshev expansion is uniformly
good, in part because it is a local expansion, so more intervals can be added as needed. The
largest errors are in potential 17. At 10fm =" its value is about —1.2 x 10~%, which is several

orders of magnitude smaller than any of the other potentials at that momentum transfer.

Table 8: deuteron s and d wave functions using Chebyshev expansion,

rational function expansion and r-space partial waves

kfm™t| wus(k)-CExp. u,(k)-RFExp us(k)-pw| uq(k)-CExp, wugq(k)-RFExp

uq(k)-pw

0.0 1.2695x10' 1.2695x10' 1.2693x10'| 0.00000x10° 0.00000x10°

0.00000x10°

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1.9609x10°  1.9609x10° 1.9609x 10°
3.7684x10~! 3.7685x10~! 3.7684x10~!
8.2472x 1072 8.2472x1072 8.2471x102
6.0809%x 10~ 6.0808x10~* 6.0806x10~3
-1.3615x1072 -1.3616x 1072 -1.3615x 1072
-1.6153%x1072 -1.6153%x1072 -1.6153x 102
-1.3648 %1072 -1.3648x 1072 -1.3648 x 102
-1.0153%x1072 -1.0153%x 1072 -1.0153x 102
-6.9954x 1072 -6.9954x 1073 -6.9953x 103

-4.5270x 1073 -4.5270x 1073 -4.5270x 1073

-2.19827x107" -2.19811x 10" -2.19826x10~*
-1.72164x107" -1.72159%x 107" -1.72164x10~*
-1.12429%107" -1.12429%x 107" -1.12429%10~*
-7.10857x107% -7.10863x 107 -7.10857x 10>
-4.45428x107% -4.45432x 1072 -4.45428x 10>
-2.76853x 1072 -2.76854x 107" -2.76853x 102
-1.69880x 1072 -1.69881x 1072 -1.69881x 102
-1.02233x 1072 -1.02234 %1072 -1.02234x 1072
-5.98472x107% -5.98475x107% -5.98472x107?
-3.37040x107% -3.37043x107% -3.37041x107?

As a second test the deuteron binding energy and wave functions are computed using

the two different momentum-space potentials are compared to each other and to the di-
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rect Fourier transform of wave functions computed using a configuration-space partial-wave
calculation.

The deuteron binding energy and the s and d wave functions are computed using the
operator form of the Fourier transformed potential, by direct integration of the vector vari-
ables. The method of solution, which is discussed in [10], uses the expansion (1.7) di-
rectly without using partial waves. Calculations are performed for both the Chebyshev and
rational-function representations of the momentum space potentials.

These calculations are compared to a configuration-space partial-wave calculation. In
that calculation, labeled pw in table 9, the wave functions are represented by an expansion
in 70 configuration-space basis functions using the configuration-space basis functions (3.5).
Matrix elements of the partial wave projection of the Hamiltonian, with the configuration
space Argonne V18 potential, are computed in this basis and the eigenvalue problem is
solved numerically. The Fourier transform is computed by analytically Fourier transforming
the basis functions. The solution of the eigenvalue problem gives an independent evaluation
of both the binding energy and wave functions constructed directly from the configuration
space potential.

The deuteron binding energy obtained using the Chebyshev representation of the Fourier
transform gives a deuteron binding energy of F; = —2.242233 MeV. The rational function
representation gives a d deuteron binding energy of E; = —2.242193 MeV compared with
E; = —2.242211 MeV using the configuration space partial-wave calculation. The binding
energies based on all three calculation agree to within 22 eV. The computation used in
the configuration-space partial-wave calculation is a Galerkin calculation and thus gives a
variational bound on the binding energy.

These eigenvalues differ from the experimental deuteron binding energy. This is because
the momentum-space potentials used in these computations do not include electromagnetic
corrections that appear in the Argonne V18 codes. The electromagnetic corrections con-
tribute an additional +17.6 keV [11] to the binding energy which is consistent with the
experimental binding energy of —2.2246 MeV.

