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I. INTRODUCTION

One-nucleon spectroscopic overlaps, defined as the expectation value of the nucleon removal operator between states
of nuclei differing by one particle, have been used in the treatment of processes in which one particle is added to or
removed from the system [1, 2]. In particular, these functions provide the interface between nuclear structure and
direct reaction theories [3–6]. Traditionally, direct reaction theories of processes such as one-nucleon transfer, capture,
knockout, or electron-induced proton knockout assume that the state of motion of only one particle is changed as
a result of the projectile-target interaction, while the other particles are left essentially undisturbed. Under such a
drastic approximation, the structure input needed to analyze experimental reaction data consists of single-particle-like
functions of the involved nucleon inside the interacting nuclei, the one-nucleon overlaps.

For decades, direct reactions have been the main tool for extracting spectroscopic factors (SFs) defined as norms
of spectroscopic overlaps. Given the single-particle-like nature of these overlaps, SFs are often associated with single-
particle-level occupancies and compared mainly with shell-model values. In practical applications, “experimental” SFs
are extracted from experimental cross sections in a model-dependent way with structure and reaction uncertainties
entangled. This dependence was illustrated, for example, in [7, 8], where SFs from transfer and electron-scattering
data were shown to differ unless extracted in a consistent way. Strictly speaking, however, the overlaps and the SFs
are merely theoretical concepts that cannot be measured The overlaps should not be interpreted as the measurable
probability amplitudes of finding a nucleon at some distance from the rest of the nucleus [9]. Nevertheless, until more
advanced reaction models become available, spectroscopic overlaps and factors need to be calculated theoretically
for a chosen Hamiltonian to enable the analysis of direct reaction data. These concerns are less severe for the long-
range scaling factors of overlaps, the asymptotic normalization coefficients (ANCs), which enter the cross section of
peripheral direct reactions, as these coefficients remain invariant under finite-range unitary transformations of the
Hamiltonian [10]. The spectroscopic overlaps and factors are still useful to assess the relative importance of clustering
patterns in a given nucleus.

Typically, spectroscopic overlaps are approximated by shell-model or mean-field single-particle functions, or they are
taken as solutions of single-particle (Woods-Saxon (WS)) potential wells with some commonly accepted but otherwise
arbitrary potential parameters [2, 4, 11]. Of a more recent vintage are some calculations attempting to account for
contributions from missing model space, for example results obtained within the correlated basis function theory [12]
or overlaps generated as solutions of an inhomogeneous equation with a shell-model source term [13]. Realistic
calculations of one-nucleon overlaps based on modern nuclear interactions are scarce and limited to light nuclei as
they are complicated even in the simplest cases: in the s-shell, they were computed in the hyperspherical harmonics
(HH) method [14, 15]; some overlaps and SFs for p-shell nuclei were calculated within the no-core shell model [16, 17]
and the coupled-cluster method [18]. Of particular relevance for the present work are previous variational Monte Carlo
(VMC) overlap calculations for nuclei up to A = 10 (unpublished, available from [19]) and a more recent VMC-based
calculation of ANCs in light nuclei [20]. VMC overlaps have been used in some analyses of hadronic [21–25] and
leptonic [26] experiments.

This work provides a systematic study of one-nucleon spectroscopic overlaps, SFs, and ANCs in light nuclei calcu-
lated within the Green’s function Monte Carlo (GFMC) method based on realistic two- and three-nucleon interactions.
The GFMC method is designed to project the exact solutions out of trial wave functions by propagating them in
imaginary time. The GFMC propagations are initiated by VMC wave functions. Over the years, the VMC/GFMC
method has been found to accurately describe the structure and some reaction aspects of light nuclei [27–33]. Given
our experience, GFMC is expected to improve VMC overlaps, especially in the p-shell. In this paper, we present
GFMC overlap results for nuclei up to A = 7; heavier nuclei up to A <∼ 10 will be the subject of a forthcoming paper.

This paper is organized as follows. In Sec. II, the theoretical framework is established, the VMC and GFMC methods
are briefly reviewed, and all overlap-related quantities are defined. Sec. III contains technical and computational details
and an error analysis of the GFMC overlap calculations. Results are presented and discussed in Sec. IV; final remarks
and conclusions are given in Sec. V.

II. QUANTUM MONTE CARLO

To calculate spectroscopic overlaps, we first construct wave functions Ψ(Jπ, T, Tz) for nuclei of interest as solutions
of the nonrelativistic many-body Schrödinger equation:

HΨ(Jπ, T, Tz) = EΨ(Jπ, T, Tz), (1)
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with Jπ, T , and Tz denoting the total spin-parity, isospin, and isospin projection, respectively. The A-body Hamilto-
nians used in this work have the form

H =

A
∑

i

Ki +

A
∑

i<j

vij +

A
∑

i<j<k

Vijk , (2)

whereKi is the nonrelativistic kinetic energy and vij and Vijk are two-nucleon (2N) and three-nucleon (3N) potentials,
respectively. Most of the results presented in this paper have been obtained for a combination of Argonne v18
(AV18) [34] 2N and Illinois-7 (IL7) [35] 3N realistic interactions. For benchmarking purposes, some calculations
involved AV18 supplemented by the older Urbana IX (UIX) [36] 3N force. Our wave functions are translationally
invariant and hence we have no spurious center-of-mass effects.

A. Variational Monte Carlo

The wave functions are constructed in two steps. First, a trial VMC approximation of Ψ, ΨV , is written and
optimized by minimizing the energy expectation value as computed by Metropolis Monte Carlo integration [37]. Our
latest variational functions have the form [38, Eq. 3.13]

|ΨV 〉 = S
A
∏

i<j



1 + Uij +

A
∑

k 6=i,j

Ũ3N
ijk



 |ΨJ〉. (3)

The Jastrow wave function, ΨJ , is a fully antisymmetric state having the desired Jπ, T, Tz quantum numbers of the
state of interest; the Uij and Ũ3N

ijk are two- and three-nucleon short-range correlation operators induced by dominant
parts of 2N and 3N forces, respectively, while S is a symmetrization operator that restores the antisymmetry violated
by the noncommuting character of Uij and Ũ3N

ijk . At long range, appropriate boundary conditions are imposed on

ΨV [39].
The Jastrow wave function for s-shell nuclei consists of a simple product of central pair and triplet correlation

functions and an antisymmetrized spin-isospin state. For p-shell nuclei, we use two types of ΨJ : a shell-model-like
trial function, which we call Type I, and a clusterized version denoted Type II. These two kinds of wave functions
differ primarily in their treatment of correlations between p-shell particles and the long-range asymptotics.
In Type I trial functions, the single-particle radial functions of p-shell particles are exponentially decaying solutions

of WS potential wells centered at the s-shell α core with potential parameters subject to a variational search. Pair
correlations between s- and p-shell particles and among p-shell particles themselves are chosen to allow clusterization
in the p-shell. Being less restrictive on long-range cluster decomposition compared with Type II functions, Type I
functions are more widely applicable. Details of Type I functions for nuclei with A = 6, 7 can be found in [40].
Type II functions that may be used for nuclei with low-lying cluster break-up thresholds impose a strict cluster-

cluster asymptotic decomposition. Examples are the ground states of 6Li and 7Li that may asymptotically decouple
into α + d and α + t, respectively. In Type II trial functions, the p-shell single-particle radial functions are again
solutions of p-wave differential equations with potentials containing WS and Coulomb terms, but with an added
Lagrange multiplier that turns on at long range. The role of the Lagrange multiplier is to impose the cluster boundary
condition:

ΨV (r → ∞) ∝ ψαψxW−η,l+1/2(2kr)/r, (4)

where x = d or t for 6Li and 7Li, respectively, and r and l are the relative α-x distance and orbital angular momentum.
The Sommerfeld parameter η and the wave number k are related to the α-x separation energy in a given nucleus,
which is set to its experimental value. Here, W is the Whittaker function defined in Eq. (13.1.33) of [41]. The
correlations between p-shell particles in 6Li and 7Li are adopted from exact deuteron and variational triton wave
functions, respectively. More details on Type II trial functions are given in [32, 42, 43].
For either type of trial function, a diagonalization is carried out to find the optimal values of mixing parameters

for states of different spatial symmetries among p-shell particles [27].

