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We conduct a systematic investigation of the nuclear collective dynamics that emerges in systems
with two-body random interactions. We explore the development of the mean field and study its
geometry. We investigate multipole collectivities in the many-body spectra and their dependence
on the underlying two-body interaction Hamiltonian. The quadrupole-quadrupole interaction com-
ponent appears to be dynamically dominating in the two-body random ensemble. This quadrupole
coherence leads to rotational spectral features and thus suggests the formation of the deformed
mean-field of a specific geometry.

PACS numbers: 21.45.Ff, 21.60.Cs, 21.30.-x

I. INTRODUCTION

Emergent phenomena are one of the most profound
topics in modern science, addressing the ways that col-
lectivities and complex patterns appear due to multiplic-
ity of components and simple interactions. Ensembles
of random Hamiltonians allow one to explore the emer-
gent phenomena in a statistical way, and thus to estab-
lish generic relations and rules. To study the many-body
physics of interest, we adopt a shell model approach with
a two-body interaction Hamiltonian. The sets of the two-
body interaction strengths are selected at random, result-
ing in the two-body random ensemble (TBRE) [1]. Sym-
metries, such as rotational, isospin, and parity, entangled
with complex many-body dynamics result in surprising
regularities discovered recently in the low-lying spectrum.
Patterns exhibited by the random ensembles are remark-
ably similar to those observed in real nuclei. The high
probability for the ground state spin to be zero is the
most astounding feature of the TBRE discovered in Ref.
[1]. Signs of almost every collective feature seen in nu-
clei, namely, pairing superconductivity, deformation, and
vibration, have been observed in the TBRE [2–6]. While
the systematics of the ground state quantum numbers is
almost not sensitive to the short-range pairing matrix ele-
ments, the probability to find a coherent paired structure
in the wave-functions of low-lying states is enhanced [2].
The presence of rotational characteristics in the spectra
is another unexpected result seen in the TBRE [2, 7].

The goal of this work is to study the emergence of
collective mean-field dynamics in ensembles with random
interactions. The discussion is organized as follows: In
Sec. II we briefly define the TBRE, introduce signatures
of collective motion, and discuss ways to detect them. In
Sec. III we present our study of collectivities in singlej
level models. More complex models are explored in Secs.
IV and V. We summarize our results in Sec VI with
a discussion of the quadrupole-quadrupole Hamiltonian
which appears to be responsible for most of the observed
phenomena.

II. COLLECTIVE OBSERVABLES AND
MODELS

In the spirit of the traditional shell model approach,
we define a model configuration as (j1, j2 . . . )

N , where
N nucleons occupy a set of single-particle levels labeled
by their angular momentum j. In this work, unless ex-
plicitly stated otherwise, the single-particle energies are
degenerate. The Hamiltonians in the TBRE are defined
with a set of two-body matrix elements which are se-
lected at random. The distribution of the two-body ma-
trix elements is Gaussian so that, within a given symme-
try class, the ensemble of Hamiltonian matrices for two
particles coincides with Gaussian Orthogonal Ensemble.
The presence of rotational symmetry and, where rele-
vant, of parity and isospin symmetries is assumed. The
distribution variances are selected to be the same for all
symmetry classes. The typical number of random realiza-
tions is between 105 and 107 for all ensembles presented
in this work.

In the TBRE the number of realizations with the
ground state spin Jgs = 0 is disproportionally large.
Aiming at collective phenomena we select realizations
with Jgs = 0. With the exception of the ground state, la-
beled as 0gs, we denote the low-lying states by the value
of their spin with an identifying subscript. The subscript
is given in bold font if it refers to the absolute order of
a given state in the spectrum. Throughout this paper
we give probabilities of finding realizations with certain
features; these probabilities are always quoted as a per-
centage relative to the size of the ensemble; however, all
probability distribution plots are normalized to unit area.

In order to identify and to analyze manifestations of
collective phenomena in the spectra we use a set of ob-
servables. The goal is to choose a finite number of spec-
tral observables that are likely to convey most of the in-
formation about possible collective structures in a scale-
independent way and with minimal model dependence.
These quantities and the logic behind their selection are
discussed in what follows.

The geometry of the nuclear mean field is described by
the multipole density operatorsMλµ with multipolarity
λ and magnetic component µ. The structure of the mul-
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tipole operators depends on the valence space, for each
model it is addressed separately. The reduced transition
rate from an initial state |JM〉 to a final state |J ′M ′〉

B(Eλ, J → J ′) =
1

2J + 1

∑
µ,M,M ′

|〈J ′M ′|Mλµ|JM〉|2

(1)
is one of the observables. Here |JM〉 denotes a many-
body state with angular momentum J and magnetic pro-
jection M. The total transition strength from a state J
is given by the sum rule

Sλ(J) =
∑
J′

B(Eλ, J → J ′) = 〈JM |
∑
µ

M†λµMλµ|JM〉,

(2)
which provides a convenient normalization to assess the
fractional collectivity of the transition

b(Eλ, J → J ′) =
B(Eλ, J → J ′)

Sλ(J)
. (3)

The shape of a state is described by its multipole mo-
ments specified by the expectation value

Qλ(J) = 〈JJ |Mλ0|JJ〉. (4)

For a non-spherical system this moment describes the
shape of a deformed nucleus measured in the lab frame.
The intrinsic shape is characterized by the body-fixed
(intrinsic) multipole moments Qλ. A rotational spectrum
(band) emerges for every fixed intrinsic shape. In a rigid
rotor these intrinsic moments are the same for all states
in the band and they determine the lab-frame observables
in Eqs. (1) and (4). For the ground state band of inter-
est, the intrinsic moments determine the total transition
strength Sλ(0gs) = Q2

λ.
In the axially symmetric case the quantum number K,

a projection of the angular momentum onto the body-
fixed symmetry axis, is conserved. Then for each rota-
tional K-band the relations between the observables in
the lab frame and in the intrinsic frame are expressed via
Clebsch-Gordan coefficients Qλ(J) = QλC

JJ
λ0,JJC

JK
λ0,JK

and B(Eλ, J → J ′) = Q2
λ

∣∣∣CJ′K
λ0,JK

∣∣∣2 . This limit of an ax-
ially symmetric rotor provides a suitable normalization
of the multipole moments. In this work instead of Qλ(J)
we quote a normalized intrinsic moment

qλ(J) =
Qλ(J)√
Sλ(0gs)

, where Qλ(J) =
Qλ(J)

CJJλ0,JJC
J0
λ0,J0

,

(5)
which is computed as if the state is a member of the
K = 0 rotational ground state band.