The s and d wave functions for all three calculations are compared in Table 10. The
wave functions differ in the fifth or sixth significant figure, while binding energies of all three
calculations differ in the sixth significant figure.

The electromagnetic contributions to the Argonne V18 potential are important for low-
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energy high-precision calculations. The Fourier transform of the electromagnetic contribu-
tions of the Argonne V18 potential can be computed analytically, and can be added to the
strong interaction contribution discussed in this paper when necessary. The analytic Fourier
transform of the electromagnetic contribution is discussed in appendix 3.

While this paper gives the momentum-space version of the operator expansion of the
Argonne V18 potential, it is often useful to have partial-wave contributions of the potential.
These can be computed from the operator matrix elements using a one-dimensional integra-
tion over the cosine of the angle between the initial and final momenta. A simple method to
compute the partial-wave projections from the operator expansion is given in the appendix
2.

The programs to compute the potentials f/m(q) using both methods are available as
supplementary material to the electronic version of this article.

This work supported by the U.S. Department of Energy, contract # DE-FG02-86ER40286
and National Science Foundation grants NSF-PHY-1005578 and NSF-PHY-1005501. The
authors would like to acknowledge useful comments from Prof. C. Elster in preparing this

manuscript.
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V. APPENDIX 1

In this appendix we compute the Fourier transform of the parts of the potential containing

the five types of operators, I, L-S, L - L,(L - S)?, and Si» that appear in equations(1.3-1.6).

L-S:
Let q := k' — k.
The Fourier transform is

1 —ik’-r ikr 1 —ik’-r ikr

(27?)3/6 KTy (r)L - Se™Tdr = (27r)3/ KTy (r)S - (r x p)e*Tdr =
1 S . 1 ,

2 / e TV (r)S - (r x k)e*Tdr = 2 / e 9TVi(r)S - (r x k)dr =
T T

47T

V51 (qr)Yim(Q) Yy, (r)V;(r)S - (r x k)dr. (5.1)

=0 m——l

Since r can be expanded as a linear combination of spherical harmonics, Y3,,(T), the only
terms that survive are the [ = 1 terms. The integral over angles and the spherical harmonics

replace 1 by q, giving

dmi [
_W/o J1(gr)V;(r)S - (g x k)ridr =
1 o0
iS - (k x k') x [271'2(]/0 Jilqr)V;(r)ridr]. (5.2)
Thus the Fourier transform has the form
1 S . .
ok / e TV(r)L - Se™*Tdr = iS - (k x K')I,(q) (5.3)
where
1 il 3
Ii(q) == 27T2q/0 J1(gr)V;(r)ridr. (5.4)
The following relations are used to compute Fourier transforms of the remaining three
operators:
q
Vfla) = f/(Q)E (5.5)
2
Vaf(a) = f"(a) + gf/(Q) (5.6)
(a-Vg)(b-V,)flg) =
a-qb-q, f'(q) a-b,
———((f"(q) = —=)+ —f'(9). 5.7
P (f"(q) . ) . (q) (5.7)
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The Fourier transform of this operator is

1 ~iK'T 0N (r % D) - (r X D)X dr — 1 KT 0 (K - (X K)e KT dr —
(27T)3/6 Vi(r)(r x p) - (r x p)e"*d (%)3/ Vi(r)(x x K) - (r x k)e™7d

(iV, x K)- (iV, x k) —— / Vi(r)e 0 dr = —(V, x K)- (V x k)0 /0 V() jo(qr)rdr.

