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We analyze the dispersion correction to elastic parity violating electron-proton scattering due to
γZ exchange. In particular, we explore the theoretical uncertainties associated with modeling contri-
butions of hadronic intermediate states. Taking into account constraints from low- and high-energy,
parity-conserving electroproduction measurements, choosing different models for contributions from
the non-resonant processes, and performing the corresponding flavor rotations to obtain the elec-
troweak amplitude, we arrive at an estimate of the uncertainty in the total contribution to the
parity-violating asymmetry. At the kinematics of the Q-Weak experiment, we obtain a correction to
the asymmetry equivalent to a shift in the proton weak charge of (0.0054± 0.0020). This should be
compared to the value of the proton’s weak charge of QpW = 0.0713± 0.0008 that includes Standard
Model contributions at tree level and one-loop radiative corrections. Therefore, we obtain a new
Standard Model prediction for the parity-violating asymmetry in the kinematics of the Q-Weak ex-
periment of (0.0767± 0.0008± 0.0020γZ). The latter error leads to a relative uncertainty of 2.8% in
the determination of the proton’s weak charge, and is dominated by the uncertainty in the isospin
structure of the inclusive cross section. We argue that future parity-violating inelastic ep asym-
metry measurements at low-to-moderate Q2 and W 2 could be exploited to reduce the uncertainty
associated with the dispersion correction. Because the corresponding shift and error bar decrease
monotonically with decreasing beam energy, a determination of the proton’s weak charge with a
lower-energy experiment or measurements of “isotope ratios” in atomic parity-violation could pro-
vide a useful cross check on any implications for physics beyond the Standard Model derived from
the Q-Weak measurement.

PACS numbers:

I. INTRODUCTION

Precise measurements of low-energy observables can provide powerful probes of physics beyond the Standard Model
that complement high energy collider studies [1, 2]. In particular, measurements of parity-violating (PV) observables
in atomic physics and electron scattering have provided key tests of the neutral weak current sector of the Standard
Model and constrained possible new physics in this sector[2, 4–6]. In this work, we consider parity-violating (PV)
elastic scattering of longitudinally polarized electrons from hydrogen, which is the subject of the Q-Weak experiment
at the Jefferson Lab (JLab) [7]. This experiment draws on a rich history of parity-violating electron scattering (PVES)
at various facilities and aims to provide the most precise determination of QpW , the weak charge of the proton, ever
made.

In PVES, the weak charge is operationally defined through the forward scattering limit of the PV asymmetry:

APV =
σ+ − σ−
σ+ + σ−

=
GF t

4
√

2παem

WPV

WEM
(1)

where the ratio of response functions is defined below. Here and in the rest of the article, GF denotes the Fermi
constant, as taken from the muon lifetime (often denoted by Gµ). The weak charge – defined as a static property of
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the proton – is then the leading term the expansion of the ratio WPV/WEM in powers of t = −q2:

QpW = lim
t→0

WPV

WEM

∣∣∣∣∣
E=0

, (2)

where the reason for specifying zero beam energy E will become apparent below. In the one-boson exchange (OBE)
approximation, the weak charge is just given by

QpW

∣∣∣∣∣
OBE

= −2 [2C1u + C1d] , (3)

where the C1q characterize the effective four-fermion parity-violating electron-quark interaction

L =
GF√

2

[
ēγµγ5e

(
C1uūγµu+ C1dd̄γµd

)
+ ēγµe

(
C2uūγµγ5u+ C2dd̄γµγ5d

)]
. (4)

In the Standard Model, it is possible to make precise predictions for the C1q, including the effects of O(α) elec-
troweak radiative corrections [3, 6, 8]. These corrections include the effects of one-loop contributions to the gauge
boson and fermion propagators and gauge boson-fermion vertices. Ultraviolet (UV)divergences are removed through
renormalization, and in what follows we will use the modified minimal subtraction (MS ) scheme for doing so.

Additional, UV-finite corrections arise from the two-boson exchanges (“box graphs”): ZZ, W+W−, γZ and γγ.
Those involving two heavy vector bosons are dominated by loop momenta of order MZ and are properly included
in the radiatively-corrected C1q coefficients. On the other hand, the box graph corrections involving one or more
photons are sensitive to low-momentum scales where target-dependent hadronic structure effects may be significant.
In what follows, we focus on the Zγ box correction. For a review of recent work on the γγ corrections, see Ref. [10].

Recently, the γZ box graph contribution has been the subject of renewed scrutiny. In Refs. [3, 6, 9], the short-
distance part of this correction was computed, confirming the earlier computation of Ref. [8]. It carries a logarithmic
dependence on the hadronic scale, Λhad, with the latter requiring the presence of a “low energy constant” CγZ(Λhad)
to yield a result independent of the hadronic matching scale. The authors of Ref. [3, 6] assigned a generous error to
CγZ(Λhad) associated with the difficult-to-compute long-distance hadronic effects.

The authors of Ref. [11] subsequently observed that there exists an additional contribution from the γZ box graph
that grows with the electron beam energy and that is independent of the hadronic cutoff parameter1. Given the
energy-dependence of this “dispersion correction”, it is more appropriate to consider it as a new term in the PV
asymmetry than as a contribution to the weak charge that is nominally a static property of the proton. Nevertheless,
in the forward limit of Eq. (2), its effect is to shift the apparent value of QpW . Moreover, unlike the short-distance

and CγZ(Λhad) terms that are suppressed by 1−4 sin2 θW ≈ 0.07, the energy-dependent correction is not accidentally
suppressed. For the energy of the Q-Weak experiment, the authors of Ref. [11] estimated that the correction was
several percent, raising the possibility that the estimated theoretical uncertainty in the PV asymmetry could be larger
than given in Refs. [3, 6].

A follow-up study [15] repeated the computation of Refs. [11, 16] using a somewhat different hadronic model
framework and drawing upon recent structure function measurements carried out at the Jefferson Laboratory. These
authors argued that the expressions used in Ref. [11] contained numerical errors but nonetheless obtained a quantita-
tively similar result for the size of the correction. An estimate of the uncertainty in the correction was also provided,
suggesting that the theoretical uncertainty associated with the energy-dependent term is well below the uncertainty
quoted in Refs. [3, 6]. Recently, another study of this correction was reported in Ref. [17]. The latter work employed
yet another parametrization of virtual photoabsorption data from Jefferson Lab, and a different treatment of the
isospin structure and of the uncertainty was applied. The results is consistent with that of Ref. [15] with an error bar
that is also smaller than that of Refs. [3, 6]. We will review these works in greater detail below. For the moment,
we display in Table I the results of the previously mentioned studies along with the results of this work. While all of
the recent results (ours and Refs. [15, 17]) are consistent within quoted error bars, we obtain a larger uncertainty by
roughly a factor of two. As we discuss below, this larger theory uncertainty results from taking into account hadronic
model-dependence in computing the γZ dispersion correction.