In this paper we only briefly touch on the subject of
collectivities other than quadrupole, see Sec. III C; thus
for convenience the subscript λ is omitted for λ = 2. The
relation between the lab-frame moment of the 21 state
and its intrinsic moment is Q(21) = −2/7Q(21). For an
axially symmetric rotor the quadrupole transition sum

rule for the 0gs state is saturated by a single transition
b(E2, 0gs → 21) = 1. In this case the quadrupole moment
is q(21) = 1 for prolate or q(21) = −1 for oblate shapes.

We normalize the total transition strength Sλ(J) to
its maximum possible value for a given valence space.
Taking the λ = 2 case as an example, we define the
quadrupole-quadrupole (QQ) Hamiltonian as

HQQ = −
∑
µ

M†2µM2µ. (6)

The eigenstate energy of the QQ Hamiltonian coincides
with the total transition strength (2) for that state:
EQQ(J) = −S(J). Thus, the absolute value of the
ground state energy of the QQ Hamiltonian |EQQ(0gs)|
is the maximum possible value of the total transition
strength S(J) for a given model space and for a given
structure of the quadrupole operator. We therefore de-
fine a relative transition strength as

s(J) =
S(J)

|EQQ(0gs)|
. (7)

To summarize, in our study we use the dimensionless
variables defined in Eqs. (3), (5), and (7). To shorten
the notation we define b ≡ b(E2, 0gs → 21), q ≡ q(21),
and s ≡ s(0gs). For collective models of pairing, rota-
tions, and vibrations b ≈ 1.We refer to a realization with
b > 0.7 as collective and with b < 0.3 as non-collective.
The quadrupole moment q allows one to separate differ-
ent collective modes: q ≈ ±1 for rotations and q ≈ 0 for
vibrations and for paired states. In what follows we al-
lude to collective realizations with q > 0.7 as prolate and
those with q < −0.7 as oblate. For rotations the rela-
tive transition strength s is proportional to the square of
the intrinsic moment, and thus it is associated with the
Hill-Wheeler deformation parameter β2. Within Elliot’s
SU(3) model [8] the relative transition strength s can be
thought to represent the expectation value of the Casimir
operator which identifies the irreducible representation.
In cases where s ≈ 1 the ground state band structure is
close to that of the QQ Hamiltonian.

The collective structure is further analyzed using the
following 41 state. The types of collective modes can be
classified by the ratio of the excitation energies measured
relative to the energy of the 0gs state

R42 =
E(41)

E(21)
. (8)

This ratio is close to 0 for pairing, 2 for vibration, and
10/3 for rotation. The ratio of deexcitation rates

B42 =
B(E2, 41 → 21)

B(E2, 21 → 0gs)
(9)

is another measure. It is nearly 0 for pairing, 2 for vibra-
tional mode, and 10/7 for rotational motion. Typically,
for models with the QQ Hamiltonian R42 and B42 are
close to the rotational values, see summary in Tab. I.
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A comprehensive review of different collective models,
their analytic predictions, and comparisons with rota-
tional spectra observed in real nuclei can be found in the
textbooks [9, 10].

III. THE SINGLE j LEVEL MODEL

A. Quadrupole collectivity

We begin our presentation with single j level mod-
els. Starting from the original paper [1] the single j
level with identical nucleons has been at the center of
numerous investigations; a good summary may be found
in the following reviews [2, 4, 5, 11]. With many is-
sues understood and with still unanswered questions, the
single j model remains an important exploratory bench-
mark. The model, while simple, has a number of partic-
ularly attractive features which can be of both advantage
and disadvantage [12]: the Hamiltonian is defined with a
small number of parameters; apart from an overall nor-
malization constant, the multipole operators are uniquely
defined; a special role is played by the quasispin SU(2)
group; and the particle-hole symmetry is exact.

In Fig. 1 the system with 6 nucleons in a single
j = 19/2 level is examined; we refer to this system as
(19/2)6. Here we select the 10.4% of random realizations
where the 0gs state is followed by the 21 state. The distri-
bution of the fractional collectivity b ≡ b(E2, 0gs → 21)
in Fig. 1(a) points to highly collective nature of the
quadrupole transition 0gs → 21. Most realizations with
0gs and 21 are collective (b > 0.7), their fraction is 7.8%
of the total number of samples. These realizations are
shaded in red. This collectivity is not a statistical coinci-
dence. The system (19/2)6 has 1242 spin-states, among
them there are 10 states with J = 0 and 23 states with
J = 2. Thus, the probability for the 0gs, 21 spin se-
quence to occur among all other possible outcomes is only
0.015%. The large fractional collectivity for the transi-
tion between these two states is even more unlikely sta-
tistically. The probability of b(E2, 0gs → 21) > 0.7 is
of the order of 10−7 because the transition strength is
shared among 23 J = 2 states.

There are two peaks in the distribution of the
quadrupole moment in Fig. 1(b), they reflect prolate
and oblate deformations. For most of the collective re-
alizations, which are shaded in Fig. 1, the magnitude of
the quadrupole moment is consistent with the value for
the axially deformed rigid rotor (|q| ≈ 1). The ground
state is most likely to be oblate, but in about one out of
four collective cases a prolate mean field emerges.

The collective realizations are further analyzed in Fig.
2 which shows the distribution of the relative transition
strength s. In Fig. 2 the oblate (q < −0.7) and prolate
(q > 0.7) cases are shaded with different patterns. The
relative transition rate s for the oblate samples is close
to the maximum possible value s = 1. Thus, for these
realizations the ground state band structure is similar
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Figure 1: (Color online) (19/2)6. (a) The distribution of the
fractional collectivity b. (b) The distribution the intrinsic
quadrupole moment q. Only realizations with the 0gs, 21 spin
sequence are included in both panels. There are 10.4% of such
realizations. The 7.8% of collective realizations (b > 0.7) are
shaded.

to that of the QQ Hamiltonian. The data on the QQ
Hamiltonian for our models is summarized in Sec.VI. For
prolate systems the distribution of the relative transition
strength peaks around s = 0.37.