(2m)? (2m)?
(5.8)
To compute the derivatives use
(VyxK)-(Vyxk)=(k-k)(V,-V,) = (k- V,)(k-V,)
in the above to get
—(Vy x k) - (V, x k)(%3 /Ooo V;(r)jolgr)ridr = — (K - k)V?2 — (K - V,)(k - V,)) Io(q)
(5.9)
where
I(q) = (247”)3 /0 Vi(r)jo(qr)ridr = 2%2 /0 Vi(r)jo(qr)rdr. (5.10)
Evaluating this gives
— (K- k) Vi = (K -V,)(k-V,)) lo(q) =
~ 100 + 30 + S D 1) - L)), (511)
To eliminate the derivatives use
Ij(0) = o) =
L vy ) Dytdr = = [ v Yy = I
77 /. (r) (o (qr) — Jo(qr)q—r)r r=om (r)jz2(gr)ridr = I(q)
and
B+ 21i0) = 53 [ VOiar) = dolar) -+ 2difar) )t =
3 | VO = o5 [Vt = b - 2h).
This gives
1 —ik/-r ik-r _ / 2 (k/ : q)(k : q)
@Bg/e Vi(r)(r x p) - (r x p)e dr——&-kﬂbw%—ghwﬁ+———?——2§ii

which can be reexpressed in terms of cross products:

1 ik g (K xk)-(kKxk) 2
(271‘)3/6 k Vj(r)(rxp)-(rXp)ek dr = —15(q) " _|_5(k.k)]1(q)‘ (5.13)
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(L-S)%

The Fourier transform is

1
@)

e—i(k’—k)-r (r . Q)\2 r = 1 e—i(k’—k)-r (r (1 % 2 r =
/ VL = o [ Vi(r)(S- (x x p)d

G (K x8)-9,)(k x8)-9,) [ iotan)Vi(r)rtar =

—((k"x8) - Vy)((k x S)-V,)lo(q) =

—wax&-m&xs»qnéu&w—g%w»—aax&-mxs%%@w=

(K% 8)-al(kx ) a) = hle) + (K xS) - (kxS)oh()  (514)
which gives
-%@%kaW%b@H%HX$-&XS%hw) (5.15)
1 —i(k'=k 2 . N 2 1 / 1
) /e &=V (r)(L-S)%dr = —((S- (k x K')) ?Ig(q)—i-(k x8)-(k x S);Il(q). (5.16)

%512 = (f"0'1>(f"0'2> — %0'1 '0'2)2

The Fourier transform is

(2;)3 / Ty (1) ((f co)(E - o) — %al -02) e gy —
— <(Vq -01)(V,-02) — %01 -02V2> %/V(r)i—zjo(qr)dr =
01-q05-q,, , Iy (¢), si-sa,, .
E— ((o_(a) — . ) — . Io(q) =
+301-02I§-(0) + -1 (0) (.17
Thus,
1 —ik’-rv 3(t - ik-rd _ 301 'q02-q I
(27r)3/€ (r)B(t-01)(f-02) —01-02)€ r——(T q —01-02) 2 (q)
(5.18)
where
47 ‘ 9
Iy_(q) = OE /V(r)]Q(qr)r dr. (5.19)



VI. APPENDIX 2

In this appendix we compute the partial-wave projection of potentials from the vector
representation of the momentum-space potential. Using rotational invariance the partial-
wave potentials can be expressed using a one-dimensional integral over the cosine of the
angle between the initial and final momentum vectors. The method below is similar to the
method first proposed in [12].

Rotational invariance of the potential implies
(oo ks L sVl KT S
= (G, b L SIUN(R)VU(R)| S K1 )
= D (R)D, (R (G,v, ke 1 s|VIi W K S)

/dRZDJ* (R, vk, Ls| VIV K TS

5o
=0y S GG v ke LS|V KT )
o 27+1
= 5##’5jj’<k7l73||Vj’|klvl/73/> (6‘1>

where we have integrated over the SU(2) Haar measure with normalization [dR = 1 and

defined the partial-wave potentials by

(kL sIVIIR U, o) o= oy +1 Z > D Uk LIV K IS (62)

pu=—7 mlml msm/

This kernel is rotationally invariant. Formally the partial-wave potential is

(k1 s||V||K' U, 8"

