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Abstract

The martini numerical simulation allows for direct comparison of theoretical model calculations

and the latest results for dijet asymmetry from the ATLAS and CMS collaborations. In this paper,

partons are simulated as undergoing radiative and collisional processes throughout the evolution

of central lead-lead collisions at the Large Hadron Collider. Using hydrodynamical background

evolution determined by a simulation which fits well with the data on charged particle multiplicities

from ALICE and a value of αs ≈ 0.25 − 0.3, the dijet asymmetry is found to be consistent with

partonic energy loss in a hot, strongly-interacting medium.
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I. INTRODUCTION

Within a month of running, the heavy-ion programs at the Large Hadron Collider has

produced important results. The anisotropic flow is similar to the flow measured at the RHIC

experiment and suggests intensive bulk properties comparable to what would also describe

lower energy collisions [1–3]. However, because
√
sNN = 2.76 TeV at the LHC, significantly

larger than the center-of-mass energies achieved at the RHIC, far more energetic jets are

kinematically accessible at the LHC. The ATLAS collaboration was able to measure over

1000 dijets where the leading jet has transverse energy ET > 100 GeV and the opposing

jet has energy ET > 25 GeV [4]. The CMS collaboration performed a similar analysis on

a large sample of jets (ET1 > 120 GeV, ET2 > 50 GeV). These results are a significant

improvement over the results from the RHIC, where the total energies of the jets were

far lower and therefore harder to separate from fluctuations in the underlying bulk. Also,

the models for partonic evolution rely on the probe parton having high energy, and when

this separation of energies exists one can expect the hadronization of these partons to be

described well with vacuum fragmentation functions. Several theoretical studies of these

results are now available: Majumder and Che et al. examined the supression of high-pT

hadrons assuming purely radiative energy loss and found good agreement with the rising

RAA for high transverse momentum seen in the latest analysis of ALICE [6, 7]. Qin and

Müller studied the evolution of the whole jet shower, as the jet propagates through the quark-

gluon plasma and interacts with the medium [8]. Casalderrey-Solana et al. [9] conclude that

the removal of soft components from within the jet cone will induce a dijet asymmetry. Also,

Lokhtin et al. use the pyquen model to quantify the “jet-trimming? [10].

In this paper, we apply martini to the lead-lead collisions at the LHC [11, 12]. In

Section II, the physics behind martini is reviewed, as well as the description of the bulk of

heavy-ion collisions with 3+1-dimensional hydrodynamics. In Section III, runs of martini

with cuts given by the ATLAS and CMS detectors and their analyses are compared with

the experimental results for both dN/dAJ (the yield of dijets differential in AJ , where AJ

measures the energy anisotropy of dijets) and dN/dφ. In Section IV, we briefly discuss these

results and their relationship with other experimental results at the LHC.
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II. TRANSPORT OF HIGH-ENERGY PARTONS AND MARTINI

martini solves the rate equations

dPqq̄(p)

dt
=

∫
k
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dΓq

qg(p+ k, k)

dkdt
− Pqq̄(p)

dΓq
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,
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dt
=

∫
k
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(
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,

where the various differential rates dΓi
lm(p, k)/dkdt determine the splitting of partons l and

m, one with momentum k, from a parton i with momentum p [14].

In its current implementation, martini uses rates which take into account both radiative

and collisional QCD processes, calculated at finite temperature. Collisional processes involve

soft momentum transfers sensitive to the gluon’s screening mass and therefore, hard thermal

loop results at leading order are used to describe these processes. For the elastic processes

martini does not depend on the “diffusive approximation”: there is no need to assume

that the rates are only significant when ω is small [13]. Radiative energy loss is modeled

using the Arnold-Moore-Yaffe approach, where the interference of bremsstrahlung gluons

from multiple scatterings is taken into account with an LPM-like integral equation for the

energy loss rate [15–17].

The momenta of high-energy partons are sampled using pythia event generation [18], and

their initial positions in the transverse plane of heavy-ion collisions are sampled according

to nB(x, y, b), the distribution of binary collisions for a given impact parameter b of the

collision. These partons are then evolved through the background of bulk particles. For the

results of Section III, this evolving background is modeled using music, a 3+1-dimensional

hydrodynamic simulation [19]. The use of 3+1-dimensional hydrodynamics allows jets at

different rapidities to evolve differently, as one should expect.

For the results in Section III, martini is run with αs = 0.25, 0.27, and 0.3 including

both collisional and radiative processes. The finite-temperature rates for these processes are

determined by the temperatures and flow in lead-lead collisions as simulated with music for

an impact parameter of b = 2.31 fm, reproducing the multiplicities of the 0-10% centrality

class. In this study we use a simulation with ideal hydrodynamics starting with the averaged
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initial conditions.