In Fig. 3 we focus on distributions of the deexcitation
ratio B42 and the energy ratio R24 defined in Eqs. 9
and 8. We use the same shading for prolate and oblate
realizations as in Fig. 2, but slightly modify our selection
of samples. We chose the collective realizations that have
states 21 and 41, with 21 being not higher than the forth
excited state and 41 being above it.

The collective oblate realizations comprise a peak in
the distribution of B42 in Fig. 3(a) around the rota-
tional limit of B42 = 10/7 ≈ 1.4. For prolate realizations
the distribution peaks near B42 = 0.8 and has an ex-
tended shoulder. It is likely that the rotational structure
is fragmented in instances with a weak prolate deforma-
tion suggested by the lower values of s seen in Fig. 2.
Therefore, the 41 state is not purely rotational.

The distribution of the ratio of the excitation energies
R42 in Fig. 3(b) seems to contradict the rotational limit.
For most of the collective realizations the values of the
ratio fall between the pairing limit of 1 and the vibra-
tional limit of 2, while in the rotational limit the ratio
of 3.3 is expected. This discrepancy has been reconciled
in Ref. [1] with the observation that the rotational or-
dering emerges for the ensemble-averaged excitation en-
ergies. The same conclusion is expected from the geo-
metrical chaoticity arguments [13]. Excitation energies
are sensitive to non-collective features, this leads to large
fluctuations of R42. The experimental observations of
realistic nuclei also show that when the quadrupole tran-
sition rates follow the rotational systematics, the exci-
tation energy spectrum can deviate from rotational; on
occasions, the spectrum is closer to the vibrational limit
[9]. The coexistence of both prolate and oblate config-
urations in this (19/2)6 system could be another reason
for the distortion in the energy spectrum. Within Elliot’s
SU(3) model analogous mixing of group representations
was investigated in Ref. [14].



4

 0

 2

 4

 6

 8

 0  0.2  0.4  0.6  0.8  1

P
ro

b
a
b
ili

ty

s

-1 1q

Figure 2: (Color online) (19/2)6. The distribution of the
relative transition strength s for the collective realizations
(shaded area in Fig. 1). The quadrupole moments shown
in the inset are separated into prolate (q > 0.7) and oblate
(q < −0.7) shapes. The resulting distributions are shaded
with a pattern and a uniform color, respectively. The frac-
tion of oblate cases is 5.2% and the fraction of prolate cases
is 1.3% relative to the total number of random realizations.
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Figure 3: (Color online) (19/2)6. (a) The distribution of the
deexcitation ratio B42 defined in Eq. (9). (b) The distribution
of the excitation energy ratio R42 defined in Eq. (8). The
distributions are comprised of 13.6% of realizations that have
the 0gs, 21, 41 sequence with b > 0.7, the 21 state is not
higher than the fourth excited state, and E(41) > E(21). The
prolate and oblate cases, which appear in the ensemble with
probabilities 3.3% and 7.1% respectively, are shaded with the
same patterns as in Fig. 2. The values of B42 and R42 for the
QQ Hamiltonian listed in Tab. I are marked with the vertical
grid lines.

B. Triaxiality

The triaxiality is marked by the presence of low-
lying levels 22, 31, 42, 51. The excitation energies are
subject to the equalities E(21) + E(22) = E(31) and
4E(21) + E(22) = E(51). It is remarkable that these re-
lations appear to be well satisfied by the spectrum of the
QQ Hamiltonian in the (19/2)6 configuration, for which
R2131 +R2231 = 1.005 and 4R2151 +R2251 = 1.026. Here
RJJ ′ = E(J)/E(J ′) denotes the ratio of excitation en-
ergies. The rigid rotor Hamiltonian, defined by three
moments of inertia, is responsible for these correlations

in the spectrum.
In this work we examine two low-lying 21 and 22 states.

These are the only states with spin 2 in the triaxial rotor
model, they are mixed configurations of K = 0 and K =
2. We use angle Γ to express the level of the K-mixing.
This angle is determined by the three reciprocal moments
of inertia Ai, i = 1, 2, 3 in the rotor Hamiltonian

tan 2Γ =

√
3(A1 −A2)

A1 +A2 − 2A3
.

The ratio of the excitation energies of the 21 and 22 states
is another parameter of the rotor Hamiltonian. It is con-
venient to express this ratio R2122 in terms of the angle
γDF defined using the Davydov-Filippov model of irro-
tational flow [15] as

sin2(3γDF ) =
9

2

R2122

(1 +R2122)
2 . (10)

In our example that follows, the triaxiality is small and
γ2DF ≈ 0.5R2122 . Thus, the rotor Hamiltonian, given
by the three moments of inertia, can be equivalently de-
scribed by an overall energy scale, the K-mixing angle Γ,
and the angle γDF .

The quadrupole shape is parametrized by the Hill-
Wheeler parameters β and γ which define the quadrupole
operator M2µ. The relation between the parameters of
the rotor Hamiltonian and the intrinsic shape is model-
dependent. The irrotational-flow moments of inertia
discussed in Ref. [15] result in γDF = γ and Γ =
{arccot [3 cot(3γ)]− γ} /2; the latter implies Γ � γ for
small triaxiality. A rather different result follows from
the rigid-body moments of inertia.

We determine Γ, γDF , and γ independently from the
spectroscopic observables. The parameter γDF is ob-
tained from the energy spectrum, Eq. (10). Following
Ref. [16] one can view the sum rules

b(E2, 0gs → 21) + b(E2, 0gs → 22) = 1

and

7

2
b(E2, 21 → 22) + q2(21) = 1

for the J = 2 two-state model as the Pythagorean the-
orem for amplitudes. The angles in the corresponding
right-angled triangles are γ − Γ and γ + 2Γ, therefore

tan2(γ − Γ) =
B(E2, 0→ 22)

B(E2, 0→ 21)
, (11)

tan2(γ + 2Γ) =
2B(E2, 21 → 22)

7Q2(21)
. (12)

These equations allow one to determine the triaxiality γ
and the K-mixing angle Γ.

All three angles γ, Γ, and γDF are small in our models
with the QQ Hamiltonian, see discussion in Sec. VI.
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Correspondingly, in the TBRE the effects of triaxiality
are weak but detectable.