B. Green’s function Monte Carlo

Being variational solutions of Eq. (1), the VMC wave functions ΨV can be improved further by action of the operator
limτ→∞ exp [− (H ′ − E0) τ ], which, for a given set of quantum numbers, projects out the exact lowest-energy state
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Ψ0 of a possibly simplified version H ′ of the desired Hamiltonian H . In practice, the operator is applied in small
increments of the imaginary time τ up to some finite value to yield a propagated wave function Ψ(τ):

Ψ(τ) = e−(H
′−E0)τΨV . (5)

Obviously, Ψ(τ = 0) = ΨV and Ψ(τ → ∞) = Ψ0. In practice, Eq. (5) is turned into an integral equation involving
Green’s functions with integrations performed by Monte Carlo methods, hence the name Green’s function Monte
Carlo. The energy E0 is an approximate guess for the true eigenenergy corresponding to Ψ0.
For a given state of the nucleus, quantities of interest are evaluated in terms of a “mixed” estimate between ΨV

and Ψ(τ):

〈O(τ)〉M =
〈Ψ(τ)|O|ΨV 〉
〈Ψ(τ)|ΨV 〉

. (6)

The desired expectation values would have Ψ(τ) on both sides; by writing Ψ(τ) = ΨV + δΨ(τ) and neglecting terms
of order [δΨ(τ)]2, we obtain the approximate expression

〈O(τ)〉 = 〈Ψ(τ)|O|Ψ(τ)〉
〈Ψ(τ)|Ψ(τ)〉 ≈ 〈O(τ)〉M + [〈O(τ)〉M − 〈O〉V ], (7)

where 〈O〉V is the variational expectation value. The expectation value of H ′ is an exception to Eq. (7) since for
this operator the mixed estimate already gives the correct value [27]. For off-diagonal matrix elements between two
different A-body nuclear states, Eq. (7) can be generalized to a form involving two mixed estimates [32, 33].
We note that the GFMC propagator involves a simplified Hamiltonian H ′ = AV8′ + H ′

3N based on a reprojection
AV8′ of the full AV18 two-body potential [40]. Therefore, the GFMC wave functions are really eigenstates of H ′

rather than H , which, in general, should not be a problem given that H ′ is a good approximation of H . In this work,
the three-nucleon part H ′

3N is either UIX or IL7, with the strength of their central repulsive parts adjusted so that
〈H ′〉 ≈ 〈H〉. Although energies can be corrected perturbatively by adding 〈H −H ′〉 to 〈H ′〉, this kind of correction
is not possible for other observables. In what follows, we will be referring to the desired Hamiltonian H remembering
that, in fact, we use H ′ in GFMC propagations.
For a detailed description of the nuclear GFMC method, see the review [27] and references therein.

C. Spectroscopic overlaps and factors, and asymptotic normalization coefficients

Let us consider a decomposition of an A-body nucleus, the parent, into the core C and a valence particle v (a proton
or a neutron), namely A → C + v. The terms “core” and “valence” are used in a figurative sense considering that
the parent wave functions are explicitly antisymmetrized states of indistinguishable particles. Then, a one-nucleon
spectroscopic overlap is defined as a projection of a parent state onto an antisymmetrized core-valence product form:

R(α, γ, ν; r) = C
TATz,A

TCTz,Cttz
O(α, γ, ν; r) (8)

≡
〈

ACv

[

[Ψ(γ; ξC)⊗ Y(ν; r̂Cv, σv, τv)]JA

δ(r − rCv)

r2Cv

] ∣

∣

∣

∣

Ψ(α; ξA)

〉

,

where C
TATz,A

TCTz,Cttz
is an isospin Clebsch-Gordan coefficient; α ≡ {A, Jπ

A, TA, Tz,A}, γ ≡ {C, Jπ
C , TC , Tz,C}, and ν ≡

{v, l, s, j, t, tz} are composite indexes for the parent, the core, and the valence particle, respectively; ξ comprise all
degrees of freedom in a given nucleus; ~rCv is the vector extending from the core’s center of mass to the valence particle;

and ACv is the core-valence antisymmetrizer: ACv = (1/
√
A)

∑A−1
1 (−1)pPCv with PCv being the permutation

operators exchanging the valence particle with those inside the core and p being the permutation parity ±1. The
symbols A and C = A− 1 also denote the nuclear mass numbers, and the subscripts A and C may be dropped when
convenient. In Eq. (8), the parent and core states are assumed to be normalized to unity, and the integral is done
over all 3(A− 1) internal coordinates of the parent nucleus. The valence angle-spin-isospin function is defined as

Y(ν; r̂Cv , σv, τv) ≡ [Yl(r̂Cv)⊗ χs(σv)]j χt,tz(τv), (9)

where Yl is a spherical harmonic, χs(σv) and χt,tz(τv) denote the valence spin and isospin states with s = t = 1/2,
and tz gives the valence isospin projection ±1/2. Taking into account the antisymmetry of the parent state, one can
turn the integral in Eq. (8) into a simpler form:

R(α, γ, ν; r) =
√
A

〈

[Ψ(γ)⊗ Y(ν)]JA

∣

∣

∣

∣

δ(r − rCv)

r2Cv

∣

∣

∣

∣

Ψ(α)

〉

. (10)
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By definition (8) and by using translationally invariant wave functions Ψ, the overlap functions R are translationally
invariant. For a given parent-core combination, different angular momentum channels will be denoted lj .
The theoretical SF is then defined as the norm of the overlap:

S(α, γ, ν) =

∫

|R(α, γ, ν; r)|2 r2 dr. (11)

Among other sum rules, all possible (proton, neutron) SFs for a given state of the parent nucleus add up to the
parent’s number of nucleons (protons, neutrons) [1]. Our definition of SFs is consistent with those of some other
works, for example [13] but differs from others [4, 44] by inclusion of the isospin Clebsch-Gordan coefficient in Eq. (8)
into overlaps and consequently into SFs (these works define SFs as norms of O(r) in Eq. (8)).

To calculate the overlap functions R within GFMC, one can, neglecting terms of order [Ψ(α; τ) −ΨV (α)]
2
and

[Ψ(γ; τ)−ΨV (γ)]
2
, derive the following expression similar to Eq. (19) in [32]:

R(α, γ, ν; r; τ) =
√
A

〈

[Ψ(γ; τ)⊗ Y(ν)]JA

∣

∣

∣

δ(r−rCv)
r2Cv

∣

∣

∣
Ψ(α; τ)

〉

√

〈

|Ψ(γ; τ)|2
〉

√

〈

|Ψ(α; τ)|2
〉

≈ 〈R(α, γ, ν; r; τ)〉MA + 〈R(α, γ, ν; r; τ)〉MC − 〈R(α, γ, ν; r)〉V , (12)

where

〈R(α, γ, ν; r; τ)〉MA =
√
A

〈

[ΨV (γ)⊗ Y(ν)]JA

∣

∣

∣

δ(r−rCv)
r2Cv

∣

∣

∣
Ψ(α; τ)

〉

〈ΨV (α)|Ψ(α; τ)〉
√
N , (13)

〈R(α, γ, ν; r; τ)〉MC =
√
A

〈

[Ψ(γ; τ)⊗ Y(ν)]JA

∣

∣

∣

δ(r−rCv)
r2Cv

∣

∣

∣
ΨV (α)

〉

〈Ψ(γ; τ)|ΨV (γ)〉

√

1

N , (14)

〈R(α, γ, ν; r)〉V =
√
A

〈

[ΨV (γ)⊗ Y(ν)]JA

∣

∣

∣

δ(r−rCv)
r2Cv

∣

∣

∣
ΨV (α)

〉

〈ΨV (α)|ΨV (α)〉
√
N (15)

with a self-normalization factor:

N =
〈ΨV (α)|ΨV (α)〉
〈ΨV (γ)|ΨV (γ)〉

. (16)