O A | .
= / dkdl' =g Y (ool ma){Lmnn, s.m ) Yo, ()
H==]

X <k7 M1, M2||V||k/7 :u/17 :u/2>
1 ‘ )
X<§> :u,1> §> ,u'2|s', mls><l/? m;> sla mls|]> M)Yi’mg(k/) (63)

For any fixed rotation, R, rotational invariance of V' gives

1

(K, g1, ||V ||K', ey, i)
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*12 *12 1/2 1/2
=2 D D (RIDA: (R) (R, il i |[VIRK i ) D fr (YD (). (6.4)

Hp Mo Py Ho

Using this expression in eq. (6.3) gives

(kL s|V7| KU, s

J
— [ dkai 3G gl ) (s, (Vi ()

DWWMDWWMWKMMNWWMMG%DWAMDWAMX

wf Y p2 Ky py

1 1 . -
<§7 :ullv 57 :u/2‘8/7 m/s><l/7 m;, 8/7 m;‘j,u> <Y2’m2 (k/) (65)

Next we eliminate three of the integrals in the potential matrix. For any fixed k’ there is
an R such that R(K')k’ = z. Obviously R™Y (k') = R.(¢')R,(0')R.(£) where (¢, ¢') are the
polar angles of k/ and £ is arbitrary has this property where

cos(f) 0 sin(6)

Ry (0) = 0 1 (6.6)
—sin(f) 0 cos(#)

cos(¢) —sin(¢) 0
R.(¢) = | sin(¢) cos(¢) 0 |- (6.7)
0 0 1
In this case
RK =K'z (6.8)
and
Rk = R;' (&R, (0)R.'(¢)k. (6.9)
For fixed k’ define k" by
K" =R, (0))R;'(¢')k. (6.10)

Given these fixed (primed) angles we change the unprimed integration variables k — k”.

We also have

Rk = R ()K" (6.11)
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We are also free to choose the angle ¢ in R;*(£). We choose it so it transforms k” to the

x — z plane. This is achieved by letting ¢ be the azimuthal angle of k"

cos(¢”) sin(¢”) 0
R7N(¢") = | —sin(¢") cos(¢”) 0 (6.12)
0 0 1
cos(¢”) sin(¢”) 0 k" sin(6") cos(¢") K" sin(0")
RN ("MK = | —sin(¢") cos(¢”) 0 K" sin(0") sin(¢”) | = 0 . (6.13)
0 0 1 k" cos(0") k" cos(6")

With these substitutions the partial wave integral becomes

(k1 s||V|K', U, 8"

AP R A T | A
. " / - * —1p-—1 AS W/
- /dk dk 2] + 1 u:§_j<27,u17 2,#2‘8 m5><l m, s, ms‘j :u>Y (R Rz (¢ )k )

XDyt (R) Dy (R) (K (Rsin(0") + 2 cos(6")), i 1| VIIK%, 15", 1) Dy (R)Dfr s (R)

1 pa 1y b2 H K2 M2
1

1 ‘ L
(5o s 5 Mol S, M i, ' i, o) (Ve (R™2)

j
1
/dk”dk’zj 3 Z s = ,,u2\s mg) (L, my, s, mg|j, 1) Y, (X sin (6’ )+zcos(9”))ijL,,ml(R)
p=—j

xDrl2 (R)Dy,2 (R) (K" (%sin(8") + zcos(0"), i, w3 ||V K2, ', 1y') D (R)D 2 (R)

1 1l pa !ty
1 1 . N\ Al
X <§7 :ullv 57 :u/2‘8/7 m/s><l/7 m;, 8/7 m/s|.7:u’>YE’MZ(Z>D£n;”m;(R)‘ (614>

Using properties of Clebsch-Gordan coefficients (i.e. D(R) < | >=<|> D(R) ® D(R)) we
get

