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I. INTRODUCTION

We consider phenomenological time reversal invariant violating (TRIV) and parity con-

serving (PC) interaction, to which we refer as TVPC interaction in order to distinguish it

from TVPV interactions, which violate both time reversal invariance and parity. TVPC

interaction was introduced for the first time in paper [1] as a possible explanation of CP-

violation in K0-meson decay. According to CPT theorem, the violation of CP invariance

implies the TRIV. In spite of the fact that almost all known possible mechanisms of CP

violation also violate parity, TVPC interactions have been a subject of experimental and

theoretical studies for decades (see, for example, [2–18] and references therein), because

they directly manifest phenomena beyond the Standard model. The most experimental con-

straints for this interactions were obtained by using low energy nuclear physics processes,

which cover a large variety of nuclear reactions and nuclear decays. There are a number of

advantages of the search for TRIV in that processes: for example, the possibility of enhance-

ment of T-violating observables in neutron indused reactions by many orders of a magnitude

due to complex nuclear structure (see, i.e. paper [10] and references therein), similar to the

enhancement observed for parity violating effects. Another advantage to be mentioned is the

existence of observables which cannot be imitated by final state interactions [19–21]. Then,

the measurement of non-zero value for these observables directly indicate TRIV, similar to

the case of neutron electric dipole measurements.

A promising process for a search for TRIV in nuclear reactions is a measurement of TVPC

effects in transmission of polarized neutron through polarized target [3, 4]. These effects can

be enhanced [9, 18] by a factor of 106, and therefore, could be measured at new spallation

neutron facilities, such as the SNS at the Oak Ridge National Laboratory or the J-SNS at

J-PARC, Japan.

However,despite the advantage of the enhancement, complexity of nuclear system makes

it difficult to directly relate observation of TRIV effects to nucleon TVPC coupling constants.

Therefore, it is interesting to compare the calculations of TVPC effects in complex nuclei

with the calculations of these effects in simplest few body systems, which could be useful

for clarification of influence of nuclear structure on values of TVPC effects. Thus, as a

first step to many body nuclear effects, we study TRIV and parity violating effects in

one of the simplest available nuclear process, namely elastic neutron-deuteron scattering.
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The calculations of these effects for a specific type of TVPC interaction in a short-range

approximation [7] show strong dependence of TVPC observables on neutron energy, which

gives the opportunity to improve existing constrains on TVPC interactions using simple few-

body system. Therefore, it is desirable to calculate these effects for general case of TVPC

interactions to clarify this opportunity.

In this paper we treat TVPC nucleon-nucleon interactions as a perturbation, while non-

perturbed three-body wave functions are obtained by solving Faddeev equations for realistic

strong interaction Hamiltonian, based on AV18+UIX interaction model. For description

of TRIV potentials, we use both meson exchange model and effective field theory (EFT)

approach. For different cases of symmetry violation we use following notations: /TP for

TVPC, /T /P for TVPV, and /P for parity violating (PV) cases.

II. OBSERVABLES

We consider TVPC effects related to σn · [p × I](p · I) correlation, where σn is the

neutron spin, I is the target spin and p is the neutron momentum, which can be observed in

the transmission of polarized neutrons through a aligned (or tensor polarized) target. This

correlation leads to the difference [3, 4] between the total neutron cross sections for neutron

polarized perpendicular to the neutron momentum and averaged over elongated target states

∆σ /TP =
4π

p
Im(f+ − f−), (1)

and neutron spin rotation angle [5, 9] φ around the axis [p× I](p · I),

dφ/TP

dz
= −2πN

p
Re(f+ − f−). (2)

Here, f+,− are the zero angle scattering amplitudes for neutrons polarized parallel and anti-

parallel to the [p × I](p · I) axis respectively, z is the target length, and N is a number of

target nuclei per unit volume. It should be noted that for a non-zero value of this five-fold

correlation, the spin I must be larger or equal to one, i.e. these TVPC effects require a

tensor polarized target. Therefore, this correlation cannot be observed in nucleon-nucleon

scattering.