The overlap function 〈R〉V in Eq. (15) is a pure variational estimate, to be called a VMC overlap, whereas the other
two estimates, 〈R〉MA in Eq. (13) and 〈R〉MC in Eq. (14), involve combinations of GFMC-propagated and VMC
wave functions, and as such will be called A- and (A-1)-body mixed overlaps and referred to by the corresponding
GFMC-propagated nucleus. For each estimate Eqs. (13)-(15), one can define a SF similar to Eq. (11). The GFMC-
extrapolated overlap R in Eq. (12) will be called a GFMC overlap. Obviously, at τ = 0, R = 〈R〉V = 〈R〉MA = 〈R〉MC .
Overlap functions R satisfy a one-body Schrödinger equation with the appropriate source terms [2]. Asymptotically,

for r → ∞, these source terms contain core-valence Coulomb interaction at most, and hence the long-range part of
overlap functions for parent states below core-valence separation thresholds is proportional to a Whittaker function
W−η,l+1/2:

R(α, γ, ν; r)
r→∞−−−→ C(α, γ, ν)

W−η,l+1/2(2kr)

r
, (17)

where η = ZCZv(e
2/h̄c)

√

µc2/2B depends on proton numbers ZC and Zv, and the core-valence reduced mass µ and
separation energy B (positive for parent states below core-valence separation thresholds). The wave number k is
defined as

√
2µB/h̄, and l is the orbital angular momentum from Eq. (9). Note that W , µ, B, and k implicitly carry

channel labels α, γ, and ν. The Whittaker function is defined in Eq. (13.1.33) of [41], and it has an (approximately)
exponentially decaying tail. The proportionality constant C(α, γ, ν) in Eq. (17) is the ANC.
To provide a convenient parametrization of overlaps suitable for reaction calculations and to extract ANCs, we

perform χ2-fits of the overlaps by the eigenstates of a single-particle-like Hamiltonian −[h̄2/2µ]△+ V (r) containing
a WS plus spin-orbit (so) plus Coulomb (Coul) potential

V (r) = VWS

[

1

1 + exp((r −RWS)/aWS)
− β exp(−(r/ρ)2)

]

+

(

4~l · ~s
) Vso

r

d

dr

[

1

1 + exp((r −Rso)/aso)

]

+ VCoul (18)
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with

VCoul =

{

ZCZve
2/r : r ≥ RCoul

ZCZve
2
[

3− (r/RCoul)
2
]

/[2RCoul] : r < RCoul
(19)

The central WS part of the potential includes a Gaussian “wine-bottle” term to provide an additional flexibility at
short range. The depths VWS and Vso are in the same units, the factor 4 in the spin-orbit part is approximately twice

the square of the pion Compton wave length h̄/(mπc) in fm, and ~l and ~s are operators of the core-valence orbital
angular momentum and of the valence spin, respectively, both in units of h̄. The Coulomb radius is RCoul = 2 fm.
The potential parameters are varied freely to provide the best fit under the constraint of the eigenenergy being equal
to the desired value −B. This fitting procedure provides good overlap fits at short and medium distances; at large
distances, the fits have the desired form shown in Eq. (17). These overlap parametrizations can be used in reaction
codes such as Ptolemy [45] or Fresco [46], and they will be refered to as WS fits throughout the paper.

III. INNER WORKINGS OF OVERLAP CALCULATIONS AND ERROR ANALYSIS

In this section, we elaborate on some technical aspects of the overlap calculations, show several detailed examples,
and assess systematic errors of quantities being computed. The discussion of results is given in Sec. IV.
The VMC overlap 〈R〉V in Eq. (15) is calculated on a random walk guided by the parent’s |ΨV (α)|2. On the same

walk, we also evaluate the self-normalization factor from Eq. (16); to extend the denominator of N into the space
being sampled: 1) ΨV (γ) is replaced by ΨV (γ) × p(~rCv), where p(~rCv) acts as a single-particle function of a virtual
valence particle taken with respect to the core’s center of mass, and 2) the integral is extended to include ~rCv. By
requiring

∫

p2(~rCv) d~rCv=1, the original value of the denominator of N is preserved. In principle, any function can be
used for p as long as the product form |ΨV (γ)× p|2 is a reasonably good approximation of the sampling probability
density in order to yield reasonably small statistical errors on the denominator of N . In practice, we find it sufficient
to use purely radial (s-wave) functions p(rCv) of either a Gaussian shape or one generated by a single-particle-like
Hamiltonian containing a WS potential well with parameters adjusted to minimize the error on N . The WS-generated
single-particle functions provide the advantage of |ΨV (γ)×p|2 being a better approximation of the sampling density at
large core-valence distances, especially when the potential depth is set to approximately reproduce the (experimental
or VMC) core-valence separation energy. In the present work, the self-normalization factors N were calculated (after
accounting for auto-correlations between local samples) with an accuracy of the order of 0.1% or better.
The two mixed overlaps in Eq. (13) and Eq. (14) are calculated on random walks guided by GFMC propagations

for the corresponding nucleus. For the (A-1)-body mixed overlap, the GFMC sampling density only spans the core’s
subspace of the full space of the parent nucleus; we draw the position of the valence nucleon from the same single-
particle density p2(~rCv) used in the computation of the variational self-normalization factor N .
Generating new VMC or GFMC samples is computationally more expensive than evaluating a sample’s contribution

to Eqs. (13)-(15). Therefore, in order to improve the computational efficiency, each VMC or GFMC sample is used
several times: in Eq. (13) and Eq. (15), we consider all A cyclic particle permutations to rotate the valence particle
over all possible positions within the parent nucleus, while in Eq. (14) the position of the valence particle is drawn
several (A) times from its single-particle distribution p2 described above for each core’s GFMC sample.
We illustrate the method with the 〈3H | 4He〉 overlap for AV18+IL7 taken as a typical example of overlaps in the

s-shell. First, the VMC overlap is computed by Eq. (15). Then, the wave functions of the parent and the core are
independently propagated and the two mixed and the GFMC overlaps are computed in each radial bin following
Eqs. (13), (14), and (12). The corresponding SFs are plotted in Fig. 1. In all figures, the quantities corresponding
to the variational, the (A-1)- and the A-body mixed, and to the GFMC overlaps are plotted as black, red, blue, and
green, respectively.
For s-shell nuclei, we do unconstrained propagations [40] and thus obtain essentially exact solutions for a given

Hamiltonian H ′ in Eq. (5). Because of the fermion sign problem, the statistical noise grows with time, as can
be inferred from Fig. 1. Fortunately, GFMC quickly eliminates excited-state impurities from VMC wave functions
resulting in a rapid convergence of mixed and GFMC overlaps and SFs. For s-shell nuclei, GFMC propagations are
fully converged long before τ = 0.5 MeV−1, at which point they are terminated to avoid the increasing statistical
noise.
In order to improve the statistical accuracy further, the (A-1)- and A-body mixed overlaps are separately averaged

over time. These mixed time-averages are then combined with the VMC overlap to obtain the final time-averaged
GFMC overlap from Eq. (12). In Fig. 1 and similar figures, the variational estimate, although computed at τ =
0 MeV−1, is plotted across the full range of times, while the other solid lines give SFs for time-averaged mixed and
GFMC overlaps with averaging done over the range of times indicated by the horizontal extent of these lines; the
dashed lines show statistical errors. We have checked that our time-averaged results have little dependence on the
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FIG. 1. (Color online) Imaginary time evolution of SFs in the s1/2 channel of the 〈3H | 4He〉 overlap obtained for the AV18+IL7
potential. Only statistical errors are shown. Horizontal lines are SFs for VMC and time-averaged mixed and GFMC overlaps,
as described in the text.

exact time interval being averaged over as long as this interval is safely within the GFMC converged region and does
not include large τ ’s for unconstrained propagations.