- / k”dk’

(k1 s||V|IK' U, 8"

1 . ¥ .
5 pral s, m) (L, my, s, ml g, 1) Yo, (Xsin(6”) 42z cos(0”) |1, my)

nula

X W(X sin(0") + z cos(0"), pu, pa ||V || K'2, g1y, pa)

1 1 -
(G hs o 1) (0 ) i, (2) Dl ()

J
1 1
/ dk”dk'Qj 1 D (5ohm g pials ma) (s s, malj, )Y, (Rsin(@) + 2 cos(6))
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< (K" (xsin(0") + 2 cos(0"), pur, po||V || K'2, 11y, 15)

1 1
X <§a :u/b 5? :u/2|8,> m;><l,> m;, Sl? m;|]’ M”>Y2’m§(i)' (615)

Since all of the dependence on ¢', ¢, ¢" is in R, and the integrand is independent of R, these
three angular integrals can be computed giving the multiplicative phase space factor of 872
What remains is the following integral over the cosine of the angle between the final and

initial momentum:

(k1 s||V|IK', U, 8"

1 2 J
8 1 1 R N
:/ du" =T E (511, 5, 2l s, ma) (1, my, s, ml g, 1) Yo, (XV1 —u?) + zu”)

A N P
) (K (XVL =) + 2u"), o, || VI(IE'2), iy, 1)
1 1 . .
X <§a :u/b 5? :u/2|8,> m;><l,> m;, Sl? m;|ja M”>Y2’m§(z)' (616)

The last thing that needs for be addressed for an explicit formula is the spherical harmonics

2l+1 (I —m))! P 21+1
l+ml

. 200+1
Vimg () = bugo | = (6.18)

Using these in the above expression we are left with a 1 dimensional integral

Y (xV1 —u”?)+zu") ,(07)) (6.17)

(k1 s||V||K' U, 8"

1 2 J
8 1 1 20+1
" - l "
= /_ldu 11 E .<§,,u1,§,u2|s,m5><l,ml,s,ms|j,u N —— yp D,.o(R,(8"))

W'==j
X (R (XV1 =) + zu"), pun, pio || V|| K'2, g1y, pa)

1 1 24+ 1
X<§a:u/1’§’Ml2|8,>m;><l,>0aS,’m/s|j’ :u”> 4:; . (619)

Cleaning this up gives the following expression for the partial wave amplitude:

(Gop, B L sVl KT ST =
5jj’5uu’<k’ l> SHVj HkJa lla Sl>

with
(k,l, s||Vj||k’, ', s
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204+1 [21 +1 j 1 1 |
2]—|—1\/ \/ < "ul’§’M2|S’m8><laml>$>m5|j,uu>

1
<[ 1du/’D;o<Ry<cos—1<u'/>><k“<w1 W) 2, s 12|V 1, 1)

1 1
X<§7:u/17 57/~L/2‘8/7m;><l/7078/7m;‘j:u//> (62())

where all repeated spin indicies are summed. This reduces the partial-wave integral to a

one-dimensional integral. In this case there are no traces, and no momentum-dependent

spin bases, but there are a number of spin sums.

Explicit computation requires

2j - - o
— J _'_m)‘(j - m)'j'j' +m—s ps ps—m pJ+s
Dh(Ryleos™ () =3 o isl(s —mlG e Rl (62)

where all negative factorials are * and

\/1+u//2 \/1_u//2
Rij(cos ! (u")) = 2 2 (6.22)

1—u/’2 1+u//2
2 2
Dl

b o(Ry(cos™ (u")) =
2j )i — m)lilg! om0 1+ u/”? 2iim 1—w?,
B ; G +\7{zj— s)!i!(é - m)){zj]_ i <\/?> (\/;) . (6.23)