The scattering amplitudes can be represented in terms of matrix R̂ which is related to

scattering matrix Ŝ as R̂ = 1̂ − Ŝ. In partial wave basis, we define RJ
l′S′,lS = 〈l′S ′|RJ |lS〉,
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where unprimed and primed parameters correspond to initial and final states, l is an orbital

angular momentum between neutron and deuteron, S is a sum of neutron spin and deuteron

total angular momentum, and J is the total angular momentum of the neutron-deuteron

system. Since we are interested in low energy neutrons, one can consider only s, p, and d

partial waves with mixing only between s and d, and p and p waves. Then, one can write

the TVPC parameters as

1

N
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=
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. (4)

The symmetry violating R̂ -matrix elements can be calculated with a high level of accu-

racy in Distorted Wave Born Approximation (DWBA) as

RJ
l′S′,lS ≃ 4i−l′+l+1µp (−)〈Ψ, (l′S ′)JJz|V /TP |Ψ, (lS)JJz〉(+), (5)

where µ is a neutron-deuteron reduced mass, V /TP is TVPC nucleon-nucleon potential, and

|Ψ, (l′S ′)JJz〉(±) are solutions of 3-body Faddeev equations in configuration space for strong

interaction Hamiltonian satisfying outgoing(incoming) boundary condition. The factor i−l′+l

in this expression is introduced to match the R-matrix definition in the modified spherical

harmonics convention [22] with the wave functions expressed in spherical harmonics con-

vention. The matrix elements of TVPC potential in spherical harmonics convention and

R-matrix in modified spherical harmonics convention are antisymmetric under the exchange

between initial and final states.

For calculations of wave functions, we used jj-coupling scheme instead of lS coupling

scheme. We can relate R-matrix elements in lS coupling scheme to jj-coupling scheme using

unitary transformation (see, for example [23])

|[ly ⊗ (sk ⊗ jx)S ]JJz〉 =
∑

jy

|[jx ⊗ (ly ⊗ sk)jy ]JJz〉

×(−1)jx+jy−J(−1)ly+sk+jx+J [(2jy + 1)(2S + 1)]
1

2







ly sk jy

jx J S







, (6)
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where jx is a spin (total angular momentum of the target, jx = 1 for the deutron), sk is a

spin of the projectile (sk = 1
2
for the neutron). In lS coupling scheme spins of the projectile

and the target are added giving partial spin S to which relative projectile-target angular

momentum (l) is added to obtain total angular momentum (J) of the system. In contrary,

in jj-coupling scheme, the relative projectile-target angular momentum (l) is added to the

projectile spin (sk) giving intermediate angular momentum (j) before coupling it with target

spin (jx) in order to obtain total angular momentum (J) of the system.

III. TIME REVERSAL VIOLATING PARITY CONSERVING POTENTIALS

The most general form of time reversal violating and parity conserving part of nucleon-

nucleon Hamiltonian in the first order of relative nucleon momentum can be written as

[24],

H /TP = (g1(r) + g2(r)τ1 · τ2 + g3(r)T
z
12 + g4(r)τ+) r̂ ·

p̄

mN

+ (g5(r) + g6(r)τ1 · τ2 + g7(r)T
z
12 + g8(r)τ+)σ1 · σ2r̂ ·

p̄

mN

+ (g9(r) + g10(r)τ1 · τ2 + g11(r)T
z
12 + g12(r)τ+)

×
(

r̂ · σ1
p̄

mN
· σ2 + r̂ · σ2

p̄

mN
· σ1 −

2

3
r̂ · p̄

mN
σ1 · σ2

)

+(g13(r) + g14(r)τ1 · τ2 + g15(r)T
z
12 + g16(r)τ+)

×
(

r̂ · σ1r̂ · σ2r̂ ·
p̄

mN
− 1

5
(r̂ · p̄

mN
σ1 · σ2 + r̂ · σ1

p̄

mN
· σ2 + r̂ · σ2

p̄

mN
· σ1)

)

+g17(r)τ−r̂ · (σ× × p̄

mN
) + g18(r)τ

z
×r̂ · (σ− × p̄

mN
), (7)

where exact form of gi(r) depends on the details of a particular theory of TVPC.