In Fig. 2, the VMC and time-averaged mixed and GFMC 〈3H | 4He〉 overlaps are shown along with the asymptotic
Whittaker function corresponding to the experimental separation energy (discussed below), a WS fit to the GFMC
overlap, and the radial sampling probability. In general, the differences between s-shell VMC and time-averaged
mixed and GFMC overlaps in a given overlap channel are very small because the starting VMC wave functions are
already very good approximate solutions of Eq. (1); these small differences are reflected by small (∼2%) differences
between VMC and GFMC SFs as illustrated in Fig. 1. Statistical errors on SFs are small because the dominant
contribution to Eq. (11) comes from the volume region well covered by the Monte Carlo sampling probability, also
shown in Fig. 2.

Overlaps between p-shell nuclei are computed by using the same algorithm with some technical modifications. Com-
pared with s-shell nuclei, the fermion sign problem becomes more severe in the p-shell, and we retreat to constrained
path GFMC sampling [38]. Consequently, statistical errors are well under control, as illustrated in Fig. 3 for SFs in
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FIG. 2. (Color online) Linear (a) and logarithmic (b) plots of VMC and time-averaged mixed and GFMC s1/2 〈3H | 4He〉
overlaps obtained for the AV18+IL7 potential. Only statistical errors are shown. Also shown in (b) are a WS fit to the GFMC
overlap and the asymptotic Whittaker function corresponding to the experimental separation energy. Superimposed in the
linear plot is the sampling probability (arbitrary scale).
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FIG. 3. (Color online) Imaginary time evolution of SFs in the p3/2 channel of the 〈6He(0+) | 7Li(3/2−)〉 overlap obtained for
the AV18+IL7 potential. The GFMC wave functions originated from Type I VMC wave functions. Only statistical errors are
shown. Horizontal lines are SFs for VMC and time-averaged mixed and GFMC overlaps, as described in the text.
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FIG. 4. (Color online) Linear (a) and logarithmic (b) plots of VMC and time-averaged mixed and GFMC p3/2
〈6He(0+) | 7Li(3/2−)〉 overlaps obtained for the AV18+IL7 potential. The GFMC wave functions originated from Type I
VMC wave functions. Only statistical errors are shown. Also shown are a WS fit to the GFMC overlap, and the asymptotic
Whittaker function corresponding to the experimental separation energy in the logarithmic plot.

the p3/2 channel of the 〈6He(0+) | 7Li(3/2−)〉 overlap. Given our experience indicating that mixed estimates of many
observables tend to fluctuate more in the p-shell than in the s-shell, we chose to carry out propagations for longer
times up to τ = 3 MeV−1 to ensure full convergence in the p-shell. VMC, and time-averaged mixed and GFMC
overlaps corresponding to Fig. 3 are shown in Fig. 4. The difference of about 8% between the VMC and GFMC SFs
reflects the change in the shape of the underlying overlaps.
At short range, the GFMC overlap is a result of fine cancellations between VMC and mixed overlaps in Eq. (12).

At large core-valence distances, the GFMC overlaps tend to follow the A-body mixed overlaps, while the (A-1)-body
mixed overlaps usually stay close to the VMC ones, in agreement with our expectation that it is the long-range fall-off
of the parent’s wave function that primarily sets the tail of the overlap whereas the detailed structure of the core
plays a less important role in this region although the core still needs to be described reasonably well. From this point
on, mixed overlaps and estimates will not be shown, and the time-averaged GFMC overlap will be called a GFMC
overlap.
Because of the vanishing sampling probabilities at large distances (an example is shown in Fig. 2), reliable sampling

of overlap tails requires very large Monte Carlo sets; we propagated about 12 million samples in the s-shell and
about 250,000 for p-shell nuclei. As a consequence, statistical errors are small. It is therefore important to assess
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FIG. 5. (Color online) The ratio C(r) of VMC, GFMC, and fitted GFMC overlaps to asymptotic Whittaker functions. The WS
fits and the Whittaker functions assume experimental core-valence separation energies. (a): 〈3H | 4He〉 overlaps from Fig. 2;
(b): 〈6He(0+) | 7Li(3/2−)〉 overlaps from Fig. 4.

systematic errors in addition to statistical errors. The most notable sources of systematic errors are: the difference
between the Hamiltonian H ′ in the GFMC propagator in Eq. (5) and the desired H in Eq. (1), possible errors due
to the constrained path sampling in the p-shell, and a residual dependence of GFMC results on starting VMC wave
functions. In addition, ANCs depend on the separation energy used in their determination. We now attempt to place
limits on such systematic errors.
For s-shell nuclei, we can compare our results with those obtained by the hyperspherical harmonics (HH) method [14,

15, 47, 48]. For AV18+UIX, the agreement between HH and GFMC is very good, as can be seen from Fig. 6 for
overlaps and from Table IV for SFs in Sec. IV. Testing the bias due to H ′ for p-shell overlaps is not possible since,
to our knowledge, no p-shell overlaps have been published previously for the realistic interactions employed here. To
test the dependence of GFMC SFs on VMC wave functions, we include in Table V results involving the ground state
of 7Li obtained for several combinations of Type I and II (see Sec. II A) trial wave functions. Although VMC SFs
for different ΨV may differ by as much as 20%, GFMC reduces the spread to no more than 3%. Hence, we estimate
systematic errors on GFMC SFs to be no more than 2-3%.
Typically, extracting ANCs directly from overlaps in Eq. (10) is problematic for most many-body methods. First,

these methods may not yield the correct exponential asymptotic form given in Eq. (17), as is the case of methods
employing harmonic oscillator bases [16, 17]. In variational methods, including VMC, it may be hard to impose the
correct asymptotics while preserving short-range properties. This problem is less prevalent in integral methods of
computing ANCs in which the desired asymptotics is imposed by definition regardless of the actual asymptotic shape
of the wave functions involved [13, 20]. Second, ANCs extracted from Eq. (17) depend on the separation energy B.
To determine ANCs from overlaps in a fully consistent manner, one should use the separation energy BH obtained
for a given Hamiltonian; on the other hand, for ANCs to be practically usable for reaction calculations, experimental
values Bexp should be used. Ideally, BH ≈ Bexp, a condition that is often violated in literature and therefore relaxed
without error analysis for ANCs [13, 17, 20]. We now discuss these aspects applied to GFMC.
It is gratifying to observe that the GFMC overlaps in Fig. 2 and Fig. 4 transition nicely from the interior into the

asymptotic region and that in the computationally safe region (r <∼ 8 fm) they follow closely the right asymptotic
trend represented by the Whittaker functions. To illustrate this in more detail for overlaps from Figs. 2 and 4, we
show in Fig. 5 the ratios

C(r) ≡ R(r)/
[

W−η,l+1/2(2kr)/r
]

. (20)

Ideally, C(r → ∞) should approach C from Eq. (17), the ANC. As can be seen in the figure, the GFMC curves
may not flatten out perfectly at larger distances where the method being driven by H ′ in Eq. (5) may break down
because of insufficient contributions of the asymptotic part of the configuration space to the energy. To correct this
imperfection, the GFMC overlaps are extended to larger distances by means of WS fits (Eq. (18)). ANCs are then
determined by applying Eq. (20) to GFMC overlap fits at large distances.
In GFMC, the binding energy is thought to be computed with systematic errors of about 1–2% [27, 38, 40]. Most