VII. APPENDIX 3

or

The electromagnetic corrections to the nucleon-nucleon interaction have the following

forms for the pp, np, and nn systems:
Vempp(r) =

(UemJ(T) -+ Uem,2(r) + Uem,3<r) -+ Uem,4<7n)>[ + Uem,ﬁ (7")0'1 09 + Uem’g(T)Sm + Uem,12 (T’)L . S (71)

‘/;mnp(T) = Uem’5(7”)f -+ Uem,8(r)0'1 - 09 + Uem,n(’/’)Slg + Uem,14(’/’)L -S (72)

‘/emrm(r) = Uem,?('r)al -09 + Vem,10 (T)SH + Vem,13 (T)L S (73)
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The Fourier transforms have the same structure as they do for the strong interactions.

Vermpp(@) = Vem,1(0) + Vem2(q) + Vem,3(q) + Vem,a(@)) I+

U6m76(q>al “0o + Uem,9(q>§12 + iUem,lg(q)(k X k/) - S.

Vemnn (@) = Vem,7(2)01 - 05 + Ve 10(9)S12 + iVem,13(q) (k x K') - S.
where
Si2 = =3((q-01)(q - 02) — 01 - 02).
The coefficients of 1,01 - 65 are

1

Boman(@) = / Jolar vemn(r)r?dr  me {1,2,3,4,5,6,7,8):

272
the coefficients of i(k x k') - S are

- 1 >
Vemn(q) = 272 31(qr)Vemn (r)ridr n € {12,13,14}

and the coefficients of Sjs, are

5 1 >
Fonnl) = 57505 / J2(@) () € {9,10,11)

where the individual terms are

Vo () = O‘fca _ (1+—br+ 5 (ory? + 418(br)3)e—bf),

_ o)’ ¥’ 1 o
Vema(r) = — yo= (L br 5 r))e ™),
1
Uem,3(’/’) = _Hpvem(lfu
2 5
Vem,a (1) = 3 — (= — = + | In(ar)|)vem.1(r),

s
b3

’Uem,5( ) = OéhCﬁ@(lE) 4+ 15br + 6(br) (b,r)?))e—br)’

29

‘/emnp(q) = Uem,5(Q)I + Uem,8(q>al ) + Uem,ll(Q)gm + ivem,l4(q> (k X k/) - S.

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)



oz(hc)?’,uQ b3 1 2\ —br
Vemo(T) = —T%pl—(j(l +br + g(br) Je "), (7.16)
a(hc)u? b L, o0
_ A a2 - " 1
vemslr) = =2 L b L0, (r.17
(1) = — QB ity 0y L2 ey (7.18)
Vems(r) = ————F— r+ —(br , )
6m,m, 16 3

ahc)®p2 1

1 2 1 3 1 4 1 5\ —b
- 1. 1 1 £ b ", (7.1
Vem,o(T) i r3(1 (I+br+ 2(br) + 6(b7‘) + 24(67") + 144( r)?)e "), (7.19)
- a(hc)gu% 1 1 9, 1 3 1 4 1 5\ —br
Vem10(r) = —747”% ﬁ(l —(1+br+ i(br) + B(br) + 24(67") + 144(67") )e "), (7.20)

a(he)’ pppin 1 1 2, 1 3, 1 g, 1 5\,—b
- 1o 1 B ", (7.21
Vem.11(r) T, 7"3(1 (1+br+2(br) + 6(()7’) + 24(b7’) + 144(67”) Ye "), (7.21)

o ahe)* (4, — 1) pppin 1 Lo T s 4
Vem12(r) = — 2 ﬁ(l —(1+br+ é(br) + 4—8(67") Je "), (7.22)
Uem,13(r) = 07 (723)
and
alhc)u, 1 1 7 o
Vem14(r) = _Q(Tn)mrﬁ(l —(14+br+ §(br)2 + 4—8(br)3)6 b ) (7.24)

where b = 4.27 and a = m./(hc), p, = 2.7928474, and p,, = —1.9130427, 5 = .0189.
The Fourier transform of most of the terms in the potential can be computed using direct

integration, the identities

d 1 d ji(z)

i) = =ole)  ale) = I, (7.25)

and the following relation [13], with v =+ § and = n + 1/2, gives the relation
/ e 5y (qr)rdx
0
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4 (n+ ! (n+l—|—1 n+1+2 2l+3_2/b2)
~ L (20 + 1)1 2 2 g 1
which is valid for n +1 > —1.