One should note, that pions, being spin zero particles, do not contribute to TV PC on-

shell interaction [25]. Therefore to describe TVPC nucleon-nucleon interactions in meson

exchange potential model, by assuming CPT conservation, one should consider contribution

from heavier mesons: ρ(770), IG(JPC) = 1+(1−−) and h1(1170), I
G(JPC) = 0−(1+−) (see,

for example [9, 11, 12] and references therein). For example, Lagrangians for ρ and h1 are

Lst = −gρN̄(γµρ
µ,a − κV

2M
σµν∂

νρµ,a)τaN − ghN̄γµγ5hµN, (8)

L/TP = − ḡρ
2mN

N̄σµνǫ3abτa∂νρ
b
µN + i

ḡh
2mN

N̄σµνγ5∂νhµN, (9)
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where we neglected terms, such as N̄γ5∂
µhµN , which are small at low energy, and g and

ḡ represent strong and TVPC meson nucleon couplings respectively. Then, one can obtain

TVPC potentials

V /TP
ρ =

gρḡρm
2
ρ

8πmN

Y1(mρr)τ
z
×r̂ · (σ− × p̄

mN

),

V
/TP
h1

= −ghḡhm
2
h

2πmN

Y1(mhr)(σ1 ·
p̄

mN

σ2 · r̂ + σ2 ·
p̄

mN

σ1 · r̂), (10)

where Y1(x) = (1 + 1
x
) e

−x
x
, xa = mar. Comparing these potentials with eq. (7), one can see

that in this model, all gi(r)
ME = 0, except for

gME
5 (r) =

(

−4ghḡh
3mN

)(

m2
h

4π
Y1(mhr)

)

= C
/TP
5,h f

/TP
5,h (r, µ = mh),

gME
9 (r) =

(

−2ghḡh
mN

)(

m2
h

4π
Y1(mhr)

)

= C
/TP
9,h f

/TP
9,h (r, µ = mh),

gME
18 (r) =

(

gρḡρ
2mN

)(

m2
ρ

4π
Y1(mρr)

)

= C
/TP
18,ρf

/TP
18,ρ(r, µ = mρ), (11)

where we introduced dimensional constants C /TP
n and scalar function f /TP

n (µ) = µ2

4π
Y1(µr), so

that gn(r) can be written as

gn(r) =
∑

a

C /TP
n,a f

/TP
n,a (r). (12)

If we include iso-vector J = 1 a1 and b1 mesons, which masses are close to the value of h1

mass, functions g6 and g10 will also contribute to TVPC potential.

In EFT approach we consider eq.(7) as a leading order of TVPC potential. Final result

must not depend on the particular form of the gn(r) functions as long as they are localized,

like delta function or its derivative. Therefore, using EFT one can estimate the contribution

of each term of the potential substituting gn(r) functions by the corresponding products of

low energy constants (LECs) and Yukawa functions Y1(µr). The mass scale µ represents a

regularization scale of EFT. For example, at low energy we can assume that µ ≃ mπ for

pionless EFT approach.

IV. RESULTS AND DISCUSSIONS

For calculation of TRIV amplitudes in DWBA approach, we used the non-perturbed (time

reversal invariance conserving) 3-body wave functions for neutron-deuteron scattering ob-

tained by solving Faddeev equations in configuration space [26, 27]. The detailed procedure
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for these calculations is described in our papers [23, 28]. As previously we employed AV 18

nucleon-nucleon potential in conjunction with UIX three-nucleon force. Obtained contri-

bution of each TVPC operator from eq. (7) to the matrix element of eq.(5) is summarized

in Tables I and II, representing real and imaginary parts respectively. The matrix elements

are evaluated using jj coupling scheme for the neutron-deutron center of mass energy equal

Ecm = 100 keV and the regularization scale set by µ = mρ, which is equal to the mass of

the lightest meson contributing to TVPC interaction. It should be noted that each matrix

element presented in these tables contains a sum of contributions from different Faddeev

components of wave functions with a large number of partial waves. Therefore, the values

of the matrix elements are strongly dependent on detailed behavior of exact wave functions.

However, in spite of the fact of the possibility of a numerical suppression of matrix elements

for some operators, the calculated values are stable enough to be used for estimations of

TRIV effects.