1 For related work considering the effects of the γZ box graph away from the forward limit – relevant to the strange quark form factor
determinations – see Refs. [12–14].
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Ref. [11] Ref. [15] Ref. [17] This work

(3 ± 3)10−3 (4.7+1.1
−0.4)10−3 (5.7 ± 0.9)10−3 (5.4 ± 2.0)10−3

TABLE I: Estimates for the dispersion correction Re�γZ obtained in various works, as indicated in the Table. Originally,
Gorchtein and Horowitz in [11] only quoted the value of Re �γZ ≈ 6%, as calculated relative to 1 − 4 sin2 θW (0) ≈ 0.05. This
corresponds to the number given in Table.

Obtaining a robust theoretical prediction for APV in the Standard Model is essential for the proper interpretation
of the asymmetry in terms of possible contributions from physics beyond the Standard Model. In light of the recent
history and disagreements in the literature on the question of the γZ box correction, we revisit here the computations
of Refs. [11, 15–17]. Our goal is three-fold. First, we seek to clarify the apparent disagreements about the numerical
factors in the analytic expressions for the energy-dependent part of the γZ correction. Second, we attempt to provide
an estimate of the theoretical uncertainty associated with hadronic modeling required for its computation. While the
study of Ref. [15] included an uncertainty associated with the experimental data used as input for the calculation, no
estimate of the theoretical error related to the choice of model framework was given. Finally, we discuss additional
experimental input that would be useful to improve the reliability of the calculated correction.

The remainder of our treatment of these points is organized as follows. Section II outlines the elastic electron-
nucleon scattering kinematics and observables that are analyzed to one-loop order. In Section III, we derive a forward
dispersion relation for the dispersion corrections. In Section IV, we discuss the input in these sum rules, perform
an isospin decomposition of the inclusive electroproduction data and isospin-rotate these data in order to obtain the
inclusive parity violating data. We combine different data sets to obtain an estimate of the uncertainty associated
with such rotation in the flavor space. Detailed discussion of the isospin rotation of the resonant contributions is
reported in Appendix A. In Section V, we present our results for the dispersion correction �γZ and the respective
theory uncertainty at the kinematics of the QWEAK experiment. Section VI is dedicated to the study of the t-
dependence of the dispersion correction that is important for translating the value obtained from dispersion relation
in the exact forward direction to the experimental kinematics. In Section VII, we compare the existing calculations of
the energy-dependent dispersion γZ correction to the weak charge of the proton in detail. We close the article with
a short summary in Section VIII.

II. PVES IN THE FORWARD SCATTERING REGIME

We consider elastic scattering of massless electrons off a nucleon, e(k) +N(p)→ e(k′) +N(p′), in presence of parity
violation (and in absence of CP -violation). The scattering amplitude T can be cast in the following form involving
six scalar amplitudes fi(ν, t), i = 1, 2, ..., 6,

T =
4παem
−t

ū(k′)γµu(k)N̄(p′)

[
f1γ

µ + f2iσ
µα ∆α

2M
+ f3

PµK/

M2

]
N(p)

− GF

2
√

2
ū(k′)γµγ5u(k)N̄(p′)

[
f4γ

µ + f5iσ
µα ∆α

2M

]
N(p) − GF

2
√

2
f6 ū(k′)γµu(k)N̄(p′)γµγ5N(p), (5)

where only electromagnetic and weak neutral currents are considered. GF stands for the Fermi constant, as taken
from the muon lifetime, according to the MS scheme. The amplitudes f1,2,3 are parity conserving (PC), and f4,5,6
are explicitly parity violating (PV). Above, k(k′) stands for the initial (final) electron momenta, and p(p′) for the
initial (final) nucleon momenta, respectively, and M denotes the mass of the nucleon (we take Mn ≈ Mp ≡ M). All

six amplitudes are functions of energy ν = PK
M (with K = k+k′

2 and P = p+p′

2 ) and the elastic momentum transfer is

t = ∆2 < 0, with ∆ = k− k′ = p′− p. At tree level (one boson exchange, OBE) and to leading order in GF and αem,
the amplitudes fi reduce to the electromagnetic and weak form factors of the nucleon (the index N takes values p, n
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denoting proton and neutron, respectively),

fN,OBE1 (ν, t) = FγN1 (t)

fN,OBE2 (ν, t) = FγN2 (t)

fN,OBE3 (ν, t) = 0

fN,OBE4 (ν, t) = geAFZN1 (t)

fN,OBE5 (ν, t) = geAFZN2 (t)

fN,OBE6 (ν, t) = geVG
e
A,N (t) . (6)

Above, geV = −(1 − 4 sin2 θW ) and geA = 1. Radiative corrections induce terms δfi ∼ αem, leading generically to

fi = fOBEi (t) + δfi(ν, t). We denote the usual Dirac (Pauli) form factors by FγN1,2 , respectively, and the nucleon axial

form factor at tree level by GeA,N . Similarly, FZN1,2 stand for the form factors describing the vector coupling of the Z
to the nucleon. One introduces the conventional combinations,

GγM = fN1 + fN2 ,

GγE = fN1 − τfN2 ,

GZM =
1

geA
(fN4 + fN5 ) ,

GZE =
1

geA
(fN4 − τfN5 ), (7)

with τ = −t
4M2 . In absence of radiative corrections, these amplitudes reduce to the electroweak Sachs form factors

Gγ, ZE,M . In terms of these generalized form factors, the unpolarized cross section on a nucleon target N can be written
as

dσN

dΩLab
=

4α2
em cos2 θ2
t2

E′
3

E

τσNR
ε(1 + τ)

, (8)

with θ the electron Lab scattering angle, E(E′) the incoming (outgoing) electron Lab energy, and ε = (1 + 2(1 +
τ) tan2 θ

2 )−1 the virtual photon longitudinal polarization parameter. The reduced cross section σNR , up to and including
terms of order αem, reads

σNR = |GγM |
2 +

ε

τ
|GγE |

2 + 2ε
ν

M
(GγM +

1

τ
GγE)RefN3

(9)

In what follows, we will concentrate on the case of electron-proton scattering. Therefore, we will understand N = p
everywhere and suppress the index N in all expressions, unless explicitly stated otherwise.

The parity violating asymmetry is defined in Eq. (1) with the ratio of the response functions is given by

WPV

WEM
= Re

GγMG
Z∗
M + ε

τG
γ
EG

Z∗
E + ε νM f3(GZ∗M + 1

τG
Z∗
E ) + ε′

τ G
γ
Mf
∗
6

σR
. (10)

Here, σ± are the cross sections for positive and negative helicity electrons, and ε′ =
√
τ(1 + τ)(1− ε2).

Since we are interested in very forward scattering angles θ ≈ 8◦ corresponding to the Q-Weak kinematics [7], thus
τ < 10−3, the expressions for the cross section and PV asymmetry can be fruther simplified.

For the reduced cross section the leading contribution in Eq. (9) comes from the G2
E term, and we obtain

σR =
1

τ
(Fγ1 )2(1 + τδσkin + 2Reδ̄σRC) + 2Re�γγ . (11)

The three distinct corrections quoted above are defined as follows: δσkin is a kinematic correction that arises at tree
level due to the magnetic part and other subleading kinematic effects of order τ, (1− ε), that do not contain O(αem)
effects; δ̄σRC stands for order O(αem) corrections that are energy-independent (such as vacuum polarization, self energy
and vertex corrections); finally, �γγ denotes the two-photon exchange correction that is an energy-dependent O(αem)
correction.