For our studies of triaxiality presented in Fig. 4 we
use the (19/2)6 model. We recall that in the triaxial
rotor model there is a second J = 2 state, 22, with
Q(21) = −Q(22). Thus, we select collective realizations
with 0gs and 21, and in addition to that we require that
in the entire spectrum there is a 22 state for which the
equality Q(22) = −Q(21) holds within 20% of accuracy.
In collective realizations of rotational type the magni-
tude of the Q(22) is large as compared to the quadrupole
moments of other many-body states. This simplifies the
identification of the 22 state. We find that practically
for all collective realizations this second 22 state exists.
Indeed, from the total number of random realizations a
large fraction, 18.3%, satisfy all of the mentioned triax-
iality conditions. In Figs. 4(a), 4(b), and 4(c) we show
the distributions of the triaxiality angle γ, K-mixing an-
gle Γ, and γDF , respectively. We use the same shading
as in Fig. 3 to separate prolate and oblate shapes.

In the (19/2)6 model one often finds collective realiza-
tions with oblate intrinsic deformation and s ≈ 1, these
realizations are triaxial with γ ≈ 9◦, Fig. 4(a). This
result, as well as Γ ≈ 0◦ in Fig. 4(b), is consistent with
that of the QQ Hamiltonian, see Tab. I. The less fre-
quent prolate cases are nearly axially symmetric.

In the TBRE the angle γDF , Fig. 4(c), appears on
average to be higher than the corresponding angle in the
QQ Hamiltonian. The peak in the γDF distribution is
also higher than the peak in the γ distribution, compare
Figs. 4(a) and 4(c). We remind that γDF = γ in the
irrotational flow model. Nevertheless, no conclusions can
be made from these two discrepancies. We believe that
the excitation energies could be influenced significantly
by non-collective features. The situation may be similar
to the one in Fig. 6(b), where 41 state is lower than
expected for the rotor. Similarly, if the 22 state is lowered
the resulting γDF is larger. In both cases the lowering is
relative to the excitation energy of the 21 state.

C. Higher multipole moments

It is known that in the TBRE the probability to
find a 0gs state followed by either one of the states 21,
41, 61, or 81 is disproportionally large as compared to
what is statistically expected. For the (19/2)6 model
the corresponding probabilities are 10.4%, 17.3%, 11.9%
and 1.8%. In an attempt to understand this, we re-
peat the previous study but target the collective real-
izations of multipolarity λ = 4, 6, and 8. For realiza-
tions with the 0gs state and with the first excited state
of spin λ in Fig. 5, we consider the fractional collectiv-
ity b(λ) ≡ b(Eλ, 0gs → λ1) and the multipole moment
qλ ≡ qλ(λ1). Fig. 5 shows evidences for intrinsic shapes
with deformations of higher multipolarities. In partic-
ular, for λ = 4 and 8 there is a sizable number of col-
lective realizations where b(λ) > 0.7. These realizations
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Figure 4: (Color online) (19/2)6. (a) The distribution of the
triaxiality angle γ . (b) The distribution of the K-mixing
angle Γ. (c) The distribution of the triaxiality angle γDF
from the Davydov-Filippov model. The angles are obtained
from Eqs. (11), (12) and (10). We select realizations with
two states of spin 2 in the spectrum and require b > 0.7 and
q(21) ≈ −q(22); 18.3% of realizations satisfy this set of re-
strictions. The realizations with prolate and oblate shapes
are shaded with the same patterns as in Figs. 2 and 3. Ver-
tical grid lines indicate the triaxiality parameters calculated
from the QQ Hamiltonian, which are: γ = 9.79◦, Γ = 0.73◦,
and γDF = 7.52◦ from Tab. I.

are shaded in red. The corresponding distributions of
the multipole moments in Figs. 5(d) and 5(f) have peaks
which are centered at non-zero values of qλ. The λ = 6
shape collectivity is nearly absent in the (19/2)6 system:
the realizations are mostly non-collective, b(6) < 0.7
shaded in blue, and the corresponding moment has a peak
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Figure 5: (Color online) (19/2)6. The distributions of the
fractional collectivity b(λ) are shown in panels (a), (b), and
(c). The distributions of the intrinsic multipole moments
qλ are shown in panels (d), (e), and (f). The plots are or-
ganized in three rows corresponding to multipolarities with
λ = 4, 6 and 8. Here we include realizations where, in ad-
dition to the 0gs state, the first excited state is either 41, or
61, or 81. The shaded areas correspond to collective and non-
collective modes with b(λ) > 0.7 and b(λ) < 0.3 respectively.
We use the same patterns as in Fig. 1.

centered near zero.
Investigations of other single j systems show presence

of multipole collectivities with λ = 2, 4, 6, and 8. Gen-
erally, the collectivities corresponding to the intrinsic
quadrupole shape are the most pronounced ones, however
there are signatures of realizations with shapes of higher
multipole deformation. The existence of such geometric
structures may be related to the symmetries discussed in
Ref. [11]

D. Multipole structure of the Hamiltonian

In this subsection we discuss the multipole structure of
the two-body Hamiltonian in the single j level model. For
this purpose we use a larger system of 8 nucleons in the
same j = 19/2 model space, i.e. the (19/2)8 model. The
distributions of the fractional collectivity, the quadrupole
moment, and the relative transition strength shown in
Figs. 6 and 7 are similar to the distributions observed in
the (19/2)6 model in Figs. 1 and 2. The main difference
between the models is that, in contrast to Fig. 1(b),
only oblate ground state configurations are present in
Fig. 6(b).