The contributions from each TVPC operator to the difference of scattering amplitudes

f+,− are summarized in Table III, where we distinguish three columns representing result

with a different choice of the characteristic mass scale for gi(r) functions. Thus, for example,

the column ∆fπ

p
corresponds the description of TVPC potential in pionless EFT. (As it was

mentioned above, π-meson exchange cannot lead to TVPC interaction.)

It should be noted that in spite of the fact that all results of calculations are presented

only for neutron energy Ecm = 100 keV , they can be easily extrapolated for any value of

neutron energy below 1 MeV since they have a simple dependence on neutron energyE as:

Re
∆f /TP

p
∼

√
E, Im

∆f /TP

p
∼ E. (13)

This is because these TVPC observables are the result of a mixing of initial and final p-waves,

or s- and d-waves, by TVPC interactions in scattering amplitudes.

To have insights into the structure of TVPC scattering amplitudes, one can compare

them with strong, PV, and TVPV amplitudes at the same energy Ecm = 100 keV (p =

0.567 × 10−1 fm−1), and µ = mπ, which corresponds to pionless EFT potential. Then,

strong s-wave scattering amplitude f st is

f st

p
= (72.2 + i24.8) fm2, (14)

giving the total cross section σtot = 4π
p
Imf st(p) = 3.11 b. PV difference of scattering
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TABLE I. Representative contribution of each TVPC potential term to the real part of the matrix

element (Re 〈(l
′j′),J |V /TP |(lj),J〉

p2 ). Results are presented using jj-coupling scheme for wave functions

obtained using AV 18 + UIX interaction at Ecm = 100 keV. For all operators a scalar function

m2
ρ

4π Y1(mρr) has been used. Operators 3,7,11 and 15 are null due to the isospin selection rules. All

data are in fm2.

n 〈23
2 |v

1

2 |01
2 〉/p2 〈13

2 |v
1

2 |11
2 〉/p2 〈23

2 |v
3

2 |01
2 〉/p2 〈13

2 |v
3

2 |11
2 〉/p2 〈25

2 |v
3

2 |01
2 〉/p2

1 −0.278 × 10−06 0.219 × 10−06 −0.710 × 10−06 −0.148 × 10−07 0.307 × 10−05

2 0.107 × 10−04 0.876 × 10−05 0.415 × 10−05 −0.470 × 10−05 −0.423 × 10−05

4 −0.329 × 10−05 −0.314 × 10−05 −0.673 × 10−06 0.158 × 10−05 −0.166 × 10−05

5 −0.108 × 10−04 −0.939 × 10−05 −0.216 × 10−05 0.487 × 10−05 −0.146 × 10−05

6 0.664 × 10−07 −0.371 × 10−06 0.256 × 10−05 −0.682 × 10−06 −0.897 × 10−05

8 0.108 × 10−04 0.951 × 10−05 0.131 × 10−05 −0.465 × 10−05 0.445 × 10−05

9 0.609 × 10−04 −0.407 × 10−04 −0.223 × 10−03 0.186 × 10−04 −0.103 × 10−03

10 −0.180 × 10−03 0.122 × 10−03 0.672 × 10−03 −0.557 × 10−04 0.308 × 10−03

12 −0.823 × 10−06 −0.140 × 10−06 −0.992 × 10−06 0.804 × 10−08 0.749 × 10−07

13 −0.490 × 10−05 0.157 × 10−05 0.133 × 10−04 −0.602 × 10−06 0.662 × 10−05

14 0.149 × 10−04 −0.468 × 10−05 −0.401 × 10−04 0.189 × 10−05 −0.199 × 10−04

16 −0.682 × 10−07 −0.844 × 10−08 0.248 × 10−07 −0.266 × 10−07 0.269 × 10−07

17 0.182 × 10−06 −0.434 × 10−05 −0.355 × 10−06 −0.784 × 10−05 0.853 × 10−06

18 0.547 × 10−06 −0.384 × 10−05 −0.407 × 10−06 −0.700 × 10−05 0.108 × 10−06

amplitudes in EFT is [23]

1

mNC
/P
n

∆f /P (µ = mπ)

p
= [(−1.93 · · · 2.42) + i(−0.22 · · · 0.67)] fm2, (15)