GFMC overlaps in this work were obtained for the AV18+IL7 potentials. For this potential, GFMC energies in Table I
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differ by less than 1% from experimental values, in most cases the difference is less than 0.5%. These deviations,
though being small fractions of total binding energies, may translate into bigger (fractional) deviations on core-valence
separation energies, as can be seen from Tables II and III. Even then, however, the difference between experimental
and GFMC separation energes is <∼ 3%, with a noticeable exception being the 〈6He(0+) | 7He(3/2−)〉 overlap involving
a particle-unbound 7He. For the latter overlap, the analogue of the ANC is related to the decay width; in this
work, we extract the ANCs only for particle-bound states of parent nuclei. Since GFMC wave functions are really
eigenstates of H ′ rather than H , it is equally important to observe in Tables II and III that separation energies for
these Hamiltonians are about the same (H ′ was adjusted to get 〈H ′〉 ≈ 〈H〉 as mentioned in Sec. II B). To estimate
the sensitivity of ANCs on separation energies, we refitted the GFMC overlaps from Figs. 2 and 4 with solutions of
Eq. (18) imposing separation energies corresponding to ±3% deviations from Bexp. Using Bexp from Tables II and III,
we obtain the following ANCs for B = 0.97Bexp, B = Bexp, and B = 1.03Bexp: -6.13, -6.45, -6.78 for the 〈3H | 4He〉
overlap, and 3.33, 3.52, 3.71 for the 〈6He | 7Li〉 overlap. Thus, any uncertainty of about 3% or less on the separation
energy translates into an ANC uncertainty of about 5–6% or less. Furthermore, the s-shell GFMC ANCs in Table VI
agree well with those obtained within the HH method except for the weak d-waves in A = 3 nuclei for which the two
methods differ for unknown reasons (the HH ANCs assume the actual separation energies for a given Hamiltonian
that are within a fraction of percent of the experimental values). To test the dependence of GFMC ANCs in the
p-shell on starting VMC wave functions, we include in Table VII results involving the ground state of 7Li obtained for
several combinations of Type I/II (see Sec. II A) trial wave functions; depending on the starting VMC wave function,
GFMC ANCs differ by at most 7% in a given overlap channel.
Based on these arguments, we chose to fit GFMC overlaps and to determine the GFMC ANCs assuming experimental

separation energies. We estimate the systematic errors on our ANCs to be <∼ 5%.
For s-shell overlaps, C(r) in Eq. (20) flatten out at r∼2.5–3 fm where C(r)/C∼0.9, and they are almost fully

converged at r∼5 fm; for p-shell overlaps, C(r)/C∼0.9 is realized at r∼5 fm. Therefore, the overlaps are (almost)
asymptotic at about 5 fm, which is the upper radial limit used in our fitting procedure. We have checked that including
the region beyond 5 fm in the fitting procedure does not result in significant changes of ANCs.

IV. RESULTS

In this section we present GFMC spectroscopic overlaps, SFs, and ANCs and compare them with those obtained
by some other methods and with experimentally deduced values. A convenient parametrization of the overlaps is also
provided.
Table I shows computed and experimental binding energies for A ≤ 7 nuclear states relevant for this work. The

errors shown in parentheses are only the Monte Carlo statistical errors; in addition there may be systematic errors
from the GFMC algorithm of the order of 1–2% [27, 38, 40]. Compared with previous GFMC works, the statistical
accuracy on binding energies is much better thanks to the high sample counts needed for a statistically reliable
sampling of overlap tails as mentioned in Sec. III. Most GFMC results were obtained for the AV18+IL7 potential.
For this potential, GFMC energies in Table I differ by less than 1% from experimental values; in most cases the
difference is less than 0.5%. For the ground states of 6Li and 7Li, both Type I and II VMC wave functions defined in
Sec. II A were used. For comparison of GFMC overlaps with those obtained by other methods, we also constructed
wave functions of s-shell nuclei bound by AV18+UIX whose energies are also shown in Table I.
Besides getting the absolute binding energies right, it is important for consistent overlap calculations to work with

nuclear states having the correct one-nucleon separation energies. In Tables II and III, we show GFMC one-nucleon
separation energies computed for the desired Hamiltonian H from Eq. (1) and for the simplified H ′ from Eq. (5) along
with experimental values. Given the agreement between GFMC and the experiment, and the related discussion in
Sec. III, we assume the experimental separation energies when determining ANCs from GFMC overlaps and account
for possible systematic errors inflicted by this choice.
Tables IV and V summarize, respectively, spectroscopic factors for s- and p-shell nuclei with A ≤ 7. In these tables,

the errors on VMC and GFMC SFs are only statistical; possible systematic errors on GFMC values were estimated
in Sec. III to be 2–3% or less.
In the s-shell, where VMC wave functions are already very good approximations of true eigenstates [27], the

s1/2 spectroscopic factors in Table IV change by less than 2% between VMC and GFMC. VMC, however, seems
to underestimate the small amount of d-waves in A = 3 nuclei by about 15%. Not surprising, s-shell results for
AV18+UIX and AV18+IL7 are similar because both 3N forces, IL7 and especially UIX, were tuned to reproduce the
binding of s-shell nuclei. The experimental information on SFs in the s-shell is scarce; for the 〈3H | 4He〉 overlap, the
GFMC value of 1.61 is in good agreement with an experimental value ∼1.4–1.6 deduced from electron scattering [7].
The A = 3 nuclei contain 1.5 S, T = 1, 0 nucleon pairs [49, 50]. The sums of s- and d-wave SFs for overlaps of

3H and 3He with a deuteron are about 1.32 and 1.33, respectively. If these values are interpreted as numbers of
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TABLE I. GFMC binding energies E for A ≤ 7 nuclei for several 2N+3N potentials H . Only statistical errors are shown
on GFMC values. For p-shell nuclei, the VMC wave function type is indicated. The energy shown for 2H was obtained in a
stochastic sampling of an explicit solution of Eq. (1). Experimental values are also shown.

AZ(Jπ , T ) Type H E [MeV]
GFMC exp.

2H(1+, 0) AV18 −2.2247(3) −2.2246

3H( 1
2

+
, 1
2
)

AV18+IL7 −8.47(0) −8.48
AV18+UIX −8.47(0) −8.48

3He( 1
2

+
, 1
2
)

AV18+IL7 −7.72(0) −7.72
AV18+UIX −7.72(0) −7.72

4He(0+, 0)
AV18+IL7 −28.43(0) −28.30
AV18+UIX −28.34(1) −28.30

6He(0+, 1) I AV18+IL7 −29.20(3) −29.27

6Li(1+, 0)
I AV18+IL7 −31.93(3) −31.99
II AV18+IL7 −31.88(3) −31.99

6Li(3+, 0) I AV18+IL7 −29.59(3) −29.80
6Li(0+, 1) I AV18+IL7 −28.43(3) −28.43
7He( 3

2

−
, 3
2
) I AV18+IL7 −28.66(3) −28.83

7Li( 3
2

−
, 1
2
)

I AV18+IL7 −39.08(3) −39.24
II AV18+IL7 −39.00(3) −39.24

7Li( 1
2

−
, 1
2
) I AV18+IL7 −38.88(3) −38.76

7Be( 3
2

−
, 1
2
) I AV18+IL7 −37.61(4) −37.60

TABLE II. GFMC core-valence separation energies in the s-shell for several 2N+3N potentials H and for the corresponding H ′

from Eq. (5). The combined statistical errors on the core and the parent energies from Table I are all ≤ 0.01 MeV. Experimental
values are also shown.

parent core H B [MeV]
AZ(Jπ , T ) A−1Z(Jπ , T ) GFMC, H GFMC, H ′ exp.

3H( 1
2

+
, 1
2
) 2H(1+, 0)

AV18+IL7 6.24 6.24 6.26
AV18+UIX 6.24 6.24 6.26

3He( 1
2

+
, 1
2
) 2H(1+, 0)

AV18+IL7 5.49 5.49 5.49
AV18+UIX 5.50 5.50 5.49

4He(0+, 0)

3H( 1
2

+
, 1
2
)

AV18+IL7 19.96 19.94 19.81
AV18+UIX 19.89 19.88 19.81

3He( 1
2

+
, 1
2
)

AV18+IL7 20.71 20.69 20.58
AV18+UIX 20.63 20.62 20.58

deuterons [51], it appears that about 90% of T = 0 pairs in A = 3 nuclei are in the deuteron state. We conjecture
that the slightly bigger 〈2H | 3He〉 SF compared with that between 2H and 3H is due to the fact that it is easier to
compact a spatially extended deuteron into 3He, which is somewhat bigger than the triton.
Using a similar probabilistic interpretation for 4He, where all one-nucleon (neutron or proton) SFs add up to 2 [1]

and those for overlaps with A = 3 nuclei in Table IV are about 1.6, we find that about 80% of all nucleon triples in
4He are in the triton or 3He state. Because both A = 3 nuclei are spatially more extended than 4He and the triton is
somewhat smaller than 3He, we conjecture that it is more likely to find a triton than 3He inside 4He, which is reflected
by a slight difference in the corresponding SFs in Table IV. In the s-shell, these conjectures are plausible since the
s-wave SFs in Table IV account for such a big fraction of the total spectroscopic strength.
In Table IV, the AV18+UIX values labeled HH are those of the hyperspherical harmonics method [47]; in particular,

the overlaps for A = 3 parent nuclei are from [14] and those for 4He are improved and updated versions of previously
published results [15, 48]. The HH results were converted to our conventions for overlaps. The agreement between
GFMC and HH is very good, as can be seen from SFs in Table IV and from Fig. 6, where the actual 〈2H | 3H〉 and
〈3H | 4He〉 overlaps are shown. Small discrepancies exist between GFMC and HH overlaps at short distances, and the
d-wave ANCs in A = 3 nuclei differ; the sources of these discrepancies remain unknown. An equally good agreement
is obtained for overlaps involving 3He.
As examples of our s-shell overlaps obtained for the AV18+IL7 potential, we show in Fig. 7 the 〈2H | 3H〉 and