Similarly, for the PV asymmetry the leading order contribution in Eq. (10) originates from the GZ∗E GγE term.
As discussed in Ref. [6], the Standard Model prediction for the PV asymmetry in the forward regime can be

expressed as
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APV =
GF t

4
√

2παem

[
(1 + ∆ρ+ ∆e)(1− 4 sin2 θ̂W (0) + ∆′e) +�WW +�ZZ +�γZ

]
+ · · · , (12)

where θ̂W (0) is the running weak mixing angle in the MS scheme at zero momentum transfer[3]. The correction
∆ρ is a universal radiative correction to the relative normalization of the neutral and charged current amplitudes;
the ∆e and ∆′e give, respectively, non-universal corrections to the axial vector Zee and γee couplings; the �V V for
V = W,Z, γ give the non-universal box graph corrections; and the “+ · · · ” indicate terms that vanish with higher
powers of t in the forward limit, such as those arising from the magnetic and strange quark form factors and the
two-photon dispersion correction, �γγ . The weak charge of the proton, considered as a static property, is given by
the quantity in the squark brackets in the zero-energy limit.

Within the radiative corrections, the TBE effects are separated explicitly. This is done because the TBE corrections,
unlike other corrections in the above equation, are in general ν and t-dependent. In particular, the ν (or ε) dependence
of the γγ-box is believed to be responsible for the discrepancy between the Rosenbluth and polarization transfer
data for GγE/G

γ
M [19]. It should be noted that in the exact forward direction �γγ vanishes as a consequence of

electromagnetic gauge invariance.
The WW and ZZ-box diagrams were first considered in [8], and subsequently investigated in Refs. [6, 18]. The

contribution from �WW in particular is relatively large. Both corrections are ν-independent at any hadronic energy
scale since they are dominated by exchange of hard momenta in the loop ∼MW ,MZ . Higher-order perturbative QCD
corrections to �WW and �ZZ were computed in Ref.[6], and the overall theoretical uncertainty associated with these
contributions is well below the expected uncertainty of the QWEAK experiment.

In contrast to �WW and �ZZ , �γZ receives substantial contributions from loop momenta at all scales. For the
electron energy-independent contribution, this situation leads to the presence of a large logarithm lnMZ/Λhad where
Λhad is a typical hadronic scale[6, 8, 18]. Since the asymmetry must be independent of the latter, �γZ includes
also a “low-energy constant” CγZ(Λhad) whose hadronic scale dependence compensates for that appearing in the
logarithm. An analogous Wγ box correction enters the vector current contribution to neutron and nuclear β-decay.
Importantly for the PV asymmetry, these energy-independent γZ box contributions are suppressed by 1− 4 sin2 θW ,
thereby suppressing the associated theoretical uncertainty.

In Ref. [11], the γZ-box contribution was re-examined in the framework of dispersion relations and it was found that
it possesses a considerable energy dependence, so that at energies in the GeV range its value can differ significantly
from that found at zero energy. Moreover, the energy-dependent correction contains a term that is not 1− 4 sin2 θW
suppressed, so the theoretical uncertainty associated with hadronic-scale contributions is potentially more significant.
This energy dependence comes through contributions from hadronic energy range inside the loop that cannot be
calculated reliably using perturbative techniques.

At present, a complete first principles computation is not feasible, forcing one to rely on hadronic modeling. For
a proper interpretation of the PV asymmetry, it is thus important to investigate the theoretical hadronic model
uncertainty. The remainder of the paper is devoted to this task. In so doing, we will attempt to reduce this model
uncertainty by relating – wherever possible – contributions from hadronic intermediate states to experimental parity-
conserving electroproduction data through the use of a dispersion relation and isospin rotation. As a corollary, we
will also identify future experimental measurements, such as those of the parity-violating inelastic asymmetry in the
regime of moderate Q2 and W , that could be helpful in reducing the theoretical uncertainty.

III. DISPERSION CORRECTIONS

To calculate the real part of the γZ direct and crossed box diagrams showed in Fig. 1, we follow [11] and adopt a
dispersion relation formalism. We start with the calculation of the imaginary part of the direct box (the crossed box
contribution to the real part will be calculated using crossing),

ImTγZ = −GF√
2

e2

(2π)3

∫
d3~k1
2E1

lµν ·Wµν
γZ

Q2(1 +Q2/M2
Z)
, (13)

where Q2 = −(k − k1)2 denotes the virtuality of the exchanged photon and Z (in the forward direction they carry
exactly the same Q2), and we explicitly set the intermediate electron on-shell. In the center of mass of the (initial)

electron and proton, one has E1 = s−W 2

2
√
s

, with s the full c.m. energy squared and W the invariant mass of the

intermediate hadronic state. Note that for on-shell intermediate states, the exchanged bosons are always spacelike.
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FIG. 1: Direct and crossed diagrams for γZ-exchcange. Dashed lines correspond to an exchange of a Z-boson, and wavy lines
to an exchange of a photon. The blob stands for an inclusive sum over intermediate hadronic states.

The leptonic tensor is given by

lµν = ū(k′)γνk/1γµ(geV + geAγ5)u(k). (14)

We next turn to the lower part of the diagrams in Fig. 1. The blobs stand for an inclusive sum over all possible
hadronic intermediate states, starting from the ground state (i.e., the nucleon itself) and on to a sum over the whole
nucleon photoabsorption spectrum. The case of the elastic hadronic intermediate state was considered in [20]. Here,
we concentrate on the inelastic contribution. Such contributions arise from the absorption of a photon (weak boson).
In electrodynamics, for a given material, the relation between its refraction coefficient and the dependence of the latter
on the photon frequency (i.e., dispersion) on one hand, and the photoabsorption spectrum of that material on the
other hand, is historically called a dispersion relation. It is exactly this dependence of the forward scattering amplitude
f4(ν, 0) (see Eq. (5)) on the energy that arises from its relation to the electroweak γ(Z)-absorption spectrum that is
the scope of an investigation in this work. This explains the origin of the term “dispersion correction” used for the
inelastic contributions to the γZ-box correction.

In the forward direction, the imaginary part of the doubly virtual “Compton scattering” (γ∗p → Z∗p) amplitude

is given in terms of the interference structure functions F γZ1,2,3(x,Q2), with x = Q2

2Pq the Bjorken variable. Making use

of gauge invariance of the leptonic tensor, we have

1

2π
Wµν
γZ = −gµνF γZ1 +

PµP ν

Pq
F γZ2 + iεµναβ

Pαqβ
Pq

F γZ3

(15)

Contracting the two tensors, one obtains after a little algebra two contributions that are due respectively to the
axial and vector couplings of the Z to the electron,

Im�γZA(ν) = αemg
e
A

∫ s

W 2
π

dW 2

(s−M2)2

∫ Q2
max

0

dQ2

1 + Q2

M2
Z

[
F γZ1 +

s(Q2
max −Q2)

Q2(W 2 −M2 +Q2)
F γZ2

]

Im�γZV (ν) = −αemg
e
V

∫ s

W 2
π

dW 2

(s−M2)2

∫ Q2
max

0

dQ2

1 + Q2

M2
Z

(
2(s−M2)

W 2 −M2 +Q2
− 1

)
F γZ3 , (16)

where the imaginary parts Im� will appear in a dispersion relation for the real parts in Eq. (20) below. The full
correction is the sum of the two,

Im�γZ(ν) = Im�γZA(ν) + Im�γZV (ν). (17)

In Eqs. (16), W 2
π = (M + mπ)2 stands for the pion production threshold, and the Q2-integration is constrained

below a maximum value

Q2
max =

(s−M2)(s−W 2)

s
(18)

as a condition of on-shell intermediate states for an imaginary part calculation. Eq. (16) is in agreement with Refs.
[15, 17]. In particular, we confirm the correctness of the claim made in Ref. [15] that in Ref. [11] a factor of 2 was
missing.

