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Abstract

The recently measured γγ∗ → π0 anomalous form factor is analyzed using the

D4/D8D8 holographic approach to QCD. The half-on-shell transition form factor is

vector meson dominated and is shown to exactly tie to the charged pion form factor.

The holographic result compares well with the data for the lowest vector resonance.



1. Recently the BaBar collaboration has extended the measurement of the half-on-shell

γγ∗ → π0 transition form factor up to Q2 ≈ 40GeV2 photon virtualities [1, 2]. The reported

measurements are considerably above the predicted values using factorization and pQCD [3,

4, 5]. Although seen as a key benchmark for pQCD, this exclusive process is tied with the

flavor triangle anomaly in QCD and maybe more subtle. Similar difficulties were reported

earlier by the JLAB collaboration for fixed angle Compton scattering γp→ γp [6].

A number of analyses have been put forward to try to reconcile the BaBar data with

pQCD factorization through a modification of the pion distribution amplitude [8, 9, 7],

whereby the pion distribution amplitude is argued to be flatter. However, there are difficulties

in reconciling these modifications with the data at lower Q2 which are seen to demand a

vanishing pion distribution amplitude at the edges [10].

In this letter, we will put aside the idea of factorization and analyze the BaBar data

using holographic QCD, a fully non-perturbative framework. Our analysis will be based on

the top-down dual construction [11, 12], in contrast to the bottom-up constructions recently

discussed in [13, 14, 15]. In the bottom-up approach [13] with a hard-wall the pion wave

function needs an additional boundary term. As pointed out in [14], the model studied here

can be view as a hard-wall model albeit no changes to the pion wave function are necessary.

While differences between these two approaches will show up in the IR of the boundary the-

ory, we expect similarities in the UV. An interesting analysis within the context of large-Nc

Regge models is given in [16].

2. The π0γ∗γ∗ form factor can be assessed in holographic QCD using the D4/D8D8 em-

bedding formulated by Sakai and Sugimoto [11, 12] which supports vector meson dominance.

Specifically (k = q1 + q2 and Q2

1,2 = −q2
1,2))
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where the an characterize the vector couplings to the external EM current and the cmn the

anomalous π0 coupling to the vectors (see [11, 12] and Appendix for details). In particular,

the vector couplings obey the sum rule

∑

mn

amancmn = 1 , (3)

which shows that at the photon point (2) is fixed by the Abelian anomaly

Fγγπ0 (0, 0) =
Nc

12π2fπ
. (4)

3. For one photon on-mass shell, the transitional pion form factor is

K
(

0, Q2
)

≡
12π2fπ
Nc

Fγγ∗π0

(

0, Q2
)

=
∑

n

angnππ
1

1 + Q2

m2
n

, (5)

where we have used [11, 12]
∑

m

amcmn = gnππ . (6)

For n = 1 we have g1 = gρππ ≈ 6, the standard rho-pi-pi coupling. In Fig. 1 we show
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Figure 1: ”(Color online)” Transitional pion form factor (n = 1) vs. data. See text.

the transitional pion form factor (for n = 1) versus the data from Cello [25] (blue, circle),
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Figure 2: ”(Color online)” Contributions to the transitional pion form factor. See text.

Cleo [26] (green, square) and BaBar [1] (red, diamonds). We use fπ = 0.0924 GeV and Nc =

3. The contribution from n = 1 is shown with one photon on-shell (solid line) and one photon

at Q2

1
= 0.18GeV2 (dashed line). The dashed-dotted line is the pQCD interpolation [5]

Q2FBL

γγ∗π0(0, Q2) =
Q2

4π2fπ

(

1 +
Q2

8π2f 2
π

)−1

≃
Q2

4π2fπ

(

1 +
Q2

m2
ρ

)−1

. (7)

The higher contributions from the holographic vectors are shown as the solid line contribution

in Fig. 2. These vectors contribute with alternating sign to the transitional form factor and

add up to zero asymptotically. The dotted line in Fig. 2 shows the result for the transitional

form factor including the first 8 resonances. Indeed 1

lim
Q2→∞

Q2K
(

0, Q2
)

≃
∑

n

angnππm
2

n = 0 . (8)

As shown in [17] the transitional form factor in a vector-meson-dominance model is sensi-

tive to small Q2

1
. Here, the nature of the couplings dictated by the wave functions in the

holographic direction yields a vanishing result for Q2Fγγ∗π0 at large Q2 (independent of a

non-vanishing Q2

1
), when the infinite tower of vector resonances is included. We recall that

the top-down holographic approach effectively describes the QCD degrees of freedom for

flavor excitations below MKK ≈ 1GeV. When only the n = 1 or rho resonance is retained,

1This can be checked by expanding the result in (5) and using (14) as well as the completeness relation
for the functions ψ2n−1, see Appendix.
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the large Q2 asymptotic is

lim
Q2→∞

Q2Fγγ∗π0(0, Q2)
∣

∣

∣

n=1

≃ a1 g1ππ
m2

1

4π2fπ
= 1.31

m2

1

4π2fπ
, (9)

with m1 = mρ and a1g1ππ ≈ 1.31 [12]. This asymptotics, is in a better agreement with the

data in the range 10 < Q2 < 35 GeV2 [1]. We recall that the pQCD result does not vanish

asymptotically [4]

lim
Q2→∞

Q2FBL
γγ∗π0 = 2fπ ≃

m2

ρ

4π2fπ
, (10)

where the last relation follows from the second KSRF relationm2
ρ = 2g2ρππf

2
π with g2ρππ ≈ 4π2.