〈3H | 4He〉 overlaps. Also shown in these figures are WS fits of GFMC overlaps. Although the absolute overlap signs
are rather arbitrary since they depend on the detailed construction of our wave functions, the order of vector couplings



12

in Eqs. (8) and (9), and the isospin Clebsch-Gordan coefficient in Eq. (8), relative signs of different overlaps for a
given parent-core combination may be important for interference effects. In our sign convention, the s- and d-wave
overlaps in A = 3 nuclei have opposite signs consistent with experimentally deduced negative ratios of their ANCs
shown in Table VI. Note the slight dips in s-wave overlaps near the origin that are consistent with a depletion of
one-body densities of s-shell nuclei at short range [27] due to a repulsive potential core.
VMC and GFMC SFs between A = 6 and 7 p-shell nuclei bound by AV18+IL7 are listed in Table V along with

shell-model predictions and experimentally deduced values. The Cohen and Kurath [44] shell-model values (SM) in
Table V were corrected for center-of-mass motion effects by a factor A/(A− 1) [5, 52] to make them comparable with
our results, which, as mentioned in Sec. II C, are free of such spurious contaminations. In addition, a square of the
isospin coupling coefficient from Eq. (8) was factored into SM values in Table V. Because it is not clear whether
experimental SFs, often compared by their authors with original shell-model values of [44], were corrected backward
for center-of-mass effects or not, we quote them as they appear in the literature.
In the p-shell, the structure improvement provided by GFMC over VMC is known to be more significant compared

with the s-shell [27]. This is reflected by SFs in Table V that change by as much as 15% between VMC and GFMC.
The results involving the ground states of 6Li and 7Li for which both Type I and Type II VMC wave functions were
used demonstrate that, by closing the gap between VMC SFs as big as ∼20% down to less than 3%, the GFMC
method is rather insensitive to starting trial functions.
In Table V, the experimental SFs from [26] are based on electron scattering data, the other experimental values were

deduced from hadronic reactions. The experimental SFs from [23] listed in the table are only relative; the authors of
that work concluded that their data analysis cannot be trusted to provide an absolute determination of cross sections,
and only relative SFs for several reactions were provided upon a renormalization by a somewhat arbitrary factor of
0.32, making them comparable to theoretical VMC values available at the time. In [26], SFs deduced from electron-
induced proton knockout on 7Li leading to the two lowest states of 6He were found in perfect agreement with VMC
values available at the time; in Table V, the GFMC SFs involving 6He(0+) still agree perfectly with experiment, but
the agreement for the reaction leading to 6He(2+) has been spoiled by an error in the VMC code discovered after the
original work [26] had been published. The 〈6He(2+) | 7Li(3/2−)〉 overlap involves an unbound state of 6He for which
GFMC does not find a stable energy; instead, the method produces the core nucleus with an ever-increasing radius
by breaking it gradually into 4He and two neutrons. Consequently, the GFMC SFs for this overlap steadily decrease
and as such are absent in Table V. Given the experimental and systematic GFMC uncertainties and bearing in mind
all the issues related to the meaning of spectroscopic overlaps and factors mentioned in Sec. I, we conclude that the
GFMC results in Table V seem to support newer determinations of (relative) SFs.
We do not find a significant difference between SFs of mirror nuclei 7Li and 7Be; also, SFs between the ground state

of 7Li and the Jπ, T = 0+, 1 isobaric analogs of 6He and 6Li differ just by a factor of 2 due to the difference in isospin
coupling coefficients in Eq. (8). Our SFs for overlaps between A = 6 and 7 nuclei suggest a substantial quenching of
shell-model values by as much as 40% (except for the weak p1/2 channel of the 〈6Li(1+) | 7Li(1/2−)〉 overlap).
As examples of p-shell overlaps, Fig. 8 shows the p1/2 and p3/2 〈6Li(1+) | 7Li(3/2−)〉 overlaps obtained for the

AV18+IL7 interaction with GFMC wave functions originating from Type I VMC functions (see Fig. 4 for another
example). Also shown in the figure are WS fits of GFMC overlaps. The figure illustrates that the overlaps may change

TABLE III. Same as Table II for A ≤ 7 p-shell nuclei bound by AV18+IL7. (Negative) Positive values mean that the A-body
nucleus is particle (un)bound relative to the core. The VMC wave function type is indicated.

parent core B [MeV]
AZ(Jπ , T ) Type A−1Z(Jπ , T ) Type GFMC, H GFMC, H ′ exp.
7He( 3

2

−
, 3
2
) I 6He(0+, 1) I −0.54(4) −0.47(1) −0.45

7Li( 3
2

−
, 1
2
)

I 6He(0+, 1) I
9.88(4) 9.82(1) 9.98

II 9.81(4) 9.74(1) 9.98
I 6Li(1+, 0)

I 7.15(4) 7.16(1) 7.25
II II 7.12(4) 7.06(1) 7.25
I 6Li(3+, 0) I

9.49(4) 9.45(1) 9.44
II 9.42(4) 9.37(1) 9.44
I 6Li(0+, 1) I

10.65(4) 10.60(1) 10.81
II 10.57(4) 10.52(1) 10.81

7Li( 1
2

−
, 1
2
) I 6Li(1+, 0) I 6.95(4) 7.00(1) 6.77

7Be( 3
2

−
, 1
2
) I

6Li(1+, 0) I 5.69(4) 5.68(2) 5.61
6Li(3+, 0) I 8.03(5) 7.98(2) 7.79
6Li(0+, 1) I 9.18(4) 9.13(2) 9.17
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TABLE IV. SFs for overlaps between s-shell nuclei for a given 2N+3N Hamiltonian H and angular momentum channel lj . The
statistical errors on VMC and GFMC values are less than 1 in the last digit shown; systematic uncertainties in GFMC values
are 2–3% or less, as discussed in Sec. III. Also shown are the results of the HH method and experimentally deduced values.

parent core lj H S
AZ(Jπ , T ) A−1Z(Jπ , T ) HH VMC GFMC exp.