The collectivities observed in the single j studies are
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Figure 6: (Color online) (19/2)8. The same figure as Fig.
1 but for the 8-particle system. (a) The distribution of the
fractional collectivity b. (b) The distribution of the intrinsic
quadrupole moment q. The histogram is comprised of 7.5%
of random spectra with 0gs and 21 states. Shaded areas cor-
respond to 4.6% of collective realizations (b > 0.7) and 1.9%
of non-collective realizations (b < 0.7). This figure is analo-
gous to Figs. 1 and 5, and the same shading is used in these
figures.
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Figure 7: (Color online) (19/2)8. The same figure as Fig. 2
but for the 8-particle system. The distribution of the relative
transition strength rule s for the collective realizations. This
figure is analogous to Fig. 2, and the same shading is used as
in Figs. 2 and 3, however only oblate shapes (q < −0.7) are
seen.

deeply rooted in the underlying geometric structure of
the Hamiltonian. To focus on this relation we express
the two-body Hamiltonian in the particle-hole channel in
terms of the multipole operators

H =
∑
K
ṼK
∑
κ
M†KκMKκ . (13)

The interaction parameters ṼK in the particle-hole chan-
nel are determined from those in the particle-particle
channel VL via Pandya transformation

ṼK =
∑
L

(2L+ 1)χKL VL. (14)
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The transformation coefficients

χKL =

{
j j K
j j L

}
,

are given by the six-j recoupling coefficients.
On a single j level only even values of the particle-pair

angular momenta L are allowed by the Fermi statistics.
Thus, there are j+ 1/2 interaction parameters VL in Eq.
(14). In the TBRE a set of these parameters can be
viewed as a random vector in the j + 1/2 dimensional
space. There is no such a restriction on the particle-hole
momentum K. Thus, the inverse transformation

VL =
∑
K

(2K + 1)χLK ṼK (15)

may produce some unphysical VL with odd values of L.
Such Pauli-forbidden terms in the Hamiltonian do not
generate any dynamics. Therefore the 2j+ 1 parameters
ṼK contain passive components which can be removed
making ṼK linearly dependent [12].

The interaction terms that correspond to the multi-
poles with momentum K = 0 and K = 1 are constants of
motion [17]. The K = 0 term in Eq. (13), describes the
nucleon-nucleon interaction that is the same for all an-
gular momentum channels, VL = χ0

L = const, as follows
from Eq. (15). The resulting monopole Hamiltonian is
proportional to the number of particle-pairs in a system.
This Hamiltonian has no dynamical effect. Thus, there is
no change in results if one constrains the TBRE by pro-
jecting out the monopole K = 0 component as follows

VL → VL − χ0
L

∑
L′(2L′ + 1)χ0

L′ VL′∑
L′(2L′ + 1) (χ0

L′)
2 . (16)

This effectively reduces the number of independent pa-
rameters VL.

In a single j model space the K = 1 multipoles are pro-
portional to the angular momentum operators M1κ ∼
Jκ . Therefore the K = 1 interaction leads to a rotational
E(J) ∼ J(J + 1) spectrum with ṼK=1 determining the
moment of inertia. In the particle-particle channel, the
J2 operator is obtained with VL = χ1

L ∼ const+L(L+1).
Consistently, it was argued in Refs. [2, 18] that those in-
teractions that lead to the positive moment of inertia are
likely to result in the Jgs = 0. The exact J2 operator
component in the interaction can be removed by orthog-
onalization to χ1

L following the procedure in Eq. (16).
The changes in dynamics are no longer trivial when

the quadrupole K = 2 component in the interaction is
modified. The role of different multipoles in the TBRE
is studied in Fig. 8 and 9 where we remove different K
components from the interaction Hamiltonian in Eq. (13)
using the Graham-Schmidt projection procedure. In the
particle-particle channel the projection of pairing inter-
action VL = δL,0 has been extensively discussed in Ref.
[2]. The removal of pairing does not lead to any signifi-
cant qualitative change, we thus forgo this topic in what
follows.
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Figure 8: (Color online) (19/2)8. Probabilities to observe a
certain ground state spin Jgs for three random ensembles: (a)
the TBRE, (b) the TBRE without a J2 term (the K = 1 term
in Eq. (13) is removed), and (c) the TBRE without both, J2

and QQ terms (the K = 1 and K = 2 terms in Eq. (13) are
removed).

The probability to observe a certain ground state spin
in the (19/2)8 system is shown in Fig. 8. Three cases
of random ensembles are reviewed: (a) the traditional
TBRE where all j + 1/2 interaction parameters VL are
random Gaussian variables, (b) the case where K = 1
term is removed, and (c) the ensemble where K = 1
and K = 2 multipole components are removed from the
Hamiltonian. While the wave functions in ensembles (a)
and (b) are identical, the ground state spin distributions
are different. The role of the J2 moment-of-inertial-like
term has been discussed before in Refs. [2, 13, 18]; it
appears to be fully responsible for the cases with max-
imum possible spin. As seen in Fig. 8, the states with
the maximum spin almost never occur as ground states
in ensembles (b) and (c) where the J2 interaction term
(K = 1) is removed.

The ensembles (b) and (c) shown in Fig. 8 appears
to have similar ground state spin distributions but the
behavior of the fractional collectivity is different. In Fig.
9 for all three ensembles we show the distribution of
the fractional collectivity of the transition between the
0gs and 21 states. It is evident that the quadrupole
collectivity disappears once the quadrupole component
in the interaction is removed. Thus, we conclude that
the quadrupole-quadrupole component in the interaction
generates the corresponding deformation and is respon-
sible for the rotational behavior observed.

IV. MODELS BEYOND SINGLE j

In this section we expand the scope of our models
and consider systems with two single-particle levels. The
richer geometry allows one to study the roles of particle-
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Figure 9: (Color online) (19/2)8. The distribution of the
fractional collectivity b for the same three random ensembles
as in Fig. 8. Namely: (a) the traditional TBRE, (b) the
TBRE without a J2 term, and (c) the TBRE without both,
J2 and QQ terms. We select realizations with the 0gs state
followed by the first excited state 21. The fraction of such
cases for ensembles (a), (b), and (c) is 7.6%, 8.2%, and 4.7%
respectively.

hole symmetry, parity, and the structure of the multipole
operators. We remind that in the TBRE the distribution
of the random two-body interaction parameters is Gaus-
sian, same unit variance is used for all symmetry classes.
For models beyond single j level the nucleon pairs of a
given symmetry can be constructed in several different
ways. For consistency with the GOE, the variance of
the off-diagonal pair-transfer matrix elements is halved
as compared to the diagonal matrix elements in the two-
body Hamiltonian.