(7.26)

The only integral that can not be computed using these formulas involves the |In(kr)|
term that appears in v, 4(r), which is an approximation to the vacuum polarization cor-

rection to the pp interaction. The required integrals, which are evaluated in this appendix

are:
e’} ‘ CL2
/ Jo(gr)| In(ar)|rdr = Eh + 31In(g/a) — 2ci(q/a)], (7.27)
0
/ Jo(gr)| ln(ar)|r6_b’"dr =
0
a’ -1,4 2 2
3 E b—iq E b+iq E b—iq _E b+iq
@[ (Eg + 1<a>>+b<1<a>.1<a>>7 a9
q>+b? 2 21
—br a >~ . —br
o(gqr)] In( ar)\r e dr = —— Jo(qr)| In(ar)|re=""dr, (7.29)
0 ab J,
[e'e) 02 [e'e)
/ Jo(gr)| In(ar)|rde="dr = —/ jo(gr)| In(ar)|re " dr, (7.30)
0 ob* J,
[e’) 3 %)
/ Jo(gr)| In(ar)|rte " dr = —/ jo(gr)| In(ar)|re=" dr (7.31)
0 ab* Jo
and
/ Go(qr)r~tdr = hII(l)jl(LL’)/LL’ =1/3. (7.32)
0 xr—r

The vacuum polarization integral only appears in the Coulomb potential which has the
approximate form given in [14] - this approximation is adequate for binding energy calcula-

tions. It appears in the following contribution to the proton-proton interaction

2a 6mkr. ahc - 3
Vem(a) (1) = 3-(= 7——+|1n(ar)\+ T (1 b(1+1—6br+16(br)2—|—

1 3
(b)) (7.33)

The Fourier Bessel transform of this interaction,

1

2m2q

/ Jo(ar) Vamga (r)rdr
0
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1

> 200 b}
i —24n
iz |, sin(ar) (=9 =g+

1

Orher Yache(1— (1+—br+ 5 (br) I

—(br)®), dr
(7.34)

can be computed analytically. There are three types of contributions

(1) = Flqu /0 h sin(gr)oe(— — 2)ahe(1 — V(14 Tbr + ~-(r)? + 2 (br))dr, (7.35)

+ L)), dr, (7.36)

1 > 20 b 3 9
(IT) = 27r2q2/0 81n(qr)37r|ln(ar)|ahc(1 e (1+ br+16(br) 1

16

and

1 o 200 6mkr 11 3 1
= hc(1 — 1+ —b br)? + —(br)*)dr. (7.
(I17) 27T2q2/0 sm(qr)37T e c( 1+ TG r -+ 16( r) +48( r))dr. (7.37)

Integrals of the form (I) and (III) have the same form as the integrals discussed above. To

calculate the integral (II) first replace ' = ar — r = r'/a to get

o0 200 / 11 br 3 br 1 o
- - . / _1 / 1_—br/a1 __3 /:
1 2 o0
_ 72m2q23—:ahc /0 sin(gr’ /a)| In(r)|dr’
1 2« 11 d d2 1 a3 *° /
hc(l b (13 : / —br/al dr'.
s el + 5(b ) + 5B ) + (V) [ sintarfa)e | nge)ar
(7.38)
Two integrals need to be performed to compute this term. They are
/ sin(qr’ /a)| In(r')| v’ (7.39)
0
and
/ sin(qr’ /a)e™""/*| In(+")|dr’. (7.40)
0