3H( 1
2

+
, 1
2
) 2H(1+, 0)

s1/2
AV18+IL7 1.32 1.30
AV18+UIX 1.30 1.32 1.30

d3/2
AV18+IL7 0.0194 0.0224
AV18+UIX 0.0225 0.0195 0.0223

3He( 1
2

+
, 1
2
) 2H(1+, 0)

s1/2
AV18+IL7 1.32 1.31
AV18+UIX 1.31 1.32 1.31

d3/2
AV18+IL7 0.0190 0.0221
AV18+UIX 0.0222 0.0191 0.0221

4He(0+,0)

3H( 1
2

+
, 1
2
) s1/2

AV18+IL7 1.64 1.61
∼1.4–1.6 [7]

AV18+UIX 1.60 1.63 1.61

3He( 1
2

+
, 1
2
) s1/2

AV18+IL7 1.62 1.60
AV18+UIX 1.58 1.62 1.60

from VMC to GFMC even when their SFs remain the same (p1/2 channel); on the other hand, sometimes the change
in SFs is more due to a renormalization than a shape change (p3/2 channel). To better appreciate where the changes

in SFs come from, we superimpose in Fig. 8 the “density” functions (R× r)2 whose integral in Eq. (11) gives the SFs.
The 〈6He | 7He〉 overlap in Table V is particularly challenging for both theory and experiment because it involves a

parent nucleus that is particle unbound by about 450 keV relative to the core. In our calculations, 7He is treated as a
bound state and the GFMC propagation yields a stable energy and separation energy shown in Table I and Table III.
Despite the bound-state approximation to 7He, GFMC substantially improves the overlap tail compared with VMC,
as can be seen in Fig. 9 where the desired asymptotic form is represented by the scattering Coulomb function plotted
at 90◦ phase shift.
ANCs, extracted from GFMC overlaps by a fitting procedure outlined in Sec. III, are listed in Tables VI and VII for

s- and p-shell nuclei along with experimentally derived numbers and those of some other realistic methods. Systematic
errors on our ANCs were estimated in Sec. III to be <∼5%. As was mentioned earlier in this section, the absolute
signs of GFMC overlaps and ANCs are not meaningful, but relative signs in different overlap channels for a given
parent-core combination matter.
In the s-shell, GFMC and HH overlaps obtained for the AV18+UIX force agree well (see Fig. 6), and so do ANCs

in Table VI except for the weak d-waves in A = 3 nuclei (and consequently for the ratios of d- to s-wave ANCs)
for which the two methods differ for unknown reasons. The HH ANCs assume the actual separation energies for a
given Hamiltonian, which are close to the experimental values, and so the ANCs would not change dramatically if
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FIG. 6. (Color online) Comparison of the s1/2 and the d3/2 〈2H | 3H〉 (a), and the s1/2 〈3H | 4He〉 (b) overlaps obtained for the
AV18+UIX potential within VMC, GFMC, and HH. Only statistical errors are shown on Monte Carlo overlaps.
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FIG. 7. (Color online) VMC and GFMC s1/2 and d3/2 〈2H | 3H〉 (a) and s1/2 〈3H | 4He〉 (b) overlaps obtained for the AV18+IL7
potential. Only statistical errors are shown. Also shown are WS fits of GFMC overlaps.

TABLE V. SFs for overlaps between A = 6 and 7 p-shell nuclei for the AV18+IL7 potential in angular momentum channels
lj . The VMC and GFMC statistical errors are insignificant compared with the estimated systematic uncertainties of 2–3% or
less for GFMC as discussed in Sec. III. SM denotes corrected shell-model values (see text). Experimentally deduced values are
also shown.

parent core lj S
AZ(Jπ , T ) Type A−1Z(Jπ , T ) Type SM VMC GFMC exp.
7He( 3

2

−
, 3
2
) I 6He(0+, 1) I p3/2 0.690 0.532 0.565 0.37(7) [21]

7Li( 3
2

−
, 1
2
)

I 6He(0+, 1) I p3/2 0.691
0.442 0.406

0.44(6)a [23], 0.42(4) [26]
II 0.365 0.409

I 6He(2+, 1) I
p1/2 0.253 0.128
p3/2 0.212 0.146
sum 0.466 0.274 0.16(2) [26]

I

6Li(1+, 0)

I
p1/2 0.338 0.229 0.230
p3/2 0.503 0.480 0.438
sum 0.841 0.709 0.668 0.74(11)a [23], 0.73(5) [53]

II II
p1/2 0.338 0.211 0.229
p3/2 0.503 0.401 0.428
sum 0.841 0.612 0.657 0.74(11)a [23], 0.73(5) [53]

I 6Li(3+, 0) I p3/2 0.646
0.500 0.435

0.72(14) [54], 0.58(13) [55]
II 0.436 0.447
I 6Li(0+, 1) I p3/2 0.345

0.221 0.203
0.19(3)a [23]

II 0.183 0.204

7Li( 1
2

−
, 1
2
) I 6Li(1+, 0) I

p1/2 0.045 0.069 0.060
p3/2 0.997 0.854 0.759
sum 1.042 0.923 0.819 1.15 [56], 0.90(9) [53]

7Be( 3
2

−
, 1
2
) I

6Li(1+, 0) I
p1/2 0.338 0.229 0.225
p3/2 0.503 0.480 0.438
sum 0.841 0.709 0.663

6Li(3+, 0) I p3/2 0.646 0.500 0.457
6Li(0+, 1) I p3/2 0.345 0.221 0.210

a Values obtained from (σexp/σDWBA)× 0.32, see text.

experimental separation energies were used instead. In [20], an integral method (IM) was used to compute ANCs
in A ≤ 9 nuclei from AV18+UIX VMC wave functions assuming experimental core-valence separation energies; in
Table VI, these ANCs are labeled VMC-IM. For the dominant s-wave channels, VMC-IM results are in a good
agreement with ours. On the other hand, the difference between GFMC and VMC-IM ANCs for the weaker d-waves
in A = 3 nuclei, larger than 15%, is outside of the systematic error bars set on GFMC ANCs; this discrepancy is most
likely due to VMC wave functions employed by VMC-IM that, as shown in Table IV in terms of SFs, underestimate
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FIG. 8. (Color online) VMC and GFMC p1/2 (a) and p3/2 (b) 〈6Li(1+) | 7Li(3/2−)〉 overlaps obtained for the AV18+IL7
potential. Only statistical errors are shown. Also shown are WS fits of GFMC overlaps. Superimposed as dashed lines are the
“density” functions (R× r)2.
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FIG. 9. (Color online) VMC and GFMC p3/2 〈6He(0+) | 7He(3/2−)〉 overlaps obtained for the AV18+IL7 potential. Only
statistical errors are shown. Also shown is the irregular Coulomb function G(r)/r for the experimental separation energy
representing the scattering asymptotics at 90◦ phase shift.

the strength of d-waves in A = 3 nuclei. Our ANCs are in a fair agreement with some experimental values but
differ from others. Experimentally, particular emphasis was put on the ratio of d- to s-wave ANCs in 3H and 3He
most precisely inferred from tensor analysing powers; the experimental values listed in Table VI agree well with ours,
including the relative negative phase.
As shown in Table VII, ANCs for overlaps between A = 6 and 7 nuclei are constrained rather poorly experimentally.

In general, ANCs in the lower p-shell are determined mostly from hadronic processes, such as transfer or knockout
reactions; see [13, 20] and references therein. In Table VII, we show the full range of experimental ANCs from [63] for
overlaps between the ground state of 7Li and the lowest states in 6Li. Overall, given the experimental uncertainties, it
is hard to compare GFMC to experiment. ANCs calculated within VMC-IM for AV18+UIX are in a broad agreement
with our AV18+IL7 results, though with some notable differences especially for the p3/2 〈6Li(1+) | 7Li(3/2−)〉 overlap.
Based on simple analytical arguments, the ratio of 〈6Li(1+) | 7Be(3/2−)〉 and 〈6Li(1+) | 7Li(3/2−)〉 ANCs involving
mirror nuclei 7Be and 7Li was predicted to be 1.02 for both p1/2 and p3/2 channels [64]. We obtain 0.95(7) for the p1/2
channel and 0.98(7) for the p3/2 channel assuming 5% errors on GFMC ANCs, using averaged Type I and Type II

〈6Li(1+) | 7Li(3/2−)〉 ANCs from Table VII, and disregarding the signs of involved ANCs.
Finally, we present in Table VIII potential parameters appearing in Eq. (18) that provide good fits to GFMC

overlaps. These fits were used to extract ANCs. They also allow our results to be easily used in DWBA or CCBA
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reaction calculations [45, 46]. Besides setting the core-valence separation energies to their experimental values, no
other constraints were imposed in the fitting procedure. In the s-shell, we found it necessary to introduce a short-
range repulsive Gaussian potential term to reproduce dips in GFMC overlaps near the origin as seen in Fig. 7; in
the p-shell, such a term is not necessary. Good fits to d-wave overlaps in A = 3 nuclei seem to require very strong
repulsive potential cores and negative radii of the central WS part. Also, for d-waves the first few radial bins were
omitted from the fit because they are rather uncertain. In order to reproduce the results presented in this work, the
WS fits need to be normalized to SFs from Tables IV and V. Our GFMC overlaps are available from [19].