The distributions of the fractional collectivity and of
the quadrupole moment are shown in Figs. 10 for the
(13/2+, 13/2+)6 system. Here the model space is com-
prised of two levels with j1 = j2 = 13/2. Both single-
particle levels have positive parity, so that the effective
spherical Hartree-Fock mean-field Hamiltonian can con-
tain terms of a mixed structure such as a†j1aj2 . These
terms are scalars for j1 = j2. There is some arbitrariness
in the choice of the single-particle matrix elements of the
multipole operatorM2µ which depend on the radial over-
lap of the operator r2. We choose the radial overlap to
be diagonal 〈j1|r2|j1〉 = 〈j2|r2|j2〉 and 〈j1|r2|j2〉 = 0; an-
other possibility, with 〈j1|r2|j1〉 = 〈j2|r2|j2〉 = 〈j1|r2|j2〉,
has been explored and led to no substantial difference.

A structurally different (13/2+, 13/2−)6 model is ex-
amined in Fig. 11 where two levels of equal spin and
different parity are considered. In this case the matrix
elements of the Hamiltonian are restricted by parity. The
same structure of the quadrupole operator is used. The
model space of this kind has been explored in Ref. [19]
because it is the simplest model space that allows for
quadrupole and octupole modes. The prevalence of the
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Figure 10: (Color online) (13/2+, 13/2+)6. (a) The distri-
bution of the fractional collectivity b. (b) The distribution
of the intrinsic quadrupole moment q. The 4.1% of samples
have the 0gs, 21 sequence. Shaded areas correspond to 1.2%
of collective realization and to 1.8% of non-collective realiza-
tions. This figure is analogous to Figs. 1, 5, and 6, and the
same shading is used in these figures.
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Figure 11: (Color online) (13/2+, 13/2−)6. (a) The distribu-
tion of the fractional collectivity b. (b) The distribution of the
intrinsic quadrupole moment q. The 6.9% of samples have the
0gs state and the first state 21, both of positive parity. The
2.4% of collective and 2.6% of non-collective realizations are
shaded with patterns. This figure is analogous to Figs. 1, 5,
6, and 10, and the same shading is used in these figures.

positive parity ground states is remarkable in this model.
The ground state is most likely to have spin-parity 0+,
4+, or 24+ with 35%, 19%, and 14% probability, respec-
tively. In contrast, 0−, the most probable negative parity
ground state, happens only in 3% of realizations. For the
(13/2+, 13/2−)6 model the number of many-body states
is the same for both parities, 8,212 each.

For both (13/2+, 13/2+)6 and (13/2+, 13/2−)6 mod-
els, the results related to the quadrupole collectivity are
almost identical, see Figs. 10 and 11. Moreover, these
results are similar to those for the single j level models,
compare to Figs. 1 and 6. The major features in the
distributions of b and q persist despite a bigger number
of random parameters defining the Hamiltonians, more
complex geometry of the two-level models, and a more
chaotic resulting dynamics. There is a peak in the dis-
tribution of the fractional collectivity b near 1 indicat-
ing a sizable number of collective cases. The distribu-
tion of the quadrupole moment for the collective real-
izations (shaded in red) has a well-defined peak on the
oblate side. The non-collective realizations appear to
have quadrupole moment distribution centered at zero
(shaded in blue).

For systems with exact particle-hole symmetry the
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Figure 12: (Color online) (13/2+, 13/2+)22. (a) The distribu-
tion of the fractional collectivity b. (b) The distribution of the
intrinsic quadrupole moment q. The system is particle-hole
conjugated to that in Fig. 10. The percentage of samples
with the 0gs, 21 sequence is 8.1% which includes 4.8% of col-
lective and 1.7% of non-collective. This figure is analogous
to Figs. 1, 5, 6, 10, and 11, and the same shading is used in
these figures.

quadrupole moment for particles is equal in magnitude
and opposite in sign to that of holes. Moreover, charac-
teristics such as excitation energies, spins of states, and
transition rates, are exactly equal for particle-hole con-
jugated systems. The particle-to-hole transformation for
any two-body Hamiltonian amounts to the same Hamil-
tonian for holes but with an additional one-body term.
Thus, the symmetry is not exact in a two-level model
space. Nevertheless in the TBRE, where two-body ma-
trix elements are selected symmetrically about zero, the
one-body term averages to zero. Therefore, the results
in Figs. 12 and 10 for particle-hole conjugated systems
(13/2+, 13/2+)22 and (13/2+, 13/2+)6 are nearly sym-
metric. The main difference is that the Hamiltonian
for holes contains random single-particle energies which
leads to a different fraction of collective realizations in
the ensembles.

V. REALISTIC VALENCE SPACE

The schematic models discussed in the previous sec-
tions all seem to possess the rotational low-lying spec-
trum which is an evidence of the intrinsic deformation.
However, to what extend they reflect the dynamics of
realistic nuclei remains a question. The oblate intrinsic
deformation observed in our models seems to be incon-
sistent with the prolate dominance in real nuclei (see dis-
cussion in Sec. VI), moreover, the semi-magic nuclei with
one type of valence nucleons are generally not deformed.
To attend to these issues we examine a realistic valence
space consisting of the 0f7/2 and 1p3/2 single-particle lev-
els, allowing for both protons and neutrons. The matrix
element of the quadrupole operator for this model are
constructed using the harmonic oscillator single-particle
wave functions, we use the same effective charge for both
types of nucleons. The multipole operator in this form
facilitates comparison with the SU(3) group.

In Fig. 13 we present our results for the (0f7/2, 1p3/2)8

system with 8 nucleons: 4 protons and 4 neutrons. This
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Figure 13: (Color online) (0f7/2, 1p3/2)8. (a) The distribution
of the fractional collectivity b. (b) The distribution of the
intrinsic quadrupole moment q. The solid black line outlines
the probability distribution for 31% of realizations with the
0gs state followed by the 21 first excited state, both states
with isospin T = 0. The 8.8% of realizations are collective
and the 12.8% are non-collective. This figure is analogous to
Figs. 1, 5, 6, 10-12, and the same shading is used in these
figures.

corresponds to the configuration space of 48Cr nucleus.
In Fig. 13(a), where the fractional collectivity b is shown,
a noticeable peak that corresponds to collective realiza-
tions is observed. For the collective realizations shaded
in uniform red the distribution of the quadrupole mo-
ment in Fig. 13(b) shows prolate and oblate peaks. The
non-collective cases in Fig. 13(b) are distributed around
q = 0 (shaded in blue pattern). In agreement with the
results in Ref. [7], in this TBRE the prolate intrinsic
shape is more probable, as evident from a bigger prolate
peak.