The difference of TRIV amplitudes with parity violation in EFT is [28]

1

mNC
/T /P
n

∆f /T /P (µ = mπ)

p
= [(−1.63 · · ·0.66) + i(−0.063 · · ·0.22)] fm2, (16)

and for TVPC ones is

1

mNC
/TP
n

∆f /TP (µ = mπ)

p
= [(−0.01 · · ·0.03) + i(−0.0013 · · · 0.0004)] fm2. (17)

Here, C /P
n , C

/T /P
n , and C /TP

n are low energy constants for PV, TVPV, and TVPC interactions,

correspondingly, with a separated factor 1/mN to match dimensions of the final result and
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TABLE II. Same as in Table I but for the imaginary part of the matrix element

(Im 〈(l′j′),J |V /TP |(lj),J〉
p2 ).

n 〈23
2 |v

1

2 |01
2 〉/p2 〈13

2 |v
1

2 |11
2 〉/p2 〈23

2 |v
3

2 |01
2 〉/p2 〈13

2 |v
3

2 |11
2 〉/p2 〈25

2 |v
3

2 |01
2 〉/p2

1 −0.541 × 10−05 −0.168 × 10−04 −0.193 × 10−05 0.909 × 10−06 0.839 × 10−05

2 0.209 × 10−03 −0.672 × 10−03 0.113 × 10−04 0.288 × 10−03 −0.115 × 10−04

4 −0.642 × 10−04 0.241 × 10−03 −0.184 × 10−05 −0.968 × 10−04 −0.454 × 10−05

5 −0.211 × 10−03 0.720 × 10−03 −0.590 × 10−05 −0.298 × 10−03 −0.399 × 10−05

6 0.129 × 10−05 0.284 × 10−04 0.696 × 10−05 0.417 × 10−04 −0.245 × 10−04

8 0.210 × 10−03 −0.730 × 10−03 0.358 × 10−05 0.284 × 10−03 0.122 × 10−04

9 0.119 × 10−02 0.312 × 10−02 −0.609 × 10−03 −0.114 × 10−02 −0.281 × 10−03

10 −0.351 × 10−02 −0.939 × 10−02 0.183 × 10−02 0.341 × 10−02 0.842 × 10−03

12 −0.160 × 10−04 0.107 × 10−04 −0.271 × 10−05 −0.493 × 10−06 0.203 × 10−06

13 −0.955 × 10−04 −0.120 × 10−03 0.364 × 10−04 0.369 × 10−04 0.181 × 10−04

14 0.290 × 10−03 0.359 × 10−03 −0.109 × 10−03 −0.116 × 10−03 −0.545 × 10−04

16 −0.133 × 10−05 0.647 × 10−06 0.678 × 10−07 0.163 × 10−05 0.734 × 10−07

17 0.355 × 10−05 0.333 × 10−03 −0.967 × 10−06 0.480 × 10−03 0.233 × 10−05

18 0.107 × 10−04 0.295 × 10−03 −0.111 × 10−05 0.429 × 10−03 0.294 × 10−06

retain dimension of LECs Cn in [fm]. The range of values for real and imaginary parts

of PV and TRIV amplitudes is defined by a value of possible contribution from each PV,

TVPV or TVPC operator.

Aforementioned amplitudes follow the simple kinematic rule of the suppression ∼ (pRnuc)

for an additional p-wave involved in PV and TVPV amplitudes, and ∼ (pRnuc)
2 for two p-

waves or one d-wave for the case of TVPC amplitudes. (Here, Rnuc is an effective range of

strong interaction, which leads to ∼ (pRnuc) ∼ 0.1 for neutron energy Ecm = 100 keV .) In

addition to this kinematic factor, TVPC scattering amplitudes are suppressed, as compared

to PV or TVPV ones, by a factor p̄
mN

∼ 0.1, which results from an extra momentum

dependence of all operators in TVPC potential. By increasing neutron energy, one can

easily increase the kinematic factor up to one. Then, the only suppression of TVPC matrix

elements in the amplitude will be left due to p̄
mN

∼ 0.1 . It should be noted that this
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TABLE III. Difference of scattering amplitudes, (f+− f−)/p for TVPC potential from each opera-

tors and mass scales at Ecm = 100 keV. Note that pion mass scale does not corresponds to physical

meson exchange potential. Operators with n = 3, 7, 11, 15 are equal to zero due to isospin selection

rules. All data are in fm2.