V. SUMMARY AND CONCLUSIONS

We have reported Green’s function Monte Carlo calculations of one-nucleon spectroscopic overlaps in nuclei with
mass numbers A ≤ 7. The calculations have used wave functions derived from a realistic Hamiltonian that reproduces
well the low-lying spectra of light nuclei. The overlaps are extrapolated from mixed estimates between VMC and
GFMC wave functions, and they are extended to regions beyond the nuclear surface, where the GFMC method may
not be accurate, by means of WS fits to the overlap interior. A goal of this work is to provide a consistent set of
spectroscopic overlaps, SFs, and ANCs in light nuclei, obtained from our currently best GFMC wave functions, that
can be used as structure input in analyzing existing or future experimental data.
The comparison of SFs and ANCs with experimentally deduced values is obscured, as mentioned in Sec. I, by the

model-dependent way these quantities are extracted from experimental data and by the issues related to the meaning
of spectroscopic overlaps. For many overlaps, it is hard to judge the agreement or disagreement between theory
and experiment because of the nonexisting or conflicting experimental values. Our (relative) SFs seem to broadly
support more recent values deduced from hadronic processes, and some agree particularly well with values provided
by electron-scattering experiments. Our calculations reproduce, within error bars, the experimentally well-deduced
ratios of d- to s-wave ANCs in A = 3 nuclei.We observe a rather substantial (up to 40%) quenching of GFMC SFs
when compared with the traditional shell-model. The GFMC imrpoves the VMC overlaps, but the corrections to SFs
are sufficiently small indicating that the VMC values used to analyze experimental data in [21–26] were reliable.
The GFMC overlaps presented in this paper are available from [19]. The overlaps for somewhat heavier nuclei up

to A <∼ 10 will be the subject of a forthcoming paper.
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TABLE VI. ANCs for GFMC overlaps between s-shell nuclei for a given 2N+3N Hamiltonian H and angular momentum
channel lj . Systematic uncertainties on GFMC values are 5% or less as discussed in Sec. III. Also shown are the results of the
HH and VMC-IM methods, and experimentally deduced values. The errors on VMC-IM are only statistical. For A = 3 nuclei,
ratios of d- to s-wave ANCs are also shown.

parent core lj H C [fm−1/2]
AZ(Jπ , T ) A−1Z(Jπ, T ) HH VMC-IM GFMC exp.

3H( 1
2

+, 1
2
) 2H(1+, 0)

s1/2
AV18+IL7 2.14

2.11(3) [57],2.07(2) [13],1.87(14) [58]
AV18+UIX 2.15 2.13(1) 2.14

d3/2
AV18+IL7 −0.0848
AV18+UIX −0.0925 −0.0979(9) −0.0842

Cd/Cs
AV18+IL7 −0.0396

-0.0418(15) [59]
AV18+UIX −0.0430 −0.0460(5) −0.0393

3He( 1
2

+, 1
2
) 2H(1+, 0)

s1/2
AV18+IL7 2.10

2.10(16) [58], 1.76(11) [60]
AV18+UIX 2.16 2.14(1) 2.10

d3/2
AV18+IL7 −0.0762
AV18+UIX −0.0865 −0.0927(10) −0.0794

Cd/Cs
AV18+IL7 −0.0363

-0.0389(42) [59]
AV18+UIX −0.0400 −0.0432(5) −0.0378

4He(0+, 0)

3H( 1
2

+, 1
2
) s1/2

AV18+IL7 −6.45
7.36(19) [58],6.70(50) [58], 5.44(15) [61]

AV18+UIX −6.47 −6.55(2) −6.49

3He( 1
2

+, 1
2
) s1/2

AV18+IL7 6.45
6.77(51) [58], 6.52(49) [58]

AV18+UIX 6.36 6.42(2) 6.49
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TABLE VII. ANCs for GFMC overlaps between A = 6 and 7 p-shell nuclei for the AV18+IL7 potential in angular momentum
channels lj . Systematic uncertainties on GFMC values are 5% or less as discussed in Sec. III. Results of the VMC-IM method
for AV18+UIX with statistical errors only and experimentally deduced values are also shown.

parent core lj C [fm−1/2]
AZ(Jπ , T ) Type A−1Z(Jπ , T ) Type VMC-IM GFMC exp.

7Li( 3
2

−
, 1
2
)

I 6He(0+, 1) I p3/2
3.68(5) 3.52

2.48 [62]
II 3.65

I

6Li(1+, 0)

I
p1/2 1.65(1) 1.73
p3/2 1.89(1) 2.29

√
∑

C2 2.51(1) 2.87 1.26-2.82 [63]

II II
p1/2 1.85
p3/2 2.20

√
∑

C2 2.87 1.26-2.82 [63]
I 6Li(3+, 0) I p3/2

3.50
2.06-3.00 [63]

II 3.63
I 6Li(0+, 1) I p3/2

−2.39
1.71-2.62 [63]

II −2.46

7Li( 1
2

−
, 1
2
) I 6Li(1+, 0) I

p1/2 −0.543(16) −0.573
p3/2 −2.54(4) −2.85

√
∑

C2 2.60(4) 2.91

7Be( 3
2

−
, 1
2
) I

6Li(1+, 0) I
p1/2 −1.87(3) −1.70
p3/2 −2.15(3) −2.20

√
∑

C2 2.85(3) 2.78
6Li(3+, 0) I p3/2 −3.49
6Li(0+, 1) I p3/2 −2.58

TABLE VIII. Fitting parameters from Eq. (18) for GFMC overlaps obtained for the AV18+IL7 potential in angular momentum
channels lj . All p-shell overlaps originated from Type I VMC wave functions. The precise values of VWS are adjusted to
reproduce the experimental separation energies Bexp.

parent core lj VWS RWS aWS β ρ Vso Rso aso Bexp
AZ(Jπ , T ) A−1Z(Jπ , T ) [MeV] [fm] [fm] 0.00 [fm] [MeV] [fm] [fm] [MeV]

3H( 1
2

+
, 1
2
) 2H(1+, 0)

s1/2 −172.88 0.56 0.69 1.15 0.64 6.2572
d3/2 −2732.90 −1.15 0.91 1.16 0.41 2.95 2.15 0.14 6.2572

3He( 1
2

+
, 1
2
) 2H(1+, 0)

s1/2 −179.94 0.54 0.68 1.13 0.64 5.4934
d3/2 −8155.10 −2.19 0.91 1.03 0.35 1.47 2.07 0.06 5.4934

4He(0+, 0)
3H( 1

2

+
, 1
2
) s1/2 −202.21 0.93 0.66 0.87 0.81 19.814

3He( 1
2

+
, 1
2
) s1/2 −200.93 0.88 0.69 0.87 0.79 20.578

7Li( 3
2

−
, 1
2
)

6He(0+, 1) p3/2 −58.93 2.68 0.93 1.26 0.91 0.07 9.9758

6Li(1+, 0)
p1/2 −41.80 3.18 0.85 2.45 1.35 0.17 7.25
p3/2 −69.55 1.89 1.17 2.13 2.36 0.21 7.25

6Li(3+, 0) p3/2 −62.98 2.35 1.18 1.72 0.55 0.09 9.436
6Li(0+, 1) p3/2 −59.39 2.64 0.97 0.93 0.91 0.22 10.813

7Li( 1
2

−
, 1
2
) 6Li(1+, 0)

p1/2 −33.71 3.39 0.31 1.44 1.09 0.03 6.772
p3/2 −65.00 2.04 1.15 1.14 0.88 0.03 6.772

7Be( 3
2

−
, 1
2
)

6Li(1+, 0)
p1/2 −39.45 3.32 0.76 3.47 1.44 0.39 5.6055
p3/2 −72.22 1.85 1.11 2.62 2.53 0.31 5.6055

6Li(3+, 0) p3/2 −59.20 2.52 1.07 1.08 0.79 0.03 7.7915
6Li(0+, 1) p3/2 −59.49 2.64 0.96 1.06 1.05 0.03 9.1685

Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357 and under SciDAC grant No. DE-FC02-
07ER41457.
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