In summary, the strengths of martini include the inclusion of combined radiative and

elastic processes, its integration with pythia and Glauber model calculations for both sam-

pling of the initial parton distributions in momentum and position and the fragmentation

of the evolved partons into hadrons, and the ability to evolve the partons in a background

medium obtained from realistic hydrodynamical simulations.

III. RESULTS FOR LEAD-LEAD COLLISIONS MEASURED AT ATLAS AND

CMS

Once high-energy partons have evolved and hadronized, the resulting hadrons must then

be reconstructed into jets. For the best possible comparison with the results of the LHC,

we use the same anti-kt jet reconstruction that the ATLAS collaboration uses [20]. These

algorithms depend on the definition of distances between two 4-momenta:

dij = min

(
1

k2
it

,
1

k2
jt

)
(φi − φj)

2 + (yi − yj)2

R2
. (1)

The distances are determined between all pairs of final-state particles whose energies are

large enough to trigger the calorimeters, and starting with the smallest distance, 4-momenta

close to each other are clustered and added together and final jets are determined. The

implementation of this algorithm that we used is fastjet, publicly available online [21].

Once the clustering of hadrons into jets is complete, the jet with highest ET is determined,

and the highest energy jet whose azimuthal angle from the leading jet ∆φ > π/2 (or 2π/3,

as is the case with the CMS analysis) is also determined. If the energies of this dijet are

high enough to make it into the given detector’s analysis, they are recorded and binned.

In Figure 1, we show the results for ATLAS, in the 0-10% centrality range, for the differ-

ential yield dN/dAJ , where AJ = ET1−ET2

ET1+ET2
is a measure of the transverse energy asymmetry

of the dijets. The ATLAS results used are from the latest analysis using R = 0.4 [22]; there

was little dependence of R found in the latest results, suggesting partonic energy loss as

the dominant mechanism leading to dijet asymmetry. Our results are compared with p+p

events using pythia and fastjet, and the differential yields are normalized to one. In

Figure 2, we show the differential yields dN/dφ, where φ is the azimuthal opening angle for

the dijets.
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FIG. 1: The differential yield dN/dAJ for proton-proton collisions at (solid) and for lead-lead

collisions (dashed, dotted), both at
√
s = 2.76 GeV for each nucleon-nucleon collision.
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FIG. 2: The differential yield dN/dφ for proton-proton collisions at
√
s = 2.76 GeV (solid) and

for lead-lead collisions (dashed, dotted).
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FIG. 3: (Color online) The differential yield dN/dAJ for lead-lead collisions at
√
s = 2.76 GeV.

The results are shown for both αs = 0.25, 0.27, and 0.3. From examining the results for

dN/dφ compared with ATLAS, it is clear that the martini model constrains tightly the

only parameter in the model, αs.

On the other hand, Fig. 2 shows no significant difference in the distribution of dijets

between proton-proton and lead-lead collisions. The experimental results show a significant

increase in the yield at small φ in lead-lead collisions over what was observed in proton-proton

collisions. This enhancement, while significant, affects a relatively small number of dijets in

ATLAS’ sample, and could be due to complications facing jet reconstruction in heavy-ion

collisions with fluctuating soft backgrounds. This possible explanation was demonstrated

recently by Cacciari, Salam, and Soyez, without any consideration of jet quenching [23]. We

are currently working on including the event-by event fluctuations of the initial conditions

to take this effect into account. However we should point out that these fluctuations affect

a relatively small number of jets and does not significantly affect our results besides the

differential yield at small angles (which is clear when plotted semi-logarithmically).

Finally, Figure 3 shows the differential yield in Aj determined by CMS’ dijet sample,

compared with martini’s results based on CMS’ kinematical cuts.

6



IV. CONCLUSIONS

The study reported here utilizes the pQCD and thermal-QCD based MARTINI numerical

simulation with a hydrodynamic background determined by music and full jet reconstruction

using fastjet. Using only one free parameter - αs - we can explain a large part of the

jet asymmetries observed in the recent ATLAS and CMS experiments at the LHC as the

consequences of high energy jets interacting with the evolving QGP medium. According to

a recent study, the discrepancy in the angular asymmetry may be due to the fluctuating

soft background. We are currently accumulating a statistically significant number of event-

by-event hydrodynamics events to study this effect further. For dN/dAJ , it is shown that

our approach describes the CMS data significantly better than the relatively softer ATLAS

data. This may be again due to fact that compared to the averaged initial conditions, the

event-by-event initial conditions have significant granularity. It is conceivable that the more

localized hot spots in the fluctuating case affects the shape of dN/dAJ more for the relatively

softer partons since most energy loss occurs early in the evolution. These and other effects

such as the viscosity of the medium are currently under investigation.
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