In Fig. 14 we focus on the 8.8% of realizations that
are collective. The quadrupole moments in Fig. 13(b)
are further separated into prolate q > 0.7 and oblate
q < −0.7 cases as shown in the inset of Fig. 14. The
same shading is used in the main figure showing the dis-
tribution of the relative transition strength s. The max-
imum possible value s = 1 is reached when the ground
state wave function of the randomly selected Hamilto-
nian coincides with that of the QQ Hamiltonian. From
the summary in Tab. I one finds that the J = 0, T = 0
ground state of the QQ Hamiltonian, for which s = 1,
is prolate in this valence space. Indeed, the distribution
of prolate realizations is peaked at around s = 0.8, while
the oblate shapes have s near s = 0.6.

The distributions of B42 and R42 for collective realiza-
tions are shown in Fig. 15. This figure can be compared
to Fig. 3 for the (19/2)6 system. In both figures we use
the same shading to separate the prolate and oblate col-
lective cases. In contrast to Fig. 3(a), both prolate and
oblate realizations in Fig. 15(a) have a band structure
with the deexcitation ratio B42 that is consistent with
the rotational value 10/7. This ensemble, based on the
more realistic model space, appears to have an energy
spectrum that is closer to the rotational spectrum. The
distribution of R42 in Fig. 15(b) is broad, but it has a
peak around the rotor value of 10/3.

The collectivities observed in the two-body random en-
semble are influenced by the single-particle level struc-
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Figure 14: (Color online) (0f7/2, 1p3/2)8. The distribution of
the relative transition strength s for the collective realizations
(shaded with uniform red in Fig. 13). The 3.6% of prolate
cases and 1.0% of oblate are identified with shades of color
and pattern (see the inset). This figure is analogous to Fig.
2, and the same shading is used as in Figs. 2-4.
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Figure 15: (Color online) (0f7/2, 1p3/2)8. (a) The distribution
of the deexcitation ratio B42 defined in Eq. (9). (b) The
distribution of the excitation energy ratio R42 defined in Eq.
(8). Collective realization discussed in Fig. 13 are selected
and, in addition, we require that the second excited state has
spin 4. The fraction of such cases is 4.2%, with 2.4% being
prolate and 0.6% being oblate, they are shaded separately
with the same patterns as in Fig. 14. The values for B42 and
R42 from the QQ Hamiltonian listed in Tab.I are shown with
the vertical grid lines. This figure is analogous to Fig. 3, and
the same shading is used as in Figs. 2-4 and 14.

ture which could be interpreted as a representation of
the mean-field structure of the core. The presence of
the shell structure may inhibit the role of the two-body
Hamiltonian resulting in reduced collectivity. This effect
is known in realistic nuclei and is seen in model stud-
ies including the SU(3) and seniority models for defor-
mation and pairing. In Fig. 16 we demonstrate the
effect of the core’s mean-field by considering a system
with the following splitting of the single-particle energies
δε = εp3/2 − εf7/2 = 7. The unit of energy is determined
by the variance of the two-body matrix elements, which
can also be expressed in terms of the variance of the
level density for the two-particle system. The results in
Fig. 16 are similar to those in Fig. 13 for the degenerate
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Figure 16: (Color online) (0f7/2, 1p3/2)8 with δε = 7. (a) The
distribution of the fractional collectivity b. (b) The distribu-
tion of the intrinsic quadrupole moment q. The system is the
same as in Fig. 13, but the single-particles energies are non-
degenerate, with δε ≡ εp3/2 − εf7/2 = 7. The solid black line
outlines the probability distribution for 15.7% of realizations
with the 0gs state followed by the 21 first excited state, both
states with isospin T = 0. The 2.9% of realizations are collec-
tive and the 8.1% are non-collective. This figure is analogous
to Figs. 1, 5, 6, 10-12, and 13, and the same shading is used
in these figures.

model, the main difference is that the single-particle level
splitting reduces the number of collective realizations by
about a factor of two. Another interesting observation is
that the oblate shapes no longer emerge.

As concluded in Ref. [7], realizations with rotational
features appear in random ensembles due to correlated
interaction matrix elements. Similarly to the single j
level model, it is natural to attribute this collectivity
to the QQ component in the Hamiltonian. The over-
lap x between the ground state wave functions of the
two-body random ensemble |0gs(TBRE)〉 and the fixed
ground state wave function of the QQ Hamiltonian is
defined as

x = |〈0gs(TBRE)|0gs(QQ)〉|2. (17)

Fig. 17 shows the distribution of the overlap x in the
(0f7/2, 1p3/2)8 model. A similar approach has been used
in investigations of pairing coherence in random ensem-
bles, see review in Ref. [2]. We select 56.3% of real-
izations where the ground state quantum numbers are
Jgs = 0 and Tgs = 0; the ground state of the QQ Hamil-
tonian has the same spin and isospin. The distribution of
x shown in Fig. 17 is compared to the Porter-Thomas χ2

distribution. The latter emerges for uncorrelated wave
functions in the 126-dimensional space spanned by the
J = 0, T = 0 wave functions. As shown in Fig. 17 the
Porter-Thomas distribution drops abruptly, thus predict-
ing that cases with large x are extremely unlikely. Ac-
cording to the Porter-Thomas distribution the probabil-
ity to find x > 0.1 is only 0.03% whereas in the TBRE
x > 0.1 in 18.8% of random realizations. To emphasize
the relation between the collective structure and the large
QQ component of the wave function we show in Fig. 17
the histogram for collective realization (with states 0gs
and 21 and b > 0.7). It is clear that the collective tran-
sitions and rotational structure emerge when the compo-
nent of the wave functions that corresponds to the eigen-
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Figure 17: (Color online) (0f7/2, 1p3/2)8. The distribution
of the overlap x defined in Eq. (17). The results for all
Jgs = 0, Tgs = 0 states are unshaded; the fraction of such
realizations is 56.3%. Collective realization that in addition
to the 0gs state have the T = 0, 21 first excited state and b >
0.7 are shaded (their fraction is 8.8%). Solid line shows the
Porter-Thomas distribution, which is expected for the overlap
between uncorrelated states.

state of the QQ Hamiltonian is large.