The pQCD asymptotic (dashed-dotted line) is 30% lower than the holographic asymptotic

(dashed line) with n = 1 (rho meson only) as is explicit in Fig. 1.

4. The charged pion form factor is studied in various holographic QCD models, see e.g.

[18, 19, 20, 21]. An analysis within large-Nc Regge models is given in [22]; see also [23].

The model used here shows a rather unexpected result: For one photon on-mass shell, the

transitional pion form factor is directly related to the charged pion form factor Fπ(Q
2) in

holographic QCD:
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Figure 3: ”(Color online)” Charged pion form factor from (11) with n = 1, ..., 8. See text.

Fπ

(

Q2
)

=
∑

n

angnππ
1

1 + Q2

m2
n

= K
(

0, Q2
)

. (11)

Note that the top-down model yields the same couplings for the charged and neutral pions.
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In Fig. 3 we show the behavior of the charged pion form factor following from (11) by using

the first eight resonances (n = 1, ..., 8). The data are from [27] (red dots, error bars omitted

for clarity) and from [29] (black squares). At small virtualities,

K(0, Q2) ≈ 1−Q2/m2

1 ≈ 1− aπ Q
2/m2

π , (12)

where aπ ≈ 0.039 can be tied to the pion charge radius by isospin aπ ≡ m2
π 〈r

2〉
π
/6. The

measured value is aπ = 0.026 ± 0.024 ± 0.0048 [24]. The holographic relation (11) between
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Figure 4: ”(Color online)” Transitional form factor (circles) versus pion form factor (squares).
See text.

the pion form factor and the transitional form factor implies a Ward-identity like relation at

strong coupling. The consistency of this relation is checked in Fig. 4 where we have plotted

the transitional form factor Q24π2fπFγγ∗π0 (Q2) from Cello ([25], magenta circles), Cleo ([26],

green circles) and BaBar [1] (red, circles) versus the measured pion form factor Q2Fπ (Q
2)

from [28] (black squares) and [29] (blue squares) with fπ = 0.0924 GeV. The latter data are

only up to 10 GeV2. The identity is held rather well at low Q2 and within the error bars at

large Q2.

5. We have used the D4/D8D8 holographic construction to analyze the pion transitional

form factor. The transitional form factor at large Nc and strong coupling is entirely dom-

inated by vector resonances while its on-shell intercept is still fixed exactly by the Abelian

anomaly. A comparison to the existing BaBar data implies that only the n = 1 or ρ resonance

should be retained to accomodate the measured data up to Q2 = 40 GeV2. This is consistent
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with the expectation that the D4/D8D8 holographic model with vector excitations works

at or below the MKK ≈ 1GeV scale. The holographic construction ties the transitional pion

form factor to the charged pion form factor. This Ward-like identity is found to be well

obeyed by the existing data for both form factors, including the recent BaBar data up to

Q2 ≈ 10 GeV2.
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Appendix: Holographic Summary.

In this Appendix we briefly note some of the holographic conventions and results of the

D4/D8D8 construction of relevance to our analysis in the text. We refer to [11, 12] for

further details. The effective Lagrangian (DBI plus Chern-Simons) contributions below the

MKK scale are

L
DBI

D8 + L
CS

D8 ≈
1

2
tr

(

∂µv
n
ν − ∂νv

n
µ

)2
+ antr (∂

µ
V
ν − ∂νVµ)

(

∂µv
n
ν − ∂νv

n
µ

)

+m2

ntr
(

vnµ
)2

−
iNc

4π2fπ
ǫαβγδtr

(

Π∂αv
n
β∂γv

m
δ

)

cnm (13)

with U(Nf ) valued pion (Π), photon (Vµ) and vector (vnµ) fields. The vectors vnµ = iT avnaµ

are U(Nf ) valued with the normalization tr
(

T aT b
)

= δab/2. Here and in the text the sum

over the vector modes m,n = 1, 2, 3, .... is implied. All the vector couplings in (13) are fixed

by the behavior of the holographic wave functions. Specifically,

an = κ

∫

dz K−1/3ψ2n−1 , cnm =
1

π

∫

dz K−1ψ2n−1ψ2m−1 .

with K = 1 + z2. κ = λNc/216π
3 ≃ 0.00745 is fixed by the pion decay constant. The

holographic wave functions ψ2n−1 and the masses for the vector modes satisfy the equation

−K−
1

3∂z (K∂zψ2n−1) = λnψ2n−1 , lim
z→±∞

ψ2n−1 → 0 , ∂zψ2n−1(0) = 0 , m2

n = λnM
2

KK .(14)

They are normalized by

κ

∫

dz K−
1

3ψ2n−1ψ2m−1 = δnm . (15)

The scale of the vector masses is set by MKK ≈ 1GeV.
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