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The electromagnetic charge operator in a two-nucleon system is derived in chiral effective field
theory (χEFT) up to order eQ (or N4LO), where Q denotes the low-momentum scale and e is
the electric charge. The specific form of the N3LO and N4LO corrections from, respectively, one-
pion-exchange and two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for
the non-static terms in the corresponding potentials. We show that different prescriptions lead to
unitarily equivalent potentials and accompanying charge operators. Thus, provided a consistent
set is adopted, predictions for physical observables will remain unaffected by the non-uniqueness
associated with these off-the-energy-shell effects.

PACS numbers: 12.39.Fe, 13.40.-f

I. INTRODUCTION

The chiral symmetry exhibited by quantum chromody-
namics (QCD) dictates that the pion couples to baryons,
such as nucleons and ∆-isobars, by powers of its momen-
tum Q. As a consequence, the Lagrangian describing
these interactions can be expanded in powers of Q/Λχ,
where Λχ ∼ 1 GeV specifies the chiral-symmetry break-
ing scale. Thus, classes of Lagrangians emerge, each char-
acterized by a given power of Q/Λχ and each involving
a certain number of unknown coefficients, so called low-
energy constants, which are then determined by fits to
experimental data (see, for example, the review papers [1]
and [2], and references therein). This approach, known
as chiral effective field theory (χEFT), can be justifiably
argued to have put low-energy nuclear physics on a more
fundamental basis by providing, on the one hand, a direct
connection between the symmetries of QCD—in partic-
ular, chiral symmetry—and the strong and electroweak
interactions in nuclei, and, on the other hand, a practical
calculational scheme susceptible, in principle, of system-
atic improvement.

The model for the nuclear electromagnetic current—
the space-like part of the four current—in χEFT up to
one loop was derived originally by Park et al. [3], us-
ing covariant perturbation theory. In the last couple
of years, two independent derivations, based on time-
ordered perturbation theory (TOPT), have appeared in
the literature, one by the present authors [4] and the
other by Kölling et al. [5]. There are technical differ-
ences in the implementation of TOPT, which relate to
the treatment of reducible diagrams and are documented
in considerable detail in the above papers. However, the
resulting expressions in Refs. [4] and [5] for the two-pion-
exchange currents (the only ones considered by the au-

thors of Ref. [5]) are in agreement with each other, but
differ from those of Ref. [3], in particular in the isospin
structure of the M1 operator associated with the one-
loop corrections—see Pastore et al. (2009) [4] for a com-
parison and analysis of these differences.

Kölling et al. also provided the first treatment of loop
corrections to the nuclear charge operator—the time-like
part of the four current—associated with two-pion ex-
change mechanisms. Of course, there had been earlier
studies of the two-nucleon charge operator, notably those
of Refs. [6–8], but they had been limited to its isoscalar
component, and therefore had only retained tree-level
corrections (the two-pion-exchange loop contributions
are isovector). These earlier studies also included predic-
tions for the charge and quadrupole form factors of the
deuteron, which were in reasonable agreement with data
obtained from measurements of elastic electron-deuteron
scattering cross sections at low-momentum transfer.

The primary objective of the present work is to extend
the formalism developed in Refs. [4, 9] to derive system-
atically the two-nucleon electromagnetic charge opera-
tor in χEFT, including up to one loop corrections. As
we shall see below, this is not a straight-forward task,
since the derivation of such an operator necessarily entails
the study of non-static contributions to the one-pion-
exchange (OPE) and two-pion-exchange (TPE) poten-
tials. In the OPE sector, this inter-connection between
non-static contributions and the charge operator was in-
vestigated long ago by Friar [10] in the context of a Foldy-
Wouthuysen reduction procedure and a time-dependent
perturbation theory, which consistently retained correc-
tions up to order (v/c)2. In particular, Friar showed that
i) the charge operators so derived depend on the specific,
but arbitrary, off-the-energy extension—i.e., on the cor-
rections beyond the static limit, such as those induced by
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retardation effects—adopted for the OPE potential, and
that ii) these different operators (and corresponding OPE
potentials) are related to each other by a unitary trans-
formation and, therefore, their intrinsic lack of unique-
ness has no consequence on the predictions for physical
observables.

In this paper, we examine these issues from a χEFT
perspective. We are interested in constructing the charge
operators up to one loop and, hence, need to include
non-static corrections not only in the OPE, but also in
the TPE potential. We show that the resulting oper-
ators, while not unique because of the off-the-energy-
shell ambiguity referred to above, are nevertheless re-
lated to each other by a unitary transformation. Thus
the present study puts Friar’s original considerations in
the modern framework of χEFT and extends them to
the TPE sector. In Sec. II and App. A we list those
terms in the chiral Lagrangians (and corresponding in-
teraction Hamiltonians) that are relevant to our purpose
here. In Sec. III we provide an overview of the derivation
of the OPE and TPE potentials and charge operators.
Specifically, we explore the connection between the am-
plitude calculated in χEFT and the strong and electro-
magnetic potentials, which are derived from it and are
used in quantum-mechanical formulations, based on the
Lippmann-Schwinger or Schrödinger equations. Power
counting allows us to establish a criterion to make this
connection precise. Elsewhere [4, 9], we have referred
to the latter as “accounting for recoil-corrected reducible
contributions.” The present formulation is especially apt
to shed light on the inter-dependence between charge op-
erators and potentials (at the OPE and TPE level), and
the associated ambiguity arising from off-the-energy-shell
extrapolations prescribed for the latter.

In Sec. III we also provide an explicit expression for
the unitary transformation, and show, in particular, that
different (non-static) versions of the TPE potential are
unitarily equivalent. As mentioned above, in the OPE
sector this result has been known for a while [10, 11].

Section IV contains a summary of the derivation of
the two-nucleon charge operators up to order eQ 0 in-
cluded, or next-to-next-to-next-to-leading order (N3LO
in short), where e is the proton electric charge and Q
denotes generically the low-momentum scale. No loops
enter at this order. The different forms of the OPE charge
operator at N3LO exhibit the same unitary equivalence
as the non-static corrections to the OPE potential at or-
der Q2 (N2LO)—this too is well known [10, 11], albeit in
a different context.

In Sec. V we discuss the static one-loop corrections to
the charge operator at N4LO (eQ). In particular, we
list those corresponding to two different off-the-energy-
shell prescriptions for the OPE and TPE potentials, and
show that they are unitarily equivalent. A fairly detailed
account of their derivation is provided in App. B. The
loop integrals entering the individual terms at N4LO are
ultraviolet divergent; however, their sum is finite, in par-
ticular it vanishes in the limit in which the momentum q

carried by the electromagnetic field is zero. This was
to be expected, since i) symmetry arguments prevent
the presence of counterterms at this order (and there-
fore the possibility of re-absorbing ensuing divergencies
into them), and ii) charge conservation demands that at
q = 0 the charge operator merely counts the number of
charged particles (i.e., protons) in the system—a require-
ment already fulfilled at LO. Summary and conclusions
are presented in Sec. VI, while, for future convenience, we
give the configuration space representation of the N4LO
charge operators in App. C.

II. RELEVANT INTERACTION

HAMILTONIANS

Here we only list the interaction Hamiltonians relevant
for the derivation of the nuclear electromagnetic charge
operator up to order eQ (N4LO), see App. A for notation
and a summary of the corresponding Lagrangians [12,
13]:

HπN =

∫
dxN †

[gA τa
Fπ

σ ·∇πa+
τ

F 2
π

· (π × ∂ 0
π)
]
N,(1)

HγN = e

∫
dxN †

[
eN A0 − 2µN − eN

8m2
N

[
(∇2A0)

+ σ × (∇A0) · −→∇ −←−∇ · σ × (∇A0)
]]
N , (2)

Hγπ = e

∫
dxA0 (π × ∂0π)z , (3)

HγπN = e

∫
dxN †

σ ·
(
∇A0

) [ gA
2mNFπ

(τ · π + πz)

+
1

Fπ
(2 d20 + 2 d21 − d22) (τ × ∂ 0

π)z

]
N . (4)

The resulting vertices behave, relative to the low-
momentum scale Q, in the following way: HπN ∼ Q; first
term in HγN ∼ eQ 0, remaining ones ∼ eQ2; Hγπ ∼ eQ;
first term in HγπN ∼ eQ, second one ∼ eQ2. There is
also a contact interaction,

HCT =
1

2

∫
dx
[
CS

(
N †N

) (
N †N

)

+ CT

(
N †

σN
)
·
(
N †

σN
) ]

, (5)

which enters the derivation of the N4LO charge operator.
The accompanying vertex scales as Q 0.

III. FROM AMPLITUDES TO POTENTIALS

We begin by considering the conventional perturbative
expansion for the two-nucleon (NN) scattering ampli-
tude

〈f | T | i〉 = 〈f | H1

∞∑

n=1

(
1

Ei −H0 + i η
H1

)n−1

| i〉 ,

(6)
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where | i〉 and | f〉 represent the initial and final two-
nucleon states of energy Ei = Ef , H0 is the Hamilto-
nian describing free pions and nucleons, and H1 is the
Hamiltonian describing interactions among these parti-
cles (Sec. II). The evaluation of this amplitude is carried
out in practice by inserting complete sets of H0 eigen-
states between successive terms of H1. Power count-
ing is then used to organize the expansion in powers of
Q/Λχ ≪ 1, where Λχ ≃ 1 GeV is the typical hadronic
mass scale.
In the perturbative series, Eq. (6), a generic (reducible

or irreducible) contribution is characterized by a certain
number, say N , of vertices, each scaling as Qαi ×Q−βi/2

(i=1, . . . , N), where αi is the power counting implied by
the relevant interaction Hamiltonian and βi is the num-
ber of pions in and/or out of the vertex, a correspond-
ing N–1 number of energy denominators, and possibly
L loops [9]. Out of these N–1 energy denominators,
NK of them will involve only nucleon kinetic energies,
which scale as Q2, and the remaining N − NK − 1 will
involve, in addition, pion energies, which are of order Q.
Loops, on the other hand, contribute a factor Q3 each,
since they imply integrations over intermediate three mo-
menta. Hence the power counting associated with such
a contribution is

(
N∏

i=1

Qαi−βi/2

)
×
[
Q−(N−NK−1) Q−2NK

]
×Q3L . (7)

Clearly, each of the N−NK−1 energy denominators can
be further expanded as

1

Ei − EI − ωπ
= − 1

ωπ

[
1 +

Ei − EI

ωπ

+
(Ei − EI)

2

ω2
π

+ . . .

]
, (8)

where EI denotes the kinetic energy of the intermediate
two-nucleon state, and ωπ the pion energy (or energies,
as the case may be)—the ratio (Ei − EI)/ωπ is of order
Q.
The Q-scaling of the interaction vertices and the con-

siderations above show that T admits the following ex-
pansion:

T = T (0) + T (1) + T (2) + . . . , (9)

where T (n) ∼ Qn. For example, the time-ordered di-
agrams contributing to T (0) and T (1) are illustrated in
Fig. 1, where the pion line (pion line with a crossed
circle) indicates that only the leading −1/ωπ (next-to-
leading −(Ei−EI)/ω

2
π) term is retained in the expansion

of the associated energy denominator, Eq. (8). Except for
App. B, this notation will not be used any further below,
but it is understood that energy denominators involving
pions are expanded as in Eq. (8).
Our objective is to derive a two-nucleon potential v

which, when iterated in the Lippmann-Schwinger (LS)

equation,

v + v G0 v + v G0 v G0 v + . . . , (10)

leads to the T -matrix in Eq. (9), order by order in the
power counting. In practice, this requirement can only be
satisfied up to a given order n∗, and the resulting poten-
tial, when inserted into the LS (or Schrödinger) equation,
will generate contributions of order n > n∗, which do not
match T (n). In Eq. (10), G0 denotes the free two-nucleon
propagator, G0 = 1/(Ei −EI + i η), and we assume that

v = v(0) + v(1) + v(2) + . . . , (11)

where the yet to be determined v(n) is of order Qn. We
also note that, generally, a term like v(m) G0 v

(n) is of
order Qm+n+1, since G0 is of order Q−2 and the implicit
loop integration brings in a factorQ3. Having established
the above power counting, we obtain

v(0) = T (0) , (12)

v(1) = T (1) −
[
v(0) G0 v

(0)
]
, (13)

v(2) = T (2) −
[
v(0) G0 v

(0) G0 v
(0)
]

−
[
v(1) G0 v

(0) + v(0) G0 v
(1)
]
, (14)

v(3) = T (3) −
[
v(0) G0 v

(0) G0 v
(0) G0 v

(0)
]

−
[
v(1) G0 v

(0) G0 v
(0) + permutations

]

−
[
v(2) G0 v

(0) + v(0) G0 v
(2)
]

−
[
v(1) G0 v

(1)
]
, (15)

where v(n) is the “recoil-corrected” two-nucleon potential
explicitly constructed in Refs. [4, 9] up to order n = 2,
or N2LO. The LO term, v(0), consists of (static) one-
pion-exchange (OPE) and contact interactions, while the
NLO term, v(1), vanishes, since the contributions of di-
agrams (d) and (e) in T (1), illustrated in Fig. 1, add up
to zero, while the remaining diagrams represent itera-
tions of v(0), whose contributions are exactly canceled by[
v(0) G0 v

(0)
]
—complete or partial cancellations of this

type persist at higher (n ≥ 2) orders. The N2LO term,
which follows from Eq. (14), contains two-pion-exchange
(TPE) and contact (involving two gradients of the nu-
cleon fields) interactions. It is derived in Ref. [4]. How-
ever, there is a recoil correction of order n = 2 to the
OPE potential, which was ignored in that paper. In mo-
mentum space, it is given by

v(2)π (ν = 0) = v(0)π (k)
(E ′

1 − E1)
2 + (E ′

2 − E2)
2

2ω2
k

, (16)

where v
(0)
π is the LO OPE potential,

v(0)π (k) = − g2A
F 2
π

τ1 · τ2
σ1 · k σ2 · k

ω2
k

, (17)
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k = p1 − p′
1 = p′

2 − p2 is the momentum transfer, and
pj and Ej (p′

j and E ′
j ) are the initial (final) momentum

and energy of nucleon j. Obviously, on the energy shell
Ei = Ef implicit in Eq. (14), the above expression is
equivalent to one in which, for example,

v(2)π (ν = 1) = −v(0)π (k)
(E ′

1 − E1) (E
′
2 − E2)

ω2
k

. (18)

In fact, there is an infinite class of v
(2)
π (ν) corrections—

labeled by the parameter ν [10, 11, 14]—which, while
equivalent on the energy-shell, are different off the
energy-shell, and therefore lead to different potentials

v(3)(ν) in Eq. (15). Indeed, for the choices of v
(2)
π (ν)

in Eqs. (16) and (18) the corresponding corrections to
the TPE term (from direct and crossed box diagrams),

v
(3)
2π (ν), read

v
(3)
2π (ν = 0) = − g4A

2F 4
π

(3 + 2 τ1 · τ2)
∫

q1

(σ1 · q2)(σ1 · q1)

× (σ2 · q1)(σ2 · q2)

(
E1 − Ẽ1 + E′

2 − Ẽ′
2

ω4
1 ω

2
2

+
E′

1 − Ẽ1 + E2 − Ẽ′
2

ω2
1 ω

4
2

)
, (19)

and

v
(3)
2π (ν = 1) = v

(3)
2π (ν = 0) +

1

2

∫

q1

v(0)π (q2) v
(0)
π (q1)

×
(
E1 + E2 − Ẽ1 − Ẽ2

)( 1

ω2
1

+
1

ω2
2

)
, (20)

where, as indicated in panel (a) of Fig. 4 (App. B), q1

and q2 (ω1 and ω2) are the momenta (energies) of the

two exchanged pions (with q2 = k− q1), Ẽj and Ẽ ′
j are

the intermediate nucleon energies, and
∫

s

≡
∫

ds

(2π)3
. (21)

Friar [10, 14], and later Adam et al. [11], have ar-
gued that the different off-the-energy-shell extrapolations

v
(2)
π (ν) are unitarily equivalent. (See also Ref. [15] for the
implication of the unitary equivalence on the TPE three-
nucleon potential.) We show below that, as a matter of

fact, this unitary equivalence remains valid for v
(3)
2π (ν)

(as well as for the electromagnetic charge operators at
one loop), thus extending the results of the authors of
Refs. [11, 14] to the TPE sector. Up to order n = 3 (i.e.,
Q3), the two-nucleon Hamiltonian in the center-of-mass
(CM) frame can be written in momentum space as

H(ν;p′,p) = K(−1)(p′,p) + v(0)π (p′− p) + v
(2)
2π (p′ − p)

+ v(2)π (ν;p′,p) + v
(3)
2π (ν;p

′,p) , (22)

limiting our considerations to OPE and (box) TPE po-
tentials only. There are, of course, v(3) terms originating

(a) (b) (c)

T (0)

(j) (k) (m) (n)(l)

T (1)

(d) (e) (f) (h) (i)(g)

FIG. 1: Time ordered diagrams illustrating the contributions
to the T (0), panels (a)–(c), and T (1), panels (d)–(n), NN
scattering amplitudes. Nucleons and pions are denoted by
solid and dashed lines, respectively. Pion lines (pion lines
with crossed circle) indicate that only the leading Q−1 (next-
to-leading Q 0) term in the expansion of energy denominators,
Eq. (8), are retained in the corresponding amplitudes. See
text for explanation.

from higher order chiral Lagrangians [12, 13], but these
have no relevance for the discussion to follow, and are
therefore ignored below. In Eq. (22), K(−1) denotes the
kinetic energy term of order n = −1,

K(−1)(p′,p) = (2π)3 δ(p′ − p) p2/mN , (23)

mN is the nucleon mass, and v
(2)
π (ν) has been given in

Refs. [11, 14] as

v(2)π (ν;p′,p) = (1− 2 ν)
v
(0)
π (p′ − p)

(p′ − p)2 +m2
π

(p′ 2 − p 2)2

4m2
N

,

(24)
which the ν = 0, 1 expressions listed above reduce to (in
the CM frame). These Hamiltonians are related to each
other via

H(ν) = e−iU(ν) H(ν = 0) e+iU(ν) , (25)

where up to NLO the operator i U(ν) is

i U(ν;p′,p) ≃ i U (0)(ν;p′,p) + i U (1)(ν;p′,p) , (26)

with

i U (0)(ν;p′,p) = −ν v
(0)
π (p′ − p)

(p′ − p)2 +m2
π

p′ 2 − p 2

2mN
, (27)

i U (1)(ν;p′,p) = −ν

2

∫

s

v
(0)
π (p′ − s)v

(0)
π (s− p)

(p′ − s)2 +m2
π

.(28)

The unitary equivalence up to order n = 3 implies

H(ν) = H(ν = 0) +
[
K(−1) + v(0)π , i U (0)(ν)

]

+
[
K(−1), i U (1)(ν)

]
, (29)



5

since each commutator brings in an additional factor Q 3

due to the implicit momentum integrations. A direct
evaluation with ν = 1 shows that H(ν = 1) ensues, in-

cluding v
(2)
π (ν = 1) and v

(3)
2π (ν = 1) as given in Eqs. (18)

and (20)—note that in the CM frame q1 = p − s,

q2 = s−p′, Ẽ1+ Ẽ2 = s2/mN , and s is the loop momen-
tum. Both these ν-dependent corrections are relevant
for the derivation of the nuclear charge operator up to
N4LO, to which we now turn our attention.
The electromagnetic interactions are treated in first

order in the perturbative expansion of Eq. (6), and the
transition operator can be expanded as

Tγ = T (−3)
γ + T (−2)

γ + T (−1)
γ + . . . , (30)

where T
(n)
γ is of order eQn (e is the electric charge). The

nuclear charge, ρ, and current, j, operators follow from
vγ = A0 ρ−A · j, where Aµ = (A0,A) is the electromag-
netic vector field, and it is assumed that vγ has a similar
expansion as Tγ . The requirement that, in the context
of the LS equation, vγ matches Tγ order by order in the
power counting implies the following relations:

v(−3)
γ = T (−3)

γ (31)

v(−2)
γ = T (−2)

γ −
[
v(−3)
γ G0 v

(0) + v(0) G0 v
(−3)
γ

]
, (32)

v(−1)
γ = T (−1)

γ −
[
v(−3)
γ G0 v

(0) G0 v
(0) + permutations

]

−
[
v(−2)
γ G0 v

(0) + v(0) G0 v
(−2)
γ

]
, (33)

v(0)γ = T (0)
γ −

[
v(−3)
γ G0 v

(0) G0 v
(0) G0 v

(0)

+permutations
]

−
[
v(−2)
γ G0 v

(0) G0 v
(0) + permutations

]

−
[
v(−1)
γ G0 v

(0) + v(0) G0 v
(−1)
γ

]

−
[
v(−3)
γ G0 v

(2) + v(2) G0 v
(−3)
γ

]
, (34)

v(1)γ = T (1)
γ −

[
v(−3)
γ G0 v

(0) G0 v
(0) G0 v

(0) G0 v
(0)

+permutations
]

−
[
v(−2)
γ G0 v

(0) G0 v
(0) G0 v

(0)

+permutations
]

−
[
v(−1)
γ G0 v

(0) G0 v
(0) + permutations

]

−
[
v(0)γ G0 v

(0) + v(0) G0 v
(0)
γ

]

−
[
v(−3)
γ G0 v

(2) G0 v
(0) + permutations

]

−
[
v(−3)
γ G0 v

(3) + v(3) G0 v
(−3)
γ

]
, (35)

where v
(n)
γ = A0 ρ(n)−A·j(n), v(n) are the NN potentials

constructed in Eqs. (12)–(15) (with the ν dependence of

v(2) and v(3) suppressed for the time being), and use has
been made of the fact that v(1) vanishes. In the propaga-
tor G0, the initial energy Ei includes the photon energy
ωγ (itself of order Q2), i.e. Ei = E1+E2+ωγ = E ′

1+E ′
2,

and the intermediate energy EI may include, in addition
to the kinetic energies of the intermediate nucleons, also
the photon energy, depending on the specific time order-
ing being considered.
The current operators j(n) up to order n = 1, i.e. eQ,

have been derived in Ref. [4]. In that case, the deriva-
tion is fairly straightforward as j(−3) vanishes: the low-
est order (n = −2) contributing to j consists of the
single-nucleon convection and spin-magnetization cur-
rents. The situation for the charge operator is consid-
erably more complicated, however, since n = −3 is the
lowest order contributing to it—in momentum space, it
is given by

ρ(−3)(q) = e eN,1 (2π)
3δ(p1 + q− p′

1) + 1 ⇋ 2 , (36)

where eN,i = (1 + τi,z)/2 is the proton projection opera-
tor, q is the momentum carried by the external field, and
the counting eQ−3 follows from the product of a factor
eQ0 associated with the γNN vertex, and a factor Q−3

due to the momentum-conserving δ-function implicit in
a disconnected term of this type, see panel (a) in Fig. 2
below. Therefore, the operators ρ(0) and ρ(1), obtained
from Eqs. (34) and (35), depend on the off-the-energy-
shell extensions adopted for v(2) and v(3). In particular,
it appears that all of these extensions lead to a ρ(1) op-
erator which i) is free of divergencies, as required by the
absence of counterterms at this order (eQ), and ii) sat-
isfies ρ(1)(q = 0) = 0. This last condition follows from
charge conservation,

ρ(q = 0) =

∫
dx ρ(x) = ρ(−3)(q = 0) , (37)

implying ρ(n≥−2)(q = 0) = 0. In Sec. V and App. B,
we show explicitly that the off-the-energy-shell prescrip-
tions adopted for v(2)(ν) and v(3)(ν) corresponding to
ν = 0, 1 do ensure that ρ(1)(ν;q) obeys requirements i)
and ii). Indeed, we also show that the unitary equiv-
alence extends to the OPE ρ(0)(ν;q)—a fact already
known [10, 14]—and TPE ρ(1)(ν;q) charge operators.

IV. CHARGE OPERATORS UP TO N3LO

The LO contribution to the two-nucleon charge oper-
ator in panel (a) of Fig. 2, resulting from the first term
of the γN interaction Hamiltonian in Eq. (2), has al-
ready been given in Eq. (36). There are no NLO (eQ−2)
contributions, whereas at N2LO there is i) a relativistic
correction of order (Q/mN)2 to the LO charge operator,
panel (b), given by

ρ(−1) = − e

8m2
N

(2µN,1 − eN,1)

×
(
q2 + 2 iq · σ1 ×K1

)
+ 1 ⇋ 2 , (38)
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(b) (c)(a) (d) (e)

FIG. 2: Diagrams illustrating one- and two-body charge oper-
ators entering at LO (eQ−3), panel (a), N2LO (eQ−1), panels
(b), (c) and (d), and N3LO (eQ0), panels (e). There are no
NLO contributions. Nucleons, pions, and photons are denoted
by solid, dashed, and wavy lines, respectively. The square in
panel (b) represents the (Q/mN)2, or (v/c)2, relativistic cor-
rection to the LO one-body charge operator, whereas the solid
circle in panel (e) is associated with a γπN charge coupling
of order eQ (see text). Only one among the possible time
orderings is shown in panels (c), (d), and (e).

ii) a pion-in-flight term, panel (c), which, however, turns
out to vanish when the contributions of the six time-
ordered diagrams, evaluated in the static limit, are
summed up, iii) a one-pion-exchange (OPE) contribu-
tion, panel (d), which vanishes due to an exact cancel-
lation between static irreducible and recoil corrected re-
ducible amplitudes [9]. In Eq. (38) and what follows, q
denotes the momentum carried by the external field, and
ki and Ki are defined as

ki = p′
i − pi , Ki = (p′

i + pi)/2 , (39)

where pi and p′
i are the initial and final momenta of

nucleon i. Hereafter, momentum conserving δ-functions
(q = ki) in ρ(−3) and ρ(−1) (and k1 + k2 = q in the
following expressions of two-body charge operators) will
be dropped for brevity. We note that the power count-
ing is different for the electromagnetic current operator,
for which the LO term is of order eQ−2 (in the two-
nucleon system), i.e. it is suppressed by an extra power
of Q relative to ρ(−3), and where there are NLO (eQ−1)
corrections involving seagull and in-flight contributions
associated with OPE, which have no counterpart in the
present case.
The N3LO contribution illustrated in panel (e) of Fig. 2

is associated with the γπN coupling of order eQ origi-
nating from the first term in Eq. (4) ; it gives rise to the
vertex

i
e gA

2mNFπ

σ · q√
2ωk

(τa + δaz) (40)

for absorption (or emission) of a pion of momentum k,
energy ωk, and isospin component a, where (2ωk)

−1/2 is
the normalization factor entering the normal modes ex-
pansion of the pion field. The two-body charge operator
follows easily by evaluating (in the static limit) the con-
tributions of the two time-ordered diagrams:

ρ(0)e =
e

2mN

g2A
F 2
π

(τ1 · τ2 + τ2z)
σ1 · q σ2 · k2

ω2
k2

+ 1 ⇋ 2 .

(41)

In the present χEFT context, ρ
(0)
e was derived first by

Phillips in 2003 [7]. However, it is worthwhile to point

out that the presence of an operator of the form given
in Eq. (41) has been known for some time—see the 1989
review paper by Riska [16] and references therein. It was
obtained by considering the low-energy limit of the rel-
ativistic Born diagrams associated with the virtual-pion
photoproduction amplitude. Subsequently, calculations
based on realistic wave functions for the A = 2–4 nu-
clei showed that this operator plays an important role
in yielding predictions for the A structure function and
tensor polarization of the deuteron [17], and charge form
factors of the trinucleons and α-particle [18], that are in
excellent agreement with the experimental data at low
and moderate values of the momentum transfer (q . 1
GeV/c). These calculations also showed that the con-

tributions due to ρ
(0)
e are typically an order of magni-

tude larger than those generated by the Darwin-Foldy
and spin-orbit relativistic corrections—i.e., the operator
ρ(−1) above—or by vector-meson exchanges.
There are also N3LO contributions originating from

non-static contributions in diagrams of type (c) and (d),
resulting from expanding the energy denominators in-
volving pions as in Eq. (8). We obtain:

ρ(0)c = i
e

mN

g2A
F 2
π

(τ1 × τ2)z
σ1 · k1 σ2 · k2

ω2
k1

ω2
k2

× (k1 ·K1 − k2 ·K2) . (42)

The contributions from diagrams of type (d) depend
on the off-the-energy-shell prescription adopted for

v
(2)
π (ν) [10, 11, 14]. For ν = 0 and ν = 1, we find by
direct evaluation of the relevant diagrams:

ρ
(0)
d (ν = 0)=− e

4mN

g2A
F 2
π

σ1 · k2 σ2 · k2

ω4
k2

×
[
(τ1 · τ2 + τ2,z)q · k2 + 2 i (τ1 × τ2)z

×k2 · (K1 +K2)
]
+ 1 ⇋ 2, (43)

ρ
(0)
d (ν = 1)=−i e

mN

g2A
F 2
π

(τ1 × τ2)z
σ1 · k2 σ2 · k2

ω4
k2

×k2 ·K2 + 1 ⇋ 2 , (44)

and it is easily seen that they are related to each other
by the unitary transformation U (0)(ν), that is

ρ
(0)
d (ν) = ρ

(0)
d (ν = 0) +

[
ρ(−3) , i U (0)(ν)

]

= ρ
(0)
d (ν = 0) + i e

[
eN,1U

(0)(ν;p′ − q/2,p)

− U (0)(ν;p′,p+ q/2) eN,1

]
+ 1 ⇋ 2 , (45)

and p and p′ are the initial and final relative momenta.

We observe that ρ
(0)
c + ρ

(0)
d (ν) = 0 in the limit q = 0, as

required by charge conservation. We also point out that
the isovector term proportional to (τ1 × τ2)z in Eq. (43)
vanishes in the Breit frame, where p1 + p2 = −q/2 and
p′
1 + p′

2 = q/2.
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V. CHARGE OPERATOR AT N4LO

First, we note that there are non-static N4LO contri-
butions from diagrams of type (c)–(e) in Fig. 2—though,
those relative to panel (e) cancel out, when the two time
orderings are taken into account. There is also a non-
static contribution of order (Q/mN )4 to the LO ρ(−3)

charge operator, which we ignore in the present section.
Here we only deal with static N4LO corrections from one-
loop diagrams of the type represented in Fig. 3, since
those induced by the second term in the interactionHγπN

(proportional to the time derivative of the pion field) van-
ish. Thus up to N4LO included, there are no unknown
low-energy constants entering the electromagnetic charge
operator.
The pion-in-flight contributions illustrated in panels

(a) and (b) of Fig. 3 involve irreducible diagrams only,
and they are obtained by direct evaluation, in the static
limit, of the corresponding amplitudes. We find that the
“football” contribution—panel (a)—vanishes, while the
“triangle” pion-in-flight operator—panel (b)—reads

ρ
(1)
b = e

2 g2A
F 4
π

τ2,z

∫
q1 · q2

ω2
1 ω

2
2

+ 1 ⇋ 2 , (46)

where the qi and ωi = (q2i +m2
π)

1/2 denote the momenta
(with the flow as indicated in the figure) and energies of
the exchanged pions, and the integration is on any one
of the qi’s, the remaining qj ’s with j 6= i being fixed
by momentum-conserving δ-functions—as noted in the
previous section, an overall (2π)3δ(k1 +k2−q) has been
dropped.
Diagrams illustrated in panels (c)–(j) of Fig. 3 have

both reducible and irreducible pieces. As discussed in
Sec. III, the evaluation of the amplitudes is carried out re-
taining recoil corrections to the reducible diagrams (up to
N4LO accuracy, in this particular instance), along with
the static (N4LO) irreducible contributions. We find that
recoil corrected reducible contributions partially cancel
static irreducible terms at the same order. This is dis-
cussed in considerable detail in App. B. Consequently,

(d) (e)

31

2

1
3

2

21

(a) (b) (c)

2

1

1
3

2

2

1

1

1

2

1

2

(g) (h) (i)(f) (j)

1

FIG. 3: Diagrams illustrating one–loop charge operators en-
tering at N4LO (eQ), notation is as in Fig. 2. Only one among
the possible time orderings is shown for each contribution.

at N4LO the charge operator associated with diagrams

of type (c) shown in Fig. 3 reads

ρ(1)c = −e 2 g
4
A

F 4
π

∫
1

ω2
1 ω

2
2 ω

2
3

[
2 (τ1,z + τ2,z)

× (q2 · q1 q2 · q3 − σ1 · q2 × q1 σ2 · q3 × q2)

− (τ1 × τ2)z (q1 · q2 σ2 · q3 × q2

+ q2 · q3 σ1 · q2 × q1)
]
, (47)

while that arising from contributions of type (d) diagrams
vanishes, since the integrand is an odd function of the
loop momentum q1. For type (e) diagrams, we find:

ρ(1)e = e
2g2A
F 2
π

(τ1,z + τ2,z)

∫
1

ω2
1 ω

2
2

[
CS q1 · q2

+ CT (σ1 · q1 σ2 · q2 + σ1 · q2 σ2 · q1

− q1 · q2 σ1 · σ2)
]
. (48)

The ρ
(1)
f operator vanishes due to an exact cancellation

between the static irreducible and recoil-corrected re-
ducible amplitudes associated with the diagrams illus-
trated in panel (f). For type (g)–(j) diagrams, we find:

ρ(1)g = −e 2 g
2
A

F 4
π

τ2,z

∫
q1 · q2

ω2
1 ω

2
2

+ 1 ⇋ 2, (49)

ρ
(1)
h (ν = 0) = −e 2 g

4
A

F 4
π

∫
ω2
1 + ω2

2

ω4
1 ω

4
2

[
τ2,z (q1 · q2)

2

+ τ1,z σ2 · q2 × q1 σ1 · q2 × q1

]

− e
g4A
F 4
π

(τ1 × τ2)z

∫
ω2
1 − ω2

2

ω4
1 ω

4
2

q1 · q2

× σ1 · q2 × q1 + 1 ⇋ 2 , (50)

ρ
(1)
h (ν = 1) = ρ

(1)
h (ν = 0) +

[
i e

g4A
2F 4

π

(τ1 × τ2)z

×
∫ [

ω2
1 + ω2

2

ω4
1 ω

4
2

[
σ1 · q2 × q1 σ2 · q2 × q1

− (q1 · q2)
2
]
− i

ω2
1 − ω2

2

ω4
1 ω

4
2

q1 · q2

× (σ1 + σ2) · q2 × q1

]
+ 1 ⇋ 2

]
, (51)

ρ
(1)
i (ν = 0) = ρ

(1)
i (ν = 1) = 0 , (52)

ρ
(1)
j = e

2 g2A
3F 2

π

τ1,z (3CS − CT σ1 · σ2)

×
∫

q21
ω4
1

+ 1 ⇋ 2 , (53)

and a fairly detailed overview of their derivation is in
App. B.
A few comments are now in order. Firstly, the loop

integrals entering the expressions above are ultra-violet
divergent. However, the total charge operator at N4LO
is finite, since the divergencies associated with contribu-
tions (b) and (g), (c) and (h), and (e) and (j) cancel out.
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This is in line with the fact that there are no countert-
erms at this order. In particular, we observe that the
constraint imposed by charge conservation is satisfied,

since ρ
(1)
b +ρ

(1)
g = 0 and ρ

(1)
e +ρ

(1)
j = 0 in the limit q = 0

(or k1 = −k2), while the contribution associated with
diagram (c) in Fig. 3 can be written as (since q1 = −q3

at q = 0)

ρ(1)c (q = 0) = e
2 g4A
F 4
π

∫

q1,q2

1

ω4
1 ω

2
2

[
2 τ2,z (q2 · q1)

2

+ 2 τ1,z σ1 · q2 × q1 σ2 · q2 × q1

− (τ1 × τ2)z q2 · q1 σ1 · q2 × q1

]

× (2π)3 δ(q1 − q2 − k1) + 1 ⇋ 2 . (54)

It is then seen that, in this limit, the expression above
is opposite in sign to that of diagram (h) in Eq. (50) for
ν = 0. For ν = 1, in Eq. (51) the extra terms propor-
tional to (τ1 × τ2)z vanish by themselves at q = 0. For
completeness, we list the configuration-space representa-
tion of these operators in App. C.

Secondly, the charge operators ρ
(1)
h for ν = 0, 1 are

related to each other by the unitary transformation U ,
i.e. a relation similar to Eq. (45) holds with U (0)(ν) being
replaced by U (1)(ν), defined in Eq. (28). This is easily
verified by expressing U (1)(ν) as

i U (1)(ν;p′ − p) = −ν g4A
4F 4

π

(3/2− τ1 · τ2)

×
∫

s

[
ω2
+ + ω2

−

ω4
+ ω4

−

[ [
(p′ − p)2 − s2

]2−4 [σ1 · (p′−p)× s]

× [σ2 · (p′−p)× s]
]
− 2 i

ω2
− − ω2

+

ω4
+ ω4

−

[
(p′ − p)2 − s2

]

× (σ1 + σ2) · (p′ − p)× s

]
, (55)

where

ω± ≡
√
(p′ − p± s)2 + 4m2

π . (56)

The commutator
[
ρ(−3) , U (1)(ν)

]
is seen to be identical

to the (τ1×τ2)z term on the right-hand-side of Eq. (51),
when the pion momenta q1,2 are expressed as q1,2 =
q/2 + p− p′ ± s and s is the loop momentum.
Thirdly, we compared the operators given above with

those derived by Kölling et al. [5] in TOPT with the
Okubo method [19], in order to decouple, in the Hilbert
space of pions and nucleons, the states consisting of nu-
cleons only from those including, in addition, pions. We
find that the expressions for operators (a), (b), (c), (g),
and (h, ν = 0) are identical to those reported in Ref. [5]—
the terms involving contact interactions in panels (d), (e),
(i, ν), and (j) were not considered by the authors of that

paper. We should note that in ρ
(1)
h (ν = 0) the additional

isovector piece, i.e. the term multiplied by (τ1 × τ2)z in

Eq. (50), is missing in Ref. [5]. However, evaluation of
the loop integral shows that it vanishes. Indeed, consider

∫

q1

q1 · (k2 − q1)σ1 · (k2 × q1)

(q21 +m2
π) [(k2 − q1)

2
+m2

π]
2
=

∫ 1

0

dx 2 x (1− 2 x)

×
∫

q1

q1 · k2 σ1 · (k2 × q1)

[q21 +m2
π + k22 x (1− x)]

3 = 0 , (57)

after making use of Feynman’s parametrization, and
shifting the integration variables as q1 − xk2 → q1.
Thus, the type (h) charge operator derived in Ref. [5]
corresponds to the ν = 0 off-the-energy-shell extension.
On the other hand, the framework used by these authors
leads to vanishing non-static corrections to the OPE po-
tential [20] (see also the discussion by Phillips [8] in
connection to this issue), which would imply the choice
ν = 1/2 in Eq. (24). This suggests that pion retardation
effects may not have been treated consistently in Ref. [5].
We conclude by observing that for clarity’s sake we have

kept the (vanishing) isovector terms in ρ
(1)
h (ν), Eqs. (50)

and (51).

VI. CONCLUSIONS

We have presented a fairly systematic derivation of the
two-nucleon charge operators up to one loop (or N4LO)
in χEFT, based on TOPT with a careful treatment of
the non-iterative contributions extracted from reducible
diagrams. The specific form of the N3LO and N4LO
charge operators depends on the off-the-energy-shell pre-
scriptions adopted for the non-static pieces in the OPE
and TPE potentials. This ambiguity is of no import,
however, since these OPE and TPE (non-static) poten-
tials and accompanying charge operators are related to
each other by a unitary transformation. Thus, provided
a consistent set is adopted, predictions for physical ob-
servables, such as the few-nucleon charge form factors,
will remain unaffected by the non-uniqueness associated
with off-the-energy-shell effects.
However, it is important to stress that in the present

work we have only examined those off-the-energy-shell ef-
fects relating to pion retardation [10, 14], which arise, in
TOPT amplitudes, from energy denominators containing
pion (in addition to nucleon kinetic) energies. There are,
of course, additional non-static corrections originating
from the non-relativistic reduction of interaction vertices
(generated by fully relativistic Lagrangians). Corrections
of this type in the OPE sector for both potentials and
charge operators have been studied in Refs. [10, 11, 14].
It would be interesting to extend those considerations to
the TPE sector, and also explore the constraints, in the
present χEFT setting, that relativistic covariance and
power counting impose on these non-static terms of the
potentials and electromagnetic charge and current oper-
ators. As a matter of fact, a study along these lines, but
dealing only with the two-nucleon potential, is that of
Ref. [21].
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Finally, we note that the charge operators up to N4LO
included contain no unknown low-energy constants. The
N4LO corrections are purely isovector, and will not con-
tribute to isoscalar observables, such as the A structure
function and tensor polarization of the deuteron or charge
form factor of 4He. They will produce, presumably tiny,
contributions to the isovector combination of the trinu-
cleon radii and charge form factors. A quantitative anal-
ysis of all these effects is in progress.
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Appendix A: Chiral Lagrangians

In the heavy-baryon formalism [12, 13], the chiral La-
grangians describing the interactions among nucleons, pi-
ons, and photons are written as

L(1)πN = N † (i vµD
µ + gA Sµuµ)N , (A1)

L(2)πN =
1

2mN
N †
[
vµ vν D

µDν −DµDµ

− i gA Sµvν [Dµ , uν ]+

− e µN ǫµνρσ Fµνvρ Sσ + . . .
]
N , (A2)

L(3)πN = N †

[
i e d20 S

µvνFµν [τz , uρ] v
ρ

+ i e d21 S
µFµν [τz , u

ν] + e d22 S
µ
[
Dν , F−

µν

]

+ e

(
2 d7 + d6 τz −

2µN − eN
8m2

N

)
[Dµ , Fµν ] v

ν

− e
2µN − eN

4m2
N

(i ǫµναβ vα Sβ Fµσ vσDν

+ h.c.) + . . .

]
N (A3)

L(2)ππ =
F 2
π

16
tr
[
DµU DµU † +m2

π

(
U + U †

)]
, (A4)

where the fields U and uµ, and the covariant derivatives
DµN and DµU , are given by

U + U † = 2− 4

F 2
π

π · π + . . . , (A5)

uµ = − 2

Fπ
τ · ∂µπ −

2 e

Fπ
Aµ (τ × π)z + . . . ,(A6)

DµN =

[
∂µ + i e eNAµ +

i

F 2
π

τ · (π × ∂µπ)

− i e

F 2
π

Aµ [π × (τ × π)]z + . . .

]
N , (A7)

DµU =
2 i

Fπ
τ · ∂µπ −

4

F 2
π

π · ∂µπ

+
2 i e

Fπ
Aµ(τ × π)z + . . . , (A8)

F−
µν =

2 e

Fπ
Fµν (τ × π)z + . . . , (A9)

gA, Fπ (Fπ = 186 MeV), and e are, respectively,
the nucleon axial coupling constant, pion decay am-
plitude, and proton electric charge, d6, d7, d20, d21,
and d22 are (unknown) low-energy constants (LEC’s),
[. . . , . . . ]+ denotes the anticommutator, and vµ and
Sµ = (i/2) γ5 σ

µν vν are the nucleon’s four-velocity and
spin operator, which in its rest frame reduce to vµ =
(1,0) and Sµ = (0,σ/2). We have also defined

eN = (1+τz)/2 , κN = (κS+κV τz)/2 , µN = eN+κN ,
(A10)

where κS and κV are the isoscalar and isovector combina-
tions of the anomalous magnetic moments of the proton
and neutron, which are related to the LEC’s c6 and c7
used in Ref. [13] as κS = c6 + 2 c7 and κV = c6. Note
that only electromagnetic interaction terms have been in-

cluded in L(3)πN , and that the terms proportional to the
LEC’s d6 and d7 represent corrections arising from the
nucleon substructure (i.e., an electromagnetic form fac-
tor). They are not relevant to our discussion here, and
will be ignored hereafter, together with the effects due to
the pion cloud of the nucleon. In the expressions above,
the electromagnetic vector and tensor fields are denoted
by Aµ and Fµν , the isospin doublet of (nonrelativistic)
nucleon fields by N , and the isospin triplet of pion fields
by π. In terms of these, the Lagrangians are expressed
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as

L(1)πN = N †
[
i ∂ 0 − gA

Fπ
τa σ ·∇πa −

1

F 2
π

τ · (π × ∂ 0
π)

− e eN A0 +
e

F 2
π

A0 [π × (τ × π)]z + . . .
]
N , (A11)

L(2)πN =
1

2mN
N †
[
∇2 − e gA

Fπ
(τ · π + πz)σ

·
(
∇A0

)
+ . . .

]
N , (A12)

L(3)πN = N †
[
− e (2 d20 + 2 d21 − d22)

Fπ
σ ·
(
∇A0

)
(τ × ∂ 0

π)z

+
e (2µN − eN)

8m2
N

[ (
∇

2A0
)
+ σ · (∇A0)×−→∇

+ σ · ←−∇ × (∇A0)
]
+ . . .

]
N , (A13)

L(2)ππ =
1

2
∂µπ · ∂µ

π − m2
π

2
π · π

− eAµ (π × ∂µπ)z + . . . , (A14)

where the term proportional to e gA/Fπ in the second
line of Eq. (A12) is obtained [7] i) by expanding the an-
ticommutator in Eq. (A2) as

−i gA
2mN

N † Sµvν [Dµ , uν ]+ N = i
gA

mN Fπ
N † Sµvν

×
[
Dµ , τ · ∂νπ − eAν (τ × π)z

]
+
N , (A15)

ii) by removing the derivative ∂ν acting on the pion field
via partial integration, and iii) by using the (lowest order)
equation of motion for the nucleon field, i.e.

i vν ∂νN = −e eN vνAνN + . . . , (A16)

to re-express the terms, which result from ii) and involve
i vν ∂νN and its adjoint. In Eqs. (A11)–(A14), we have
retained only linear terms in the vector potential, and
only contributions relevant for the derivation of the two-
body charge operator up to order eQ. Application of
the standard rules of canonical quantization leads to the
interaction Hamiltonians listed in Sec. II.

Appendix B: Derivation of the N4LO Charge

Operator

In this appendix, we derive the static N4LO correc-
tions at one loop to the electromagnetic charge opera-
tor which follow from Eq. (35). The derivation of the
operators associated with the irreducible contributions
illustrated by panels (a) and (b) in Fig. 3 is straightfor-
ward. However, the analysis of the reducible diagrams of
type (c)–(j) in the same figure is more delicate, since the
corresponding amplitudes contain (static) contributions
originating from two different sources: one arising from
the sub-class of irreducible time orderings for each of the
diagrams (c)–(j), and one consisting of the “left-over” in

the reducible time orderings, after the energy-dependent
terms representing iterations in the Lippmann-Schwinger
(LS) equation have been properly identified and removed,
i.e. cancelled by terms on the right-hand-side of Eq. (35).
The latter will be referred to below as “recoil-corrected”
reducible contributions. As mentioned in Sec. III, in or-

(c)

(a)

1

2

˜
E1
′

˜
E1

(d)

1

1

˜
E2

˜
E1

(b)

2

1

˜
E2

˜
E1

˜
E2
′

˜
E1

˜
E1

˜
E2 ˜

E1 ˜
E2
′

˜
E1
′ ˜

E2
′

FIG. 4: Diagrams illustrating the T (3) NN amplitudes. The
kinetic energies of intermediate nucleons are as given. Only
one among the possible time orderings is shown. Notation is
as in Fig. 2.

der to isolate these recoil-corrected pieces from those em-
bedded into the iterated solution of the LS equation, it is
necessary to identify the formal expressions of the N3LO
contributions to the NN potential. The latter are ob-
tained by retaining terms beyond the leading one in the
expansion of the energy denominators including pion en-
ergies, which enter both the reducible and irreducible am-
plitudes. Note that the N3LO contributions from higher
order chiral Lagrangians are of no interest here. Next
section is devoted to the derivation of the N3LO NN po-
tential, while the last two sections deal with the deriva-
tion of the N3LO one-pion-exchange (OPE) and N4LO
two-pion-exchange (TPE) charge operators.

1. NN potential at N3LO

One-loop contributions to the NN potential consid-
ered in this appendix are shown in Fig. 4. We discuss in
depth the results obtained for the box diagrams shown
in panel (a) of this figure. The remaining corrections can
be easily derived following the steps outlined here, and
for them we only provide a listing of their expressions.
The classes of diagrams contributing to the N3LO box

amplitude are illustrated in Fig. 5. The type (a) re-
ducible, and type (c) and (d) irreducible diagrams, are
evaluated by keeping next-to-leading (or Q 0) terms in
the expansions of the energy denominators which include
pion energies—see Eq. (8). The amplitude correspond-
ing to the reducible type (b) diagrams is obtained by
retaining terms of order Q in these energy denominators,
namely one order higher than for diagrams of type (a),
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(c), and (d).
We write the N3LO amplitude associated with the box

diagrams as the sum of reducible and irreducible contri-
butions, i.e.

T
(3)
2π (ν) = T

(3)
2π, red(ν) + T

(3)
2π, irr . (B1)

The reducible amplitude consists of LS terms plus a term
contributing to the definition of the NN potential at
N3LO. The latter is affected by the choice of the off-
the-energy-shell prescription adopted for the N2LO OPE

potential v
(2)
π (ν). As an example, we discuss the results

obtained with ν = 0 and ν = 1. In particular, for ν = 0,
we find that the box reducible amplitude is given by

T
(3)
2π, red(ν = 0) = 2

V1 V2

ω2

1

Ei − Ẽ1 − Ẽ2

× V3 V4

ω3
1

[
(E1 − Ẽ1)

2 + (E2 − Ẽ2)
2
]

+
V1 V2

ω3
2

[
(Ẽ1 − E ′

1)
2 + (Ẽ2 − E ′

2)
2
]

× 1

Ei − Ẽ1 − Ẽ2

2
V2 V3

ω1

+ V1 V2 V3 V4
Ei − Ẽ1 − Ẽ2

ω2
1 ω

2
2

, (B2)

where Ei = E1+E2 = E′
1+E′

2 is the initial energy of the

system, Ẽj and qi (ωi) denote, respectively, the energies
of the intermediate nucleons and momenta (energies) of
the exchanged pions as indicated in panels (a) and (b)
of Fig. 5, and an integral over an unconstrained pion
momentum is understood. In the equation above, and
through the remainder of this appendix, we denote with
Vi the vertices entering the diagrams. These vertices are
implied by the interaction Hamiltonians listed in Sec. II.
For example, the V1 vertex shown in panel (a) of Fig. 5
is associated with the HπN Hamiltonian, and reads

V1 = −i gA
Fπ

σ1 · q2√
2ω2

τ1,b , (B3)

where b specifies the isospin component of the pion.
The last term in Eq. (B2) is the N3LO recoil-corrected

reducible contribution to the NN potential mentioned
earlier, corresponding to the prescription ν = 0. After
resolving the spin-isospin structure implied by the ver-
tices, one can easily recognize that the first two terms

in T
(3)
2π,red represent iterations of the LS equation with

the static, v
(0)
π , and N2LO, v

(2)
π (ν = 0), OPE potentials

defined in Eq. (17) and (16), respectively, namely

T
(3)
2π, red(ν = 0) = v(0)π G0 v

(2)
π (ν = 0) + v(2)π (ν = 0)G0 v

(0)
π

+V1 V2 V3 V4
Ei − Ẽ1 − Ẽ2

ω2
1 ω

2
2

, (B4)

where, for brevity, the dependence upon nucleon energies
and pion momenta is not explicitly indicated. It can

(c) (d)

˜
E2

V2

V4

V3

˜
E2
′

(a) (b)

V1

˜
E1

˜
E1

1

2

FIG. 5: Diagrams illustrating the recoil-corrected reducible,
panels (a) and (b), and irreducible, panels (c) and (d), ampli-
tudes contributing to the NN potential at N3LO. Pion lines
with crossed (full) circle indicate that only the next-to-leading
Q 0 (next-to-next-to-leading Q 1) term in the expansion of en-
ergy denominators, Eq. (8), are retained in the corresponding
amplitudes. See text for explanation. In panels (b), (c), and
(d), the crossed or full circles can be either on pion one (as
shown in the figure) or on pion two. Only one among the
possible time orderings is shown. Notation is as in Fig. 2.

be inferred from Fig. 5. If the prescription ν = 1 is

considered for v
(2)
π (ν), the box reducible amplitude at

N3LO reads instead

T
(3)
2π, red(ν = 1) = v(0)π G0 v

(2)
π (ν = 1) + v(2)π (ν = 1)G0 v

(0)
π

+V1 V2 V3 V4

[
2
ω2
1 + ω2

2

ω3
1 ω

3
2

+
1

ω2
1 ω

2
2

]

×
(
Ei − Ẽ1 − Ẽ2

)
, (B5)

with v
(2)
π (ν = 1) as given in Eq. (18), provided the rele-

vant nucleon energies are considered.

To complete the evaluation of the box amplitude, we
need the expression of the irreducible contribution, which
is given by

T
(3)
2π, irr = −V1 V2 V3 V4

Ei − Ẽ1 − Ẽ2

ω2
1 ω

2
2

−2V1 V4 V3 V2

[
E1 − Ẽ1 + E ′

2 − Ẽ ′
2

ω3
1 ω2

+
E ′

1 − Ẽ1 + E2 − Ẽ ′
2

ω1 ω3
2

]
, (B6)

where, referring to Fig. 5, the first term is from the (irre-
ducible) direct diagrams of the type shown in panel (c),
while the last two are generated by the diagrams of the
type shown in panel (d). The sum of the reducible and
irreducible pieces can then be written as

T
(3)
2π (ν) = v(0)π G0 v

(2)
π (ν) + v(2)π (ν)G0 v

(0)
π + v

(3)
2π (ν) ,

(B7)

where v
(3)
2π (ν) for ν = 0, 1 are as given in Eqs. (19)

and (20).
An analysis similar to that outlined above leads to the

following expressions for the “triangle” TPE, panel (b) of
Fig. 4, and OPE contact, panels (c) and (d), amplitudes
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1
V1 V2

2

1
Vγπ

(d)(c) (f)(e)(b)(a)

VγN

V2

V1

Ē1
Ē1
′

FIG. 6: Diagrams illustrating recoil-corrected OPE amplitudes contributing to the charge operator at N3LO. Only one among
the possible time orderings is shown. Notation is as in Figs. 2 and 5.

and corresponding potentials:

T
(3)
2π,△ = v

(3)
2π,△ = − g2A

F 4
π

τ1 · τ2
∫

1

ω2
1 ω

2
2

(q1 · q2

+ iσ1 · q2 × q1)(E1 + E ′
1 − 2 Ẽ1) + 1 ⇋ 2, (B8)

T
(3)
CT, c(ν) = v

(0)
CT G0 v

(2)
π (ν) + v(2)π (ν)G0 v

(0)
CT

+ v
(3)
CT, c(ν) , (B9)

T
(3)
CT, d = v

(3)
CT, d =

3 g2A
2F 2

π

∫
σ1 · q1 v

(0)
CT σ1 · q1

ω4
1

×(E1 − Ẽ1 + E′
1 − Ẽ′

1) + 1 ⇋ 2 , (B10)

where

v
(0)
CT = CS + CT σ1 · σ2 , (B11)

is the contact potential at LO, while the N3LO potential
arising from the diagrams of panel (c) with the choices

ν = 0, 1 for the OPE potential v
(2)
π (ν), is given by

v
(3)
CT, c(ν = 0) =

g2A
2F 2

π

τ1 · τ2
∫

σ1 · q1 v
(0)
CT σ2 · q1

ω4
1

× (E2 − Ẽ2 + E′
1 − Ẽ′

1) + 1 ⇋ 2 , (B12)

v
(3)
CT, c(ν = 1) = v

(3)
CT, c(ν = 0) +

∫
v
(0)
CT v

(0)
π

2ω2
1

(Ei − Ẽ1 − Ẽ2)

+

∫
v
(0)
π v

(0)
CT

2ω2
1

(Ei − Ẽ′
1 − Ẽ′

2) , (B13)

and the nucleon energies and pion momenta are defined
in Fig. 4.

2. OPE Charge Operators at N3LO

Before turning our attention to the N4LO corrections,
we outline the derivation of the N3LO OPE charge op-
erators whose expressions have been given in Eqs. (42)–
(44). As discussed in Sec. IV, these operators vanish in
the static limit (that is, at N2LO), while at N3LO they
are given by amplitudes associated with the diagrams of
the type illustrated in Fig. 6. In particular, the charge

operator in Eq. (42), which we denote as ρ
(0)
γπ for later

convenience, is obtained as

ρ(0)γπ = − 4
V1 V2 Vγπ

ω1 ω2
(E1 − E ′

1 − E2 + E ′
2) . (B14)

The vertex Vγπ is proportional to that associated with
the interaction Hamiltonian Hγπ in Sec. II,

−i e ǫabz
ω1 − ω2√
4ω1 ω2

, (B15)

where the pion energies are as indicated in panel (a) of
Fig. 6. It is convenient to factor out the energy numerator
(ω1 − ω2), and define Vγπ as

Vγπ = −i e ǫabz
1√

4ω1 ω2
. (B16)

Next, we consider the amplitude associated with the di-
agrams shown in panels (c)–(f) of Fig. 6:

T
(0)
γd (ν) =

[
v(2)π (ν)G0 ρ

(−3) + ρ(−3) G0 v
(2)
π (ν)

]

+ρ
(0)
d (ν) , (B17)

where ρ(−3) is the LO charge operator given in Eq. (36),

while ρ
(0)
d (ν) is the N3LO OPE contribution defined in

Eqs. (43)–(44) for ν = 0, 1. The latter is written as

ρ
(0)
d (ν) = ρ

(0)
γN (ν) + ρ

(0)
Nγ(ν) + 1 ⇋ 2 , (B18)

where ρ
(0)
γN comes from the diagrams shown in panels (c)

and (d) of Fig. 6, while ρ
(0)
Nγ is associated with those of

panels (e) and (f). For ν = 0, we find

ρ
(0)
γN(ν = 0) =

V1 V2 VγN

ω3
1

(E ′
1 − E1 + E2 − E ′

2) , (B19)

ρ
(0)
Nγ(ν = 0) = −VNγ V1 V2

ω3
1

(E
′

1 − E1 + E2 − E ′
2) ,(B20)

while for ν = 1 we obtain

ρ
(0)
γN(ν = 1) = 2

V1 V2 VγN

ω3
1

(E2 − E ′
2) , (B21)

ρ
(0)
Nγ(ν = 1) = −2 VγN V1 V2

ω3
1

(E2 − E ′
2) . (B22)

The energies E1 and E
′

1 are as indicated in panels (c)
and (e) of Fig. 6, respectively, and VγN = e eN,1 is the
vertex implied by the interaction Hamiltonian HγN at
LO.
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˜
E1 3

2

1

(a) (b) (c) (d) (e)

1

2

3

(f) (g) (h) (i) (j)

V2

V3

V3
V4

V1

V2

V1 V4

Vγπ

˜
E1
′ ˜

E2
′

˜
E2

FIG. 7: Diagrams illustrating the static, panels (d), (e), (i),
and (j), and recoil-corrected, remaining panels, diagrams as-
sociated with the N4LO contribution shown in panel (c) of
Fig. 3. Only one among the possible time orderings is shown.
Notation is as in Figs. 2 and 5.

3. N4LO Charge Operators

We can now proceed to sketch the derivation of the
charge operators illustrated in panels (c)–(j) of Fig. 3.
The one-loop corrections of panels (c)–(e) involve a γππ
electromagnetic vertex, while a γNN interaction enters
those of panels (f)–(j). We give details on the derivation

of the operators ρ
(1)
c and ρ

(1)
h as representatives of these

classes of diagrams.
First, we consider the pion-in-flight term. The dia-

grams contributing at N4LO are shown in Fig. 7. As dia-
grammatically shown in the figure, the irreducible contri-
butions, panels (d), (e), (i), and (j), are evaluated in the
static limit, while next-to-leading order terms in the ex-
pansion of energy denominators are retained in the eval-
uation of the reducible contributions. We write the total
amplitude as a sum of these, that is

T (1)
γc = T

(1)
γc, red + T

(1)
γc, irr . (B23)

The reducible and irreducible contributions are given by

T
(1)
γc, red = v(0)π G0 ρ

(0)
γπ + ρ(0)γπ G0 v

(0)
π

+
2 (ω1 − ω3)

ω1 ω2 ω3 (ω1 + ω3)
[V1 V2 , V3 V4]Vγπ , (B24)

T
(1)
γc, irr = −

2 (ω1 − ω3)

ω1 ω2 ω3 (ω1 + ω3)
[V1 V2 , V3 V4]Vγπ

− 8

ω1 ω2 ω3
[V1 V4 , V3 V2]Vγπ , (B25)

where [. . . , . . . ] denotes a commutator and ρ
(0)
γπ is the

N3LO OPE charge operator defined in Eq. (B14). In
Eq. (B24), the terms multiplied by the spin-isospin com-
binations V1 V2 V3 V4 Vγπ and V3 V4 V1 V2 Vγπ come from
the diagrams shown in panels (a)–(c) and (f)–(h), respec-
tively, whereas in Eq. (B25) the first term results from
the evaluation of the diagrams shown in panels (d) and
(i) of Fig. 7 and the second one is from those illustrated

in panels (e) and (j). The total amplitude is then given
by

T (1)
γc = v(0)π G0 ρ

(0)
γπ + ρ(0)γπ G0 v

(0)
π + ρ(1)c , (B26)

where

ρ(1)c = − 8

ω1 ω2 ω3
[V1 V4 , V3 V2] Vγπ , (B27)

which, after resolving the spin-isospin structure implied
by the vertices, reduces to the N4LO charge operator in
Eq. (47).
We now turn our attention to the one-loop correction

shown in panel (h) of Fig. 3. For this contribution, we
distinguish among three classes of diagrams depending
on whether the photon is absorbed before pion one, class
A, after pion one, class B, or after pion two, class C.
These classes are represented in Fig. 8—the vertices and
kinetic energies of intermediate nucleons are as indicated
in the figure.
We start off by discussing the result obtained for the

class A amplitude. In Fig. 9 we show the diagrams con-
tributing at N4LO. The irreducible diagrams, panels (f)
and (g) of this figure, are evaluated in the static limit.
The N4LO recoil-corrected contributions associated with
the single (double) reducible diagrams, panels (c)–(e) of
Fig. 9 [panels (a) and (b)], are obtained by retaining Q 0

(Q 1) terms in the expansions of energy denominators in-
volving pions. The N4LO amplitude is then written as

T
(1)
γA (ν) = T

(1)
γA, red(ν) + TγA, irr , (B28)

where

T
(1)
γA, red(ν = 0) =

[
v(0)π G0 v

(2)
π (ν = 0)G0 ρ

(−3)

+ v(2)π (ν = 0)G0 v
(0)
π G0 ρ

(−3)

+ v
(3)
2π (ν = 0)G0 ρ

(−3) + v(0)π G0 ρ
(0)
γN(ν = 0)

]

+

[
2

ω3
1 ω2

− 1

ω1 ω2(ω1 + ω2)2
− 1

ω2
1 ω2(ω1 + ω2)

]

×V1 V2 V3 V4 VγN

+

[
1

ω1 ω2 (ω1 + ω2)2
− 2

ω3
1 ω2

− 2

ω1 ω3
2

]

×V1 V4 V3 V2 VγN + 1 ⇋ 2 . (B29)

The N4LO LS terms arising from the reducible diagrams
are listed in the first two lines of the equation above,

where v
(0)
π , v

(2)
π (ν = 0) and v

(3)
2π (ν = 0) are the LO,

N2LO and N3LO components of the NN potential given
in Eqs. (17), (16), and (19), respectively, while the ρ(−3)

and ρ
(0)
γN charge operators have been defined in Eqs. (36)

and (B19). The last two terms in Eq. (B29) constitute
the N4LO recoil-corrected contribution associated with
the reducible diagrams. In particular, the second term
is generated by the direct reducible diagrams of panels
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(a)

˜
E2
′

2

1

˜
E2

˜
E1

V2
V1

V3 V4
Ē1

CLASS A

E∗1

˜
E2

˜
E1VγN

CLASS B

˜
E2
′

(b)

Ē1
′

˜
E1 ˜

E2
˜
E2
′

CLASS C

(c)

FIG. 8: Classes of diagrams associated with the one-loop con-
tribution illustrated in panel (h) of Fig. 3. Notation is as in
Fig. 2.

(a)–(c) and (e), while the last one is obtained from the
contributions of type (d).
The irreducible amplitude from diagrams in panels (f)

and (g) of Fig. 9 reads

T
(1)
γA, irr =

[
1

ω1 ω2(ω1 + ω2)2
+

1

ω2
1 ω2 (ω1 + ω2)

]

× V1 V2 V3 V4 VγN

+

[
2

ω1 ω3
2

− 1

ω1 ω2(ω1 + ω2)2

]

× V1 V4 V3 V2 VγN + 1 ⇋ 2 , (B30)

and combining Eqs. (B29) and (B30) leads to a total
amplitude, which can be written as

T
(1)
γA (ν) = v(0)π G0 v

(2)
π (ν)G0 ρ

(−3)

+ v(2)π (ν)G0 v
(0)
π G0 ρ

(−3) + v
(3)
2π (ν)G0 ρ

(−3)

+ v(0)π G0 ρ
(0)
γN (ν) + ρ

(1)
A (ν) + 1 ⇋ 2 , (B31)

where

ρ
(1)
A (ν = 0) =

2

ω3
1 ω2

V1 V3 [V2 , V4] VγN . (B32)

The derivation of the class C amplitude (see Fig. 8) is
analogous to that described above. We find:

T
(1)
γC (ν) = ρ(−3)G0 v

(0)
π G0 v

(2)
π (ν)

+ ρ(−3)G0 v
(2)
π (ν)G0 v

(0)
π + ρ(−3) G0 v

(3)
2π (ν)

+ ρ
(0)
Nγ(ν)G0 v

(0)
π + ρ

(1)
C (ν) + 1 ⇋ 2 , (B33)

where ρ
(0)
Nγ is the OPE charge operator defined in

Eq. (B20), and

ρ
(1)
C (ν = 0) =

2

ω1 ω3
2

VγNV1 V3 [V2 , V4] . (B34)

Class B of box diagrams at N4LO are shown in Fig. 10.
The reducible amplitude, associated with the diagrams in
panels (a)–(d), is found to be

T
(1)
γB, red(ν = 0)= v(0)π G0 ρ

(−3)G0 v
(2)
π (ν = 0)

+ v(2)π (ν = 0)G0 ρ
(−3) G0 v

(0)
π

+ρ
(0)
γN(ν = 0)G0 v

(0)
π + v(0)π G0 ρ

(0)
Nγ(ν = 0) (B35)

−
(
2
ω2
1 + ω2

2

ω3
1 ω

3
2

+
1

ω2
1 ω

2
2

)
V1V2VγNV3V4+1 ⇋ 2 ,

while the irreducible amplitude, corresponding to the di-
agrams in panels (e) and (f), amounts to

T
(1)
γB, irr =

1

ω2
1 ω

2
2

V1 V2 VγN V3 V4

+ 2
ω2
1 + ω2

2

ω3
1 ω

3
2

V1 V4 VγN V3 V2 + 1 ⇋ 2 ,(B36)

and the class B amplitude is then given by

T
(1)
γB (ν) = v(0)π G0 ρ

(−3) G0 v
(2)
π (ν)

+ v(2)π (ν)G0 ρ
(−3) G0 v

(0)
π

+ ρ
(0)
γN(ν)G0 v

(0)
π + v(0)π G0 ρ

(0)
Nγ(ν)

+ ρ
(1)
B (ν) + 1 ⇋ 2 , (B37)

where

ρ
(1)
B (ν = 0) = − 2

ω2
1 + ω2

2

ω3
1 ω

3
2

V1 VγN V3 [V4 , V2] . (B38)

Finally, the total amplitude associated with the dia-
gram shown in panel (h) of Fig. 3 is given by the sum of
the A, B, and C amplitudes, that is

T
(1)
h (ν) = T

(1)
γA (ν) + T

(1)
γB (ν) + T

(1)
γC (ν)

=

[ [
ρ(−3) G0 v

(0)
π G0 v

(2)
π (ν) + permutations

]

+
[
ρ(−3) G0 v

(3)
2π (ν) + v

(3)
2π (ν)G0 ρ

(−3)
]
+ 1 ⇋ 2

]

+
[
ρ
(0)
d (ν)G0 v

(0)
π + v(0)π G0 ρ

(0)
d (ν)

]

+ ρ
(1)
h (ν), (B39)

where ρ
(0)
d is defined as in Eq. (B18), while

ρ
(1)
h (ν) = ρ

(1)
A (ν) + ρ

(1)
B (ν) + ρ

(1)
C (ν) + 1 ⇋ 2 . (B40)

For ν = 0, ρ
(1)
A , ρ

(1)
B , and ρ

(1)
C are as given in Eqs. (B32),

(B38), and (B34), respectively, and carrying out the spin-
isospin algebra leads to Eq. (50). Similarly, for ν = 1 we
find:

ρ
(1)
A (ν = 1) = ρ

(1)
A (ν = 0) +

2

ω1 ω3
2

V1 V2 V3 V4 VγN , (B41)

ρ
(1)
B (ν = 1) = ρ

(1)
B (ν = 0) , (B42)

ρ
(1)
C (ν = 1) = ρ

(1)
C (ν = 0)− 2

ω1 ω3
2

VγN V1 V2 V3 V4 , (B43)
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(a) (b) (c) (d) (c)(e) (f) (g)

FIG. 9: Diagrams illustrating the static, panels (f) and (g), and recoil-corrected, remaining panels, class A diagrams contributing
at N4LO. In panels (b)–(e), the crossed and full circles can be either on pion one (as shown in the figure) or on pion two. Only
one among the possible time orderings is shown. Notation is as in Figs. 2 and 5.

from which it follows that

ρh(ν = 1) = ρh(ν = 0)

+

[
2

ω1 ω3
2

[V1 V2 V3 V4 , VγN ] + 1 ⇋ 2

]
, (B44)

and simplifying the spin-isospin structures leads to the

operator ρ
(1)
h (ν = 1) given in Eq. (51).

Below we list the expressions for the amplitudes as-
sociated with the remaining N4LO one-loop corrections
illustrated in Fig. 3, in particular, referring to panels (d),
(e), (g), (i), and (j) of this figure (type (f) operator van-
ishes as pointed out in Sec. V) we obtain:

T
(1)
d =

[
v
(0)
CT G0 ρ

(0)
γπ + ρ(0)γπ G0 v

(0)
CT

]
, (B45)

T (1)
e =ρ(1)e , (B46)

T (1)
g =

[
v
(3)
2π,△ G0 ρ

(−3) + ρ(−3) G0 v
(3)
2π,△ + 1 ⇋ 2

]

+ρ(1)g , (B47)

T
(1)
i (ν)=

[[
ρ(−3) G0 v

(0)
CT G0 v

(2)
π (ν) + permutations

]

+
[
ρ(−3) G0 v

(3)
CT, c(ν) + v

(3)
CT, c(ν)G0 ρ

(−3)
]
+ 1 ⇋ 2

]

+
[
ρ
(0)
d (ν)G0 v

(0)
CT + v

(0)
CT G0 ρ

(0)
d (ν)

]

+ρ
(1)
i (ν) , (B48)

T
(1)
j =

[
v
(3)
CT, dG0 ρ

(−3) + ρ(−3) G0 v
(3)
CT, d + 1 ⇋ 2

]

+ρ
(1)
j , (B49)

where ρ
(1)
e , ρ

(1)
g , and ρ

(1)
j are given in Eqs. (48), (49),

and (53), respectively, while ρ
(1)
i with ν = 0, 1 vanishes.

In the equations above the LS terms involve the LO con-
tact, Eq. (B11), and N2LO OPE components of the NN
potential, Eqs. (16) and (18), as well as the N3LO po-
tential v(3), derived in Sec. B 1. In addition, the ρ(−3) is
defined in Eq. (36), while the N3LO OPE charge opera-
tors, ρ(0), are listed in Sec. B 2.

Appendix C: The N4LO charge operators in r-space

The configuration-space representations of the charge
operators at order n = −3, . . . , 0 are well known [18].

Here we obtain those corresponding to ρ(1) for ν = 0

only. Note that ρ
(1)
a , ρ

(1)
d , and ρ

(1)
i (ν = 0) vanish. Next,

consider

ρ
(1)
b (q) =e

2 g2A
F 4
π

τ2,z

∫

k1,k2

eik1·r1 eik2·r2 δ(k1+k2− q)

×
∫

q1,q2

q1 · q2

ω2
1 ω

2
2

δ(q1+q2−k1) + 1 ⇋ 2

= −e 2 g
2
A

F 4
π

τ2,z e
iq·r2 [∇fπ(r)] · [∇fπ(r)]

+ 1 ⇋ 2 , (C1)

where in the second line r denotes the relative position
r = r1 − r2 of the two nucleons, and

fπ(r) =

∫

p

eip·r
1

p2 +m2
π

=
1

4π

e−mπr

r
. (C2)

Of course, the expression above is ill-behaved in the limit
of vanishing internucleon separations, and needs to be
regularized. This can be accomplished by replacing

fπ(r)→ fΛ(r) =

∫

p

eip·r
CΛ(p)

p2 +m2
π

, (C3)

and in applications so far [22] the cutoff function has been
taken as CΛ(p) = exp(−p4/Λ4). Similarly, we find:

ρ(1)c =−e 2 g
4
A

F 4
π

[
2 (τ1,z + τ2,z)

×
[
ǫαβγǫλµν σ1,α σ2,λ + δβγδµν

]

−(τ1 × τ2)z
[
δβγ ǫλµν σ2,λ − ǫαβγ δµν σ1,α

]]

×
[
∂1,β∂2,µ e

iq·Rhπ(r)
]
[∂γ∂νfπ(r)] , (C4)

ρ(1)e =−e 2 g
2
A

F 2
π

(τ1,z + τ2,z) e
iq·R δ(r) I(q) (C5)

ρ(1)g =e
2 g2A
F 4
π

τ2,z e
iq·r1 [∇fπ(r)] · [∇fπ(r)]

+ 1 ⇋ 2 , (C6)

ρ
(1)
h (ν = 0) =−e 2 g

4
A

F 4
π

eiq·R
[
2 τ1,z ǫαβγǫλµν σ1,α σ2,λ

+2 τ2,z δβγδµν − (τ1 × τ2)z ǫαβγ δµν σ1,α

]

×
[
∂β∂µf̃π(r)

]
[∂γ∂νfπ(r)] + 1 ⇋ 2 , (C7)

ρ
(1)
j =e

2 g2A
F 2
π

τ1,z e
iq·R δ(r) I(0) + 1 ⇋ 2 , (C8)
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(a) (b) (c) (d) (e) (f)

FIG. 10: Diagrams illustrating the static, panels (e) and (f), and recoil-corrected, remaining panels, class B diagrams con-
tributing at N4LO. In panels (b)–(d), the crossed and full circles can be either on pion one (as shown in the figure) or on pion
two. Only one among the possible time orderings is shown. Notation is as in Figs. 2 and 5.

where R = (r1+r2)/2 denotes the two-nucleon center-of-

mass position, the functions hπ(r) and f̃π(r) are defined
as

hπ(r) =
1

8π

∫ 1/2

−1/2

dy ei y q·r e
−L r

L
,

f̃π(r) =

∫

p

eip·r
1

(p2 +m2
π)

2
=

1

8π

e−mπr

mπ
, (C9)

where

L =
√
m2

π + q2 (1/4− y2) , (C10)

the gradients (or partial derivatives) ∇, ∇1, and ∇2 act
on the variables r, r1, and r2, respectively, and

I(q) =

∫
dx e−iq·x

[
CS δαβ − CT

(
2 σ1,α σ2,β

− σ1 · σ2 δαβ
)]

[∂αfπ(x)] [∂βfπ(x)] , (C11)

Regularized expressions are obtained via the replace-
ments

hπ(r)→ hΛ(r) =

∫ 1/2

−1/2

dy ei y q·r

∫

p

eip·r

× CΛ(p)

(p2 + L2)2
, (C12)

f̃π(r)→ f̃Λ(r) =

∫

p

eip·r
CΛ(p)

(p2 +m2
π)

2
, (C13)

δ(r)→ gΛ(r) =

∫

p

eip·rCΛ(p) . (C14)

Lastly, we observe that i) ρ
(1)
e + ρ

(1)
j is proportional to

I(q) − I(0), and this quantity remains finite for any q
value; ii) the requirement ρ(1) = 0 at q = 0 is satisfied
also when the cutoff Λ is included.
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