The integral
/ sin(gr’ /a)|In(r")|dr" =
0

—/0 sin(gr’/a) ln(r')dr'+}li_r>r(1)[/ooo sin(qr’ /a)e™ " ln(r')dr'—/o sin(gr’/a) In(r")dr']. (7.41)

These integrals can be found in [15]:

/0 sin(qz) In(z)dz = —%h +1n(q) — ci(g)] (7.42)
where
ci(z) = Ci(z) = — / Cost“) (7.43)
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and
/ e sin(gr) In(r)dr — pron (D)~ gy + Im(? 4+ ). (7.44)
0

The quantity v is the Euler constant.

v +q?

Thus the first of the required integrals needed to compute the vacuum polarization con-

tribution is

/000 | In(r")| sin(gr' /a)dr’ =
—/0 sin(gr’/a) In(r")dr’ + Lliig(l][/ooo e~ sin(gr' /a) In(+")dr' — /0 In(r’) sin(qr’/a)] =

1 00
—2/ In(r') sin(qr’ /a)dr’ + lim/ e~ sin(qr’ /a) In(r")dr’ =

2y -+ Ing/a) = cilg/a)] + 2= + 3 (e /o) =
11+ 3n(a/a) — 2ci(g/a). (7.45)

Returning to the original expression - the first term in (II) is

1 2« e
- : / 1 / /
2an?q? 3w ozhc/o sin(gr'/a)| In(r')|dr
o’he '
= 33gs 1) +31In(g/a) — 2ci(g/a) (7.46)

where ~ is the Euler constant. Or

2

L= 20 a’he '
SEEy /0 sm(qr)g—ﬁ| In(ar)|ahc = 30 [v +3In(g/a) — 2ci(q/a)l. (7.47)

We also have to compute the second term in (II). The integral that is needed is

o?he

B 110" 3 b
3m3aq?

/0 sin(gr’/a) [ In(r")|e™" (1 + To— + 7+

1 b’

SN (7.48)

_2 _
a)+ a

This can be evaluated using

—/ sin(qr’ /a)| In(r')| e~/ dr’ =
0

/ sin(qr'/a) ln(r’)e‘brl/“dr'—Q/ sin(qr' /a) In(r")e " /2dy’ (7.49)
0 1

by differentiation with respect to b. The integral
/ sin(qr’/a) In(r")e="/2dr’ =
1
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21. " (eliata=bfa’ _ o(=iafa=b/a)’) 1y (1) gy
v 1

a oo Iy e(iq/a—b/a)r’ e(—iq/a—b/a)r’

2 . 1q—0b * iq+0b
_g[El(%) El(bJrTm)]
2t iqg—b 1q+0b

sl + DB ) + g = DB -
o[ B+ ECE) (B - ()
7 +b2[ 5 +0b 5 ] : (7.50)
Thus
/1 sin(qr’ /a) In(r")e™*"" /2y’
S LD EECE) | (B )Q_iEl(T))] | (7.51)

Combining the two integrals gives

’h > :
ch / sin(qr’ /a)| In(r')| e~ /2dr =
0

_37r3aq
a’he
_37r3aq2 <A
ﬁ[btan_l(%) —q7+ 5 In(q*/a® + b*/a®)]+

Putting all of the parts together gives the In(r) contribution to the vacuum polarization

contribution
o?he
3733
11 d 3 5 d? 1 3 a3

(ID)y = ———[v + 31In(g/a) — 2ci(q/a)]+

—(1+ 1_6<_b%) + ﬁ< W) + 4_8<_b %))
o’he
3miaq? A
bt () — v+ GG o + B fa)]+
a (El( )+ By () (B (EY) - B ()
2| 5 +b 5 ] } . (7.53)
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This needs to be added to (I) and (II) to get the full vacuum polarization integral. These

integrals can be computed using the methods used for all of the other potentials.

The exponential integrals have simple derivatives
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