n ∆fπ

p
∆fρ

p
∆fh1

p

1 0.49 × 10−5 − i0.25 × 10−5 0.82 × 10−5 − i0.88 × 10−6 0.58 × 10−5 − i0.55 × 10−6

2 0.46 × 10−2 + i0.49 × 10−4 0.16 × 10−3 + i0.64 × 10−5 0.37 × 10−4 + i0.27 × 10−5

4 −0.15 × 10−2 − i0.14 × 10−4 −0.62 × 10−4 − i0.12 × 10−5 −0.18× 10−4 − i0.35 × 10−6

5 −0.50 × 10−2 − i0.16 × 10−3 −0.18 × 10−3 − i0.51 × 10−5 −0.49× 10−4 − i0.16 × 10−5

6 0.23 × 10−2 − i0.13 × 10−4 −0.76 × 10−5 + i0.25 × 10−5 −0.14× 10−4 + i0.16 × 10−5

8 0.43 × 10−2 + i0.17 × 10−3 0.18 × 10−3 + i0.42 × 10−5 0.54 × 10−4 + i0.11 × 10−5

9 −0.43 × 10−1 + i0.19 × 10−2 −0.14 × 10−2 + i0.71 × 10−4 −0.43× 10−3 + i0.21 × 10−4

10 0.13 × 10+0 − i0.62 × 10−2 0.44 × 10−2 − i0.21 × 10−3 0.13 × 10−2 − i0.65 × 10−4

12 0.56 × 10−3 + i0.79 × 10−4 0.90 × 10−6 − i0.11 × 10−6 0.11 × 10−9 − i0.21 × 10−7

13 −0.99 × 10−3 + i0.41 × 10−4 0.72 × 10−4 − i0.50 × 10−5 0.25 × 10−4 − i0.17 × 10−5

14 0.24 × 10−2 − i0.92 × 10−4 −0.22 × 10−3 + i0.15 × 10−4 −0.77× 10−4 + i0.51 × 10−5

16 0.18 × 10−3 − i0.10 × 10−4 0.47 × 10−6 − i0.27 × 10−7 0.30 × 10−7 − i0.25 × 10−8

17 −0.19 × 10−3 − i0.17 × 10−4 −0.78 × 10−5 − i0.14 × 10−7 −0.23× 10−5 + i0.10 × 10−8

18 −0.26 × 10−3 + i0.21 × 10−4 −0.88 × 10−5 + i0.31 × 10−6 −0.22× 10−5 + i0.74 × 10−7

suppression factor is well known [8–10, 18] for TVPC matrix elements in nuclei.

It is noteworthy that our calculations are in good agreement with results [7], obtained

using zero range force approximation for calculations of TVPC effects in n − d scattering.

For example, using eq.(8) of paper [7] one can obtain for Ecm = 100 keV

∆f /TP

p
= g′(0.0004 + i0.0013) fm2, (18)

where g′ is unknown TVPC nucleon-nucleon coupling constant.

The results of table III can also be used to express TVPC parameters in terms of meson

exchange model. Since TVPC meson exchange model does not allow pion exchanges, the

lightest mesons to be considered are ρ and h1 mesons. Then, assuming only contributions

10



from these mesons, one can obtain for Ecm = 100 keV

∆σ /TP = 10−6[ghḡh(−1.09) + gρḡρ(4.20 · 10−3)] b,

1

N

dφ/TP

dz
= −10−3[ghḡh(1.24)− gρḡρ(5.81 · 10−3)] rad fm2. (19)

Finally, we conclude that neutron-deuteron scattering is a promising process to improve

current experimental constraints on TVPC interactions. The TVPC observables can be

large enough to be measured at neutron energy of hundreds of keV due to strong energy

dependence. On the other hand they can be precisely calculated, providing the possibility

to extract the TVPC nucleon coupling constants from the experiment.
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