VI. SUMMARY

Our studies show that a collective behavior that resem-
bles realistic is likely to be present in the ensemble with
two-body random interactions. This behavior appears
to emerge due to the quadrupole-quadrupole interaction
component in the Hamiltonian. This component, as well
as some higher multipoles, can establish some noticeable
coherence despite the overall many-body randomness and
complexity. Similarly to the moment-of-inertia-like J2

term (that is responsible for the ground states with the
maximum possible spin) the QQ component, while not a
constant of motion, is dynamically prevailing. Let us list
the supporting arguments:

• The fraction of random realizations that are
quadrupole-collective is extremely large as com-
pared to the statistically expected number.

• In the two-body random ensemble, the quadrupole
collectivity displayed by the transition rates disap-
pears when the QQ component in the interaction
is removed, see Fig. 9.

• From investigations in Fig. 17, as well as indirectly
form Figs. 2, 7, and 14, it follows that the collective
states in the TBRE have structure similar to that
of the QQ Hamiltonian eigenstates.

• The type of the quadrupole deformation and most
of the quantitative measures of the QQ Hamilto-

nian summarized in Tab. I and discussed in what
follows, are consistent with those observed in the
TBRE. This again suggests that the collective fea-
tures seen in the TBRE arise from the coherent QQ
component.

In light of this finding it is instructive to examine
characteristics of the deformed mean-field using the QQ
Hamiltonian, for which the geometry of the configura-
tion space is the only parameter. The values of the
quadrupole moments, transition rates, level spacings, and
triaxiality parameters for different models are summa-
rized in Tab. I. In all cases the QQ Hamiltonian has
a low-lying rotational spectrum; this can be seen from
values of b, q, B42, and R42, which are close to rotational.

Using the method described in Sec. III, it is possible
to discuss triaxiality in the QQ Hamiltonian. While not
perfect, some features of triaxiality are identifiable. The
sums of the excitation energy ratios A = R2131 + R2231

and B = 4R2151 + R2251 are approximately equal to 1
as expected in the triaxial-rotor model. There is a 22
state with a quadruple moment of comparable magni-
tude and of the opposite sign relative to that of the 21
state. For the TBRE in the (19/2)6 model, the results
displayed in Fig. 4 are consistent with the values of the
QQ Hamiltonian in Tab. I. For the realistic model space
(0f7/2, 1p3/2)8 the triaxiality in the QQ Hamiltonian is
weaker, see Tab. I. The discrepancy between the magni-
tudes of the quadrupole moment of the 21 and 22 states
points to the fragmentation of the 22 state. In general,
the shell structure introduced by the single-particle level
splitting reduces the manifestations of triaxiality and of
rotational features.

Practically all deformed nuclei in nature are known
to have a prolate ground state shape. This prolate domi-
nance has been widely discussed in the literature [20–23].
An effort to pinpoint the origin of the phenomenon us-
ing the shell model approach with random interactions is
presented in Ref. [7]. While in this work we do not ex-
plicitly pursue the question of prolate dominance, we are
compelled to comment on the issue from the standpoint
of our findings. Our studies fully confirm the results in
Ref. [7]. However, conclusions supporting the prolate
dominance are difficult to draw, instead we offer several
observations.

First, the quadrupole collectivity seen in the TBRE
is due to the QQ component in the Hamiltonian. This
interaction and the geometry of the valence space deter-
mine the deformation type. Thus, some questions of the
shape systematics can be addressed by considering the
QQ Hamiltonian and without invoking random interac-
tions.

Second, the shape is determined by the valence config-
uration and by the positions of the single-particle levels.
The role of the single-particle level structure discussed by
Hamamoto in Ref. [23] is possible to pinpoint using the
TBRE as well as using analytic models, e.g. the seniority
model and Elliot’s SU(3) model [24]. For example, in our
study in Fig. 16 the introduction of the single-particle



12

δε b q B42 R42 q(22) A B γ(deg) Γ(deg) γDF (deg)

(19/2)6 0.97 -0.979 1.42 3.31 0.874 1.005 1.026 9.79 0.43 7.52
(19/2)8 0.95 -0.969 1.43 3.27 0.852 0.986 1.002 12.59 0.52 7.41
(13/2+, 13/2+)6 0 0.98 -0.977 1.41 3.29
(13/2+, 13/2−)6 0 0.98 -0.977 1.41 3.29
(0f7/2, 1p3/2)8 0 0.97 0.996 1.35 3.27 -0.587 1.051 1.227 4.68 -0.03 13.1
(0f7/2, 1p3/2)8 4.2 0.96 0.984 1.36 3.30 -0.387 1.031 1.460 3.34 1.83 11.77
(0f7/2, 1p3/2)8 7 0.94 0.972 1.36 3.29 -0.167 1.375 1.666 4.42 1.88 10.97

Table I: Characteristics of the QQ Hamiltonian. Listed in the table are the values of the fractional collectivity b, quadrupole
moment q of the 21 state, ratios of the transition rates B42 and the excitation energies R42, the quadrupole moment q(22) of
the 22 state, the sums of excitation energy ratios A ≡ R2131 +R2231 and B ≡ 4R2151 +R2251 , and three triaxiality parameters
γ,Γ, and γDF (see Eqs.11,12, and 10). The models are the same as those considered in our study of the TBRE. The two-level
models are degenerate except for the (0f7/2, 1p3/2)8 model with δε ≡ εp3/2− εf7/2 = 4.2, 7; the energy scale in this case is given
by the variance of the level density for the two-particle system.

level splitting, that follows the realistic order, results in
disappearance of oblate realizations.

Third, due to particle-hole symmetry, which does not
need to be exact, the number of prolate and oblate con-
figurations is approximately the same within a given va-
lence space. The deviations from this symmetry affect
only a few mid-shell systems where the two shapes com-
pete. The effect of the particle-hole symmetry is seen in
our results in Figs. 10 and 12.

To conclude, in this work we examined the quadrupole
collectivity that emerges in systems with two-body ran-
dom interactions. A low-lying spectrum, characteristic
of a rigid rotor, is commonly observed. The transition

B(E2, 0gs → 21), the quadrupole moment of the 21 state,
and the deexcitation ratio B(E2, 41 → 21)/B(E2, 21 →
0gs) are all consistent with that of a deformed rotor. A
weak triaxiality is also identified. The coherent dynam-
ical role of the quadrupole-quadrupole interaction com-
ponent is established as a source of this behavior.
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