In order to write down the dispersion relation for the function �γZ(ν), one should consider its behavior under
crossing. We distinguish two contributions, �γZV and �γZA that have different crossing behavior [11]:

�γZA(−ν) = −�γZA(ν)

�γZV (−ν) = +�γZV (ν) (19)



7

Correspondingly, the two contributions obey dispersion relations of two different forms,

Re�γZA(ν) =
2ν

π

∫ ∞
νπ

dν′

ν′2 − ν2
Im�γZA(ν′)

Re�γZV (ν) =
2

π

∫ ∞
νπ

ν′dν′

ν′2 − ν2
Im�γZV (ν′) (20)

where the presence or absence of the factor of ν′ in the integrands follows from the behavior of the Im� under
crossing symmetry.

The result in Eq. (20) gives a model-independent relation between the dispersion correction to the weak charge
of the proton and the parity violating structure functions appearing in Eq. (16). This relation does not rely on any
assumption, other than the neglect of higher order radiative corrections and the number of subtractions needed for

convergence of the dispersion relation. The advantage for this formulation is that the F γZk are in principle measurable.
However, in absence of any detailed parity violating inclusive electron scattering data, the input in the dispersion
integral will depend on a model. In the following, we will investigate the extent to which this model dependence can
be constrained by existing or future experimental data.

IV. INPUT TO THE DISPERSION INTEGRAL

In the previous section, the contribution of the forward hadronic tensor to the box diagram was considered. In this
section, we will address the possibility of relating the interference hadronic tensor of Eq. (15)

Wµν
γZ =

1

2

∫
d4zeiqz〈N |T

[
Jνem(z)JµNCV (0)

]
|N〉 (21)

to the pure electromagnetic one,

Wµν
γγ =

1

2

∫
d4zeiqz〈N |T [Jνem(z)Jµem(0)] |N〉. (22)

Using unitarity, we rewrite these matrix elements as an inclusive sum over intermediate hadronic states,

ImWµν
γZ =

1

2

∫
d4zeiqz

[∑
X

〈N |Jνem(z)|X〉〈X|JµNCV (0)|N〉

+
∑
X

〈N |JνNCV (z)|X〉〈X|Jµem(0)|N〉

]
(23)

and

ImWµν
γγ =

1

2

∫
d4zeiqz

∑
X

〈N |Jνem(z)|X〉〈X|Jµem(0)|N〉

(24)

respectively. We now proceed to investigate the possible relationships between the products of transition matrix
elements appearing in each inclusive sum (23) and (24).

Theoretically, calculating the full set of contributions to the inclusive sum represents a fundamental difficulty since
in QCD, the basis for intermediate states X is infinite, and the matrix elements are non-perturbative. Under certain
kinematic conditions, one can organize this basis into leading and subleading (kinematically suppressed) sub-sets.
We depict this situation schematically in Fig. 2, where we show in the Q2 −W 2 plane the approximate kinematic
areas where various mechanisms dominate. At high energy and Q2, and finite Bjorken x, the leading set of states
is X = q + X ′ (q denotes a quark), where to leading order in 1/Q, X ′ is a spectator. Thus, in this regime the
electromagnetic (weak) current directly probes a single quark within the nucleon, and gives access to the parton
distribution functions (deep inelastic scattering, DIS in Fig. 2). At high energy and Q2, and small x, however, the
picture changes, as the leading set is X = q̄q + N . In this regime, the photon polarizes the QCD vacuum at the
periphery of the hadron, and the resulting q̄q-pair forms a color dipole that interacts with the nucleon (diffractive DIS
in Fig. 2). This picture was first realized in the Vector Meson Dominance model (VDM) that capitalized on the fact
that since vector mesons and the photon have the same quantum numbers, the latter can fluctuate into former [21, 22].
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FIG. 2: The plane Q2 vs. W and kinematic regions corresponding roughly to various physical contributions.

This simple model works quite well at low Q2 (VDM area in Fig. 2). Such “hadron-like” behavior of a photon in
scattering processes also results in the e.-m. data following the Regge behavior, as a function of W (respective Regge
area in Fig. 2). At higher values of Q2, rescattering effects in vector meson-nucleon scattering become increasingly
important but can still be accounted for in what is called the “generalized VDM” (GVDM region in Fig. 2). At low
energies, the relevant degrees of freedom are hadronic (that is, highly non-perturbative), X = N, πN, ππN,N∗,∆ etc.
In this regime, the inelastic cross section is tyically dominated by resonances on top of a non-resonant background
(Resonance area in Fig. 2). The boundaries of each kinematic region are, of course, approximate. Their meaning
is that the farther one departs from a kinematical region, to the lesser extent the respective mechanism works.
Consequently, a large area on the W 2 −Q2 plane, that overlaps with all the depicted regions but not covering them
completely is the so-called shadow region where none of the mechanisms can be considered as fully dominant.

If data for the γZ interference cross section existed throughout all these distinct regimes, we would not need to
know details of any of the aforementioned models. In principle, such data could be obtained with measurements of
the PV inelastic asymmetries in the various kinematic regimes shown in Fig. 2. At present, however, either no or very
poor data on PV inelastic scattering exist. Consequently, we will instead pursue an alternate strategy, endeavoring
to make use of extensive data sets for real and virtual photoabsorption that exist through vast kinematic region
in energy and Q2. To that end, we will rely on models that adequately describe the photoabsorption cross section
in different regimes and for each attempt to establish relationships between the matrix elements 〈X|Jµem|N〉 and
〈X|JµNC |N〉 for each intermediate hadronic state |X〉 of definite isospin. We will approach this problem by extracting
the electromagnetic matrix elements from inclusive e.-m. data, and then isospin-rotate every such matrix element.
We begin with a brief review of the experimental situation and discuss various model descriptions.

A. Real and virtual photoabsorption data

We find that the dispersion integral for Re�γZ is dominated by moderate values of W . 5 GeV and Q2 . 3
GeV2 (see Fig. 15 in Section V). Consequently, we need to analyze in detail contributions from the resonance regime
and portions of what we have called the VDM, GVDM, and regge regimes. Our goal will be to draw upon existing
experimental data for inclusive and semi-inclusive electromagnetic data to infer the γZ interference structure functions
that appear in the dispersion integrals. To that end, we first summarize the experimental situation.

• Real photoabsorption cross sections have been measured from the pion threshold to very high energies [23–28]

• Virtual photoabsorption data: high precision data from the JLab E94-110 [29] and the preliminary data from
the E00-002 [30] experiments are available in the resonance region; in the DIS region, we quote the data for the
DIS structure function F2 from SLAC NMC Collaboration [31], FNAL E665 collaborations [32] and DESY H1
Collaboration [33].

While it is equally possible to use structure functions to describe resonance data, in the following we opt to use total
photoabsorption cross sections with transverse or longitudinal (for virtual photons only) photon polarization. These
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cross sections are unambiguously related to the electromagnetic structure functions,

σγpT (W 2, Q2) =
8π2α

W 2 −M2
F γγ1 (x,Q2) (25)

σγpL (W 2, Q2) =
8π2α

W 2 −M2[(
1

2x
+

2M2

W 2 −M2 +Q2

)
F γγ2 (x,Q2)− F γγ1 (x,Q2)

]
with the usual Bjorken scaling variable x = Q2

W 2−M2+Q2 . This choice is convenient because in what follows, we will

address transitions between helicity states of the nucleon and resonances, and it is preferrable to work with matrix
elements of the electromagnetic current with definite helicities. As is evident from Eq. (25), the two helicity states are

mixed in F2. Similar relations hold between the interference cross sections σγZ,pT,L (W 2, Q2) and interference structure

functions F γZ1,2 (x,Q2). Note that the definition of the transverse and longitudinal polarizations of the photon and the

Z-boson are identical since in both cases they are fixed by the lepton kinematics of the reaction e+ p→ e′ +X.
Real photoabsorption data exhibit the following general features: i) a resonance structure on top of ii) a smooth

non-resonant background between the threshold of pion production and W ∼ 2 − 2.5 GeV, and iii) Regge behavior
at high values of W with the cross section that grows slowly with energy, σγptot ∼ (W 2)αP−1, with αP ∼ 1.095 the
parameter of the pomeron.

σγptot(W
2) = σγpRes(W

2) + σγpBkgd(W 2),

σγptot(W
2 →∞) → σγpRegge(W

2) ∼ (W 2)α−1, (26)

where α = αP , αf2 , etc. stand for pomeron and Regge trajectories. In this work, the most recent fit in terms of two
trajectories (pomeron plus f2) is used [34]

σγpBkgd = fthr

[
(145.0± 2.0)µb

(
W 2

W 2
0

)−0.5
+ (63.5± 0.9)µb

(
W 2

W 2
0

)ε]
(27)

with parameter of the pomeron ε = 0.097± 0.002. The threshold factor fthr is necessary to make the continuation of
the Regge fit into the resonance region meaningful. In this work, we take it in the same form as in [35]

fthr = 1− exp

[
−W

2 − (M +mπ)2

M2

]
. (28)

For virtual photons in the range of W 2, Q2 of interest here, the picture remains the same, with the Q2-dependence
of the resonance contributions described by the form factors measured for a number of resonances, at least in certain
channels. We will next specify two models that provide a smooth extrapolation between the real photoabsorption
data and the virtual photoabsorption data and that can to certain extent be used to describe data all the way up into
the diffractive DIS region. The two models differ in the form of the Q2-dependence of the background contribution:

• Model I: The model used in [11] utilized the resonance parameters obtained in [35] and the non-resonant Regge
contribution from [34] that was fitted to the real photoabsorption data at high energies. The Q2-dependence
of the high-energy part was taken from the hybrid GVD/color dipole (CDP) approach of Ref. [37]. For the
estimates of [11], a simple dipole model with the dipole mass Λ ≈ 1 GeV for all the transition resonance form
factors was employed. Because it was found that this simple dipole form fails dramatically throughout the
resonance region, we adopt the resonance part from [38] with a few parameters minimally adjusted in order
to fit the data with the background of a different form, rather the one used in [38] originally. We list those
parameters and the respective changes in Table II.

• Model II: To test the sensitivity of our calculations to the specific model, we use another form of the background
from the “näıve” GVD model of Ref. [39] (cf. Eqs. (3,4) of that Ref.), and we add the resonance contributions
from [38] on top of that. Again, some resonance parameters are slightly adjusted to the background, and all
changes are quoted in Table II.
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FIG. 3: (Color online) World data on total photoabsorption [23–28] (see [36] for the complete list) compared to the two models
described in the text. The experimental errors are not shown.

Parameter Ref. [38] Model I Model II

c1 2.124 2.24 2.2

c2 2.569 2.73 2.73

c4 0.064 0.155 0.155

c5 0.549 0.549 0.7

c6 1.914 1.914 2.5

c7 1.0 1.0 1.5

A7
T (0) 3.419 5. 5.

A7
L(0) 11. 15. 15.

TABLE II: The list of the resonance parameters and their values for Model I and Model II, as compared to the original fit of
Ref. [38] (see Table III of that reference). The notation of [38] was kept.

In Fig. 3 we confront the two models with the total photoabsorption cross section. The Model I is shown by solid red
lines, Model II by the dashed blue line.

Figs. 4-6 display the comparison of the two models with the data for the differential cross section for inclusive
electroproduction in the resonance region. Both models in general provide a good description of the data in the
resonance region. The areas between the lower and upper thin curves in each plot correspond to the range of values
of the helicity amplitudes for the photoexcitation of each resonance included in Models I and II, as given by the PDG
[40]. It can be seen that the experimental data are always contained within these areas for W 2 ≤ 4 GeV2, even
without including the experimental errors. At the same time, we note that just above the resonance region, in the
limited range 4 GeV2 ≤W 2 ≤ 6 GeV2, and at moderate values of Q2, the background systematically lacks strength.
However, we stress that this lack of strength is observed only in very limited range of energies, and the deficit is less
than 20% which makes the impact of this effect on the dispersion correction small.

We next turn to the deep inelastic (DIS) data. For DIS, a natural choice would be to use the PDF parametrizations
from MRST or CTEQ, DGLAP-evolved to the necessary value of Q2. However, this is only applicable at large enough
Q2, and extrapolating them below Q2 = 1 GeV2 introduces additional systematic error. In Figs. 10, 11, the näıve
GVD model of Ref. [39] (Model II) is shown along with the GVD/CDP model of [37] (Model I). One can see that
while the GVD/CDP model reproduces the data in a wide range of x,Q2, the naive GVD model overshoots the data
at large x starting at moderate Q2, and underestimates the low-x behavior for all Q2. One needs to keep in mind,
however, that both models work reasonably well at moderate Q2 and large x which give the main contributions to
the dispersion correction.

The following comment is in order here. The authors of Ref. [15] argued that our description of the data is
unsatisfactory not only in the resonance region but also beyond (cf. Fig. 1 of [15]). While the model of the resonance
form factors of Ref. [11] was definitely not accurate (one of the instances on which we improve that calculation in
the present work), the model for the background in [11] is exactly the same as that of Model I here. We believe that
Figs. 4-11 presented in this section provide abundant evidence of a satisfactory description of the experimental data
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FIG. 4: (Color online) Differential cross section data in the resonance region from [30] are shown in comparison with the two
models. The experimental errors are not shown. Thick solid line is the result of Model I, and thick dashed line is the result
of Model II. Thin solid lines show the error bar due to the uncertanties in helicity amplitudes for the photoexcitation of the
resonances on the proton, according to [40].

by our phenomenological model. In view of this, we find it puzzling that Ref. [15] quotes a discrepancy of 40-50% at
Q2 as low as 0.6 GeV2 just above the resonance region (cf. the upper left panel of Fig. 1 of that reference).
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FIG. 5: (Color online) Differential cross section data in the resonance region from [30] are shown in comparison with Model I
and II. Notation as in Fig. 4

B. Isospin rotation of the resonance contributions

In Standard Model, the Z and γ hadronic currents are related by means of a simple isospin rotation,

Jµem = qI=0JµI=0 + qI=1JµI=1 + qsJµs

JµNCV = gI=0
V JµI=0 + gI=1

V JµI=1 + gsV J
µ
s , (29)
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FIG. 6: (Color online) Differential cross section data in the resonance region from [29] are shown in comparison with Model I
and II. Notation as in Fig. 4

with

JµI=0 =
1√
2

(ūγµu+ d̄γµd)

JµI=1 =
1√
2

(ūγµu− d̄γµd)

Jµs = s̄γµs . (30)

The e.m. charges given by

qI=0 =
1

3
√

2
, qI=1 =

1√
2
, qs = −1

3
, (31)

whereas the weak charges are

gI=0
V = − 1√

2

4

3
s2θW

gI=1
V =

1√
2

(2− 4s2θW )

gsV = −1 +
4

3
s2θW ,

with s2θW being a shorthand for sin2 θW (for purposes of this argument). This isospin decomposition is used to relate
weak proton form factors to the proton and neutron electromagnetic form factors,

〈p|JµNC,V |p〉 = (1− 4s2θW )〈p|Jµem|p〉 − 〈n|Jµem|n〉 (32)
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FIG. 7: (Color online) Differential cross section data in the resonance region from [29] are shown in comparison with Model I
and II. Notation as in Fig. 4

P33(1232) S11(1535) D13(1520) S11(1665) F15(1680) P11(1440) F37(1950)

yR -1.0−0.1
+0.1 -0.51−0.71

+0.35 -0.77−0.125
+0.125 -0.28−0.86

+0.45 -0.27−0.12
+0.1 -0.62−0.2

+0.19 -1−1
+1

TABLE III: Ratios yR with respective uncertainties for seven resonances.

where we neglected strangeness contributions that are generally small [41].

The above relation is valid for transitions to I = 1
2 resonances, as well:

〈X|JµNC,V |p〉 = (1− 4s2θW )〈X|Jµem|p〉 − 〈X|Jµem|n〉 . (33)

It is then straightforward to relate the contribution of a resonance R with isospin 1/2 to the interference γZ cross
section entering Eq. (16) to its contribution to the electromagnetic cross section:

〈p|Jµem|R〉〈R|J
µ
NC,V |p〉 = (1− 4s2θW )|〈R|Jµem|p〉|2

− 〈p|Jµem|R〉〈R|Jµem|n〉 (34)
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FIG. 8: (Color online) Differential cross section data in the resonance region from [29] are shown in comparison with Model I
and II. Notation as in Fig. 4

Consequently, for each resonance, we define two ratios describing the relative strength of its contribution to the

γZ-interference cross sections σγZ,pT (L),R with respect to the purely electromagnetic ones σγpT (L),R as

ξRZ/γ(Q2) ≡
σγZ,pT,R

σγpT,R

ζRZ/γ(Q2) ≡
σγZ,pL,R

σγpL,R
(35)

In the Appendix A we discuss in detail the Q2-dependence of these ratios, as well as the ratios of the longitudinal
cross sections ζRZ/γ . Basing on the discussion in Appendix A, we will use the value

ξRZ/γ(Q2) =
[
1− 4s2θW (0)

]
− yR = const. , (36)

to rescale the contribution of a resonance R to both transverse and longitudinal cross section. Possible discrepancies
(which, if known, are model-dependent) from this rule are accounted for by assigning a conservative uncertainty to
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FIG. 9: (Color online) Differential cross section data in the resonance region from [29] are shown in comparison with Model I
and II. Notation as in Fig. 4

the ratios ξRZ/γ . This is done by using the PDG values and respective errors for the transition helicity amplitudes.

These PDG values represent an average over different data sets and different extraction procedures adopted in the
various experiments. Consequently, they automatically include an enhanced error due to model dependence of this
extraction.

The first term in Eq. (36) is a constant that is model-independent, arising from Eq. (34). This model independence
reflects the cancelation of the proton-to-resonance transition matrix elements involving the e.m. currents. The second
term in Eq. (36) , yR, is given by the ratio of combinations of neutron and proton transverse helicity amplitudes (we
refer the reader to the Appendix for details). We summarize the values of yR obtained using the PDG values for the
helicity amplitudes with the respective errors in Table III. The lower and upper limits correspond to taking extreme
values of the transition helicity amplitudes for the proton and neutron from [40].
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FIG. 10: Comparison of the x-dependence of the DIS structure function F2(x,Q2) at fixed Q2 and as a function of x, in
GVD/CDP model of [37] (solid lines) and the naive GVD model of [39] (dashed lines) to the low-x DIS data of H1 Collaboration
[33]. The experimental errors are not shown.

For the P33(1232) resonance, we assign a conservative 10% error on its isospin structure. According to the PDG,
this error should be precisely zero. However, the analyzes of Refs. [38, 42] return slightly different results for the
P33(1232) excitation on the proton and the neutron, both for real and virtual photons. The discrepancy stays below
relative 10% for Q2 ≤ 1 GeV2, although this conclusion is definitely model-dependent. This observation provides
motivation for assigning a conservative 10% error to yR for the P33(1232).

Similarly, for the F37(1950) resonance, the uncertainty is driven by the analyses of Refs. [38, 42]. The fit of [38] for
the proton returns a very mild monopole form factor, whereas the neutron data require a dipole form factor for the
same resonance [42]. Also the strength strongly depends on the form of the background, as found in our work (see
Table II). This motivated us to assign a conservative 100% uncertainty due to this resonance.

We note that for both S11 resonances listed in the Table III the error bar exceeds 100%. This is mostly due to the
quality of the extracted values for the neutron. It is also worth noting that the quark model expectations (see Table I
of Ref. [16] for the isospin scaling factors within the quark model of Ref. [43]) are not too far from the central values
quoted in Table III.

1. Uncertainty in isospin rotating the resonances

To summarize the results of the previous subsection, we propose to obtain the contribution of a resonance R to

the γZ-interference cross sections σγZ,RT,L by multiplying the purely electromagnetic cross sections σγγ,RT,L with a scaling

factor ξRZ/γ that is independent of W 2 and Q2. Furthermore, to the precision required here, we rescale the trasverse

and longitudinal cross sections with the same factor. Each such factor contains two parts, as per Eq. (36): the first one
is model-independent, whereas the second one is obtained from the analysis of the proton and neutron electromagnetic
data, and involves model dependence and experimental uncertainties. The values of yR are listed in Table III with
the respective uncertainties. Correspondingly, for each resonance we simply obtain its contribution to the interference

structure functions F γZ,R1,2 from that to the electromagnetic structure functions F γγ,R1,2 as

F γZ,R1,2 (W 2, Q2) = ξRZ/γF
γγ,R
1,2 (W 2, Q2) (37)

To compute Re�γZA , we use Eqs. (20) and (16) with the input from Eqs. (37) and (25). Finally, we use the
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FIG. 11: Comparison of the Q2-dependence of the DIS structure function F2(x,Q2) at fixed x and as a function of Q2, in
GVD/CDP model of [37] (solid lines) and the naive GVD model of [39] (dashed lines) to the DIS data of NMC Collaboration
[31] and E665 Collaboration [32] where the x-binning corresponds to that of NMC. The experimental errors are not shown.

parametrizations of the transverse and longitudinal electromagnetic cross sections from Model I and Model II, and
values of ξRZ/γ factors from Table III. The uncertainty on the contribution of each resonance is obtained according to

the definition

∆F γZ,R1,2 (W 2, Q2) = ∆yRF
γγ,R
1,2 (W 2, Q2), (38)

where ∆yR are the uncertainties quoted in Table III. Using the steps described above for the individual contributions
of resonances to Re�RγZA , we can also compute the uncertainties ∆ (Re�RγZA) associated with each such contribution.
Because most resonances do not overlap, we treat all these uncertainties as independent, thus we define

∆Full
R Re�γZ =

√∑
R

|∆ (Re�RγZA)|2 (39)
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C. Isospin rotation of the high energy contribution

We need to employ a well-motivated model to describe the isospin dependence of the background contribution.
One option is to employ the the VDM picture, incorporating the simple observation that the photon has the same
quantum numbers as vector mesons (VM). Therefore, it can fluctuate into ρ, ω or φ that then scatter off the nucleon.
This approach underlies the background in both Models I and II, so we proceed generally at first.

According to the VDM, the photon can be represented as a superposition of a few vector mesons,

|γ〉 =
∑

V=ρ,ω,φ

e

fV
|V 〉, (40)

with fV the VM decay constant. Assuming this basis to be complete and orthogonal (no VM mixing), one can
express the total photoabsorption cross section through a combination of total cross sections for vector meson-proton
scattering,

σtot(γp) =
∑
V

4πα

f2V
σV p (41)

At high energies, the total cross section σV p should be independent of the VM flavor and the above equation becomes
simply a flavor decomposition of the electromagnetic total cross section, although this representation is of limited use
because σV p is unknown. Nevertheless, after trivial manipulations this picture leads to the VDM (Stodolsky) sum rule
[44] that relates the total, real photoabsorption cross section to a sum of differential cross sections for photoproduction
of vector mesons,

σtot(γp) =
∑

V=ρ,ω,φ

√
16π

4πα

f2V

dσγp→V p

dt
(t = 0). (42)

This sum rule is based on the assumptions of vector meson dominance and almost purely imaginary phase of
scattering amplitudes at high energy.

In the näıve GVD approach (Model II), this sum rule holds only approximately (HERA data: ≈80%) [45]. The
missing strength can be attributed to the neglect of non-diagonal vector meson-nucleon scattering V p → V ′p. One
can then generalize the VDM by including such contributions by writing down a dispersion relation over the vector
meson masses. We will denote this non-diagonal “continuum” contribution as “X” in the sum over vector mesons V .

Alternately, in the GVD/CDP approach (Model I), instead of hadronic VM states, the photon hadronic wave
function (WF) is described in terms of perturbative qq̄-states with J = 1. This qq̄-pair forms a color dipole that
interacts with the target through gluon exchanges.

Both the näıve GVD and GVD/CDP approaches are similar in the following instances: they consider the interaction
of the hadron-like photon with the target (hadronic WF for näıve GVD, and perturbative qq̄ for GVD/CDP), and
the interaction of the hadronic states is independent of flavor (either VM or quark). This allows us to cast the ratio
of inclusive virtual photon and γZ-interference cross sections in the following form:

σγ∗p =
∑

V=ρ0,ω,φ,X

rγ∗V (W 2, Q2)σV p,

σγ∗Zp =
∑

V=ρ0,ω,φ,X

rγ∗ZV (W 2, Q2)σV p , (43)

where “X” denotes the non-diagonal contribution.
According to the assumptions of both approaches, the flavor factors rγ∗V (W 2, Q2) and rγ∗ZV (W 2, Q2) only contain

the information about the projectile (virtual photon or Z) and not about the target; this means that they cannot
depend on the energy but only on Q2 (the only Lorentz scalar that can be constructed from the γ four-momentum)
and the flavor of the VM state. However, if these flavor factors indeed depend on energy, this would signal the
breakdown of the models, and would be a source of an additional theory uncertainty. For completeness, we will keep
the W 2 dependence. The interference flavor factors rγ∗ZV obtain from the purely electromagnetic ones using the
conservation of the vector current (CVC),
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rγ∗Zρ(W
2, Q2) =

gI=1
V

eI=1
q

rγ∗ρ(W
2, Q2) = (2− 4 sin2 θW )rγ∗ρ(W

2, Q2),

rγ∗Zω(W 2, Q2) =
gI=0
V

eI=0
q

rγ∗ω(W 2, Q2) = −4 sin2 θW rγ∗ω(W 2, Q2),

rγ∗Zφ(W 2, Q2) =
gsV
esq
rγ∗φ(W 2, Q2) = (3− 4 sin2 θW )rγ∗φ(W 2, Q2), (44)

for the light flavors.
With these definitions, we obtain our master formula for rescaling the background contribution:

σγ
∗p→Zp
T,L

σγ
∗p→γ∗p
T,L

=
(2− 4 sin2 θW )rT,Lγ∗Zρ(W

2, Q2)− 4 sin2 θW r
T,L
ω (W 2, Q2) + (3− 4 sin2 θW )rT,Lφ (W 2, Q2) + rT,Lγ∗ZX(W 2, Q2)

rT,Lγ∗ρ(W 2, Q2) + rT,Lγ∗ω(W 2, Q2) + rT,Lγ∗φ(W 2, Q2) + rT,Lγ∗X(W 2, Q2)

=

(2− 4 sin2 θW )− 4 sin2 θWR
T,L
ω
ρ

(W 2, Q2) + (3− 4 sin2 θW )RT,Lφ
ρ

(W 2, Q2) +
rT,L
γ∗ZX

rT,L
γ∗ρ

1 +RT,Lω
ρ

(W 2, Q2) +RT,Lφ
ρ

(W 2, Q2) +RT,LX
ρ

(W 2, Q2)
. (45)

The ratios RT,LV
ρ

are defined as ratios of transverse (T ) or longintudinal (L) vector meson (V ) production cross sections

RT,LV
ρ

=
σγ
∗p→V p
T,L

σγ
∗p→ρp
T,L

. (46)

The terms ∼ rT,Lγ∗X , r
T,L
γ∗ZX account for the possible incompleteness of the VDM (or three light flavor) basis.

For the näıve GVD model, RT,LV
ρ

are obtained from the experimentally measured constants fV of the leptonic decay

V → e+e−. Additionally, the presence of the VM propagator leads to a prediction for the Q2-dependence of each

flavor channel ∼
(

m2
V

m2
V +Q2

)2
, thus we have

RTV
ρ

= RLV
ρ

=
σγ
∗p→V p

σγ∗p→ρp
=
f2ρ
f2V

m4
V

m4
ρ

(
m2
ρ +Q2

M2
V +Q2

)2

(47)

with V = ω, φ. The remaining piece, RT,LX
ρ

is identified with the continuum (V − V ′ mixing) contribution. From

the comparison of the left and right hand sides of the VDM sum rule [45] and suplementing this contribution with a
simple Q2 dependence to describe the virtual photoabsorption data at low and moderate Q2, one obtains i.e. for the
transverse ratio [39]

RTC
ρ

= RC
ρ

(0)
(1 +Q2/m2

ρ)
2

(1 +Q2/m2
0)

(48)

with RC
ρ

(0) = 0.21
0.67 and m0 ≈ 1.5 GeV. We note that due to the monopole Q2-dependence of the continuum contribu-

tion, rather than dipole for the ρ0, the impact of the continuum part increases with growing Q2. The master formula
of Eq. (45) – together with the model input of Eqs. (47) and (48) (see Ref. [39] for all the details of the model) –
defines our prescription for the isospin rotation of the background contribution within the näıve GVD model (Model
II).

For pQCD inspired models, such as the GVD/CDP used in Model I, the relative strength of the isospin (flavor)
channels is directly related to the quark electric charges and is independent of energy and Q2.

σγ→ρ : σγ→ω : σγ→φ : σγ→J/ψ = 1 :
(qI=0)2

(qI=1)2
:

(qs)2

(qI=1)2
:

(qc)2

(qI=1)2
= 1 :

1

9
:

2

9
:

8

9
(49)
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One possible way is to identify the X state in the master formula with the cc̄ state, i.e. J/ψ. In that case, the X
contribution in the numerator of Eq. (45) is given according to the SM

rT,Lγ∗ZX

rT,Lγ∗ρ

=
3− 8 sin2 θW

2
RT,LJ/ψ

ρ

. (50)

The choice of identifying X with J/ψ is justified in HERA kinematics but is probably less convincing at lower energies
and low Q2. Moreover, the choice X = J/ψ and the relative strength of different contributions according to Eq. (49),
corresponds to the VDM sum rule being saturated to only 60%, rather than the measured 80%, suggesting that it is
not very realistic.

Either way, for the rescaling of the background contribution in the GVD/CDP model (Model I), Eqs. (45) and (49)
simply combine to a constant factor. Its value when using only the three light flavors amounts to[

σγ
∗p→Zp

σγ∗p→γ∗p

]Model I

u,d,s

= 2− 4 sin2 θW ≈ 1.05 (51)

However, when including the charm contirbution, one obtains[
σγ
∗p→Zp

σγ∗p→γ∗p

]Model I

u,d,s,c

=
9

5
− 4 sin2 θW ≈ 0.85 (52)

For comparison, a typical value of this ratio within the näıve GVD Model II (we quote its value at Q2 = 0 for
definiteness: in Model II it is Q2-dependent, although mildly) is[

σγ
∗p→Zp

σγ∗p→γ∗p

]Model II

ρ,ω,φ

≈ 1.92− 4 sin2 θW ≈ 0.97 , (53)

and a very similar number when including the continuum and assuming its size for the γZ cross section to be equal
to that for the purely electromagnetic case. However, any such estimate bears at least 20% uncertainty due to the
incompleteness of the näıve VDM basis and due to the unknown flavor structure of the continuum contribution.

To illustrate the difference in the Q2-dependence of the total cross section as calculated in Model I and Model II,
we define the following two ratios,

Rγγ(W 2, Q2) =

[
σγ
∗p→γ∗p
T + σγ

∗p→γ∗p
L

]Model I

[
σγ
∗p→γ∗p
T + σγ

∗p→γ∗p
L

]Model II

RγZ(W 2, Q2) =

[
σγ
∗p→Zp
T + σγ

∗p→Zp
L

]Model I

[
σγ
∗p→Zp
T + σγ

∗p→Zp
L

]Model II
,

(54)

where we suppressed the arguments of the cross sections for compactness. In Fig. 12 we display the Q2-dependence
of Rγγ and RγZ at two values of W 2. The ratios show very mild W 2-dependence, in accord with general assumptions
used in VDM and GVD/CDP models. The Q2-dependence shows slight oscillations (at the level of 3%) at Q2 . 2
GeV2; at higher values of Q2 both ratios decrease monotonically, as a result of the näıve VDM model (Model II)
overshooting high-Q2 data significantly, while GVD/CDP Model I describes data in a wide kinematical range.

1. Uncertainty in isospin rotating the background

We wrote our master formula in terms of ratios of meson production cross sections, rather than cross sections
themselves. These ratios were recently measured at HERA. The predictions of Eqs. (47,49) are confronted with the
experimental data of Ref. [47] at high energies and for Q2 that ranged from zero to several GeV2 in Fig. 13. To
estimate uncertainties in isospin rotation of Models I and II, we will directly compare the model predictions of the
isospin ratios to the HERA data. The common feature of the two models is that these ratios are W 2-independent.
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FIG. 12: Ratios Rγγ(W 2, Q2) (upper panel) and RγZ(W 2, Q2) (lower panel) are shown as function of Q2 at W 2 = 5 GeV2

(solid lines) and at W 2 = 50 GeV2 (dashed lines). See text for further details.
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FIG. 13: (Color online) Experimental data for ratios of total cross sections for elastic vector meson electroproduction in
comparison with the naive VDM (solid lines) and perturbative SU(4) (dashed lines) predictions.
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Furthermore, Model I predicts them to be Q2-independent, too. Instead, Model II (näıve GVD) predicts the Q2-
running of these ratios. In both cases, we will assume that the uncertainty in isospin scaling the I = 1 channel (i.e.,
the ρ0) is zero. For each flavor channel, we define the uncertainty as the discrepancy

∆
σγ→V

σγ→ρ
(Q2) =

(
σγ→V

σγ→ρ

)Model

−
(
σγ→V

σγ→ρ

)exp

, (55)

with V = ρ, ω for VDM and V = ρ, ω, (J/ψ) for pQCD. Additionally, for VDM we assign a 100% uncertainty to the
continuum contribution whose flavor content is not defined in the naive GVD approach. Similarly, for GVD/CDP
model we assign a conservative 100% uncertainty to the cc̄ contribution, in view of an unsatisfactory description of
the data for (J/ψ)/ρ by the SU(4) prediction.

Arriving at the estimate of the total uncertainty due to the isospin structure of the background requires following
steps. For Models I and II, we insert the uncertainties defined in Eq. (55) and below for each flavor V into the master
formula Eq. (45). Subsequently, we use the relation of Eq. (25) and obtain the total uncertainty of the interference

structure functions, ∆F γZ1,2 . We evaluate the imaginary part of the dispersion correction of Eq. (16) with ∆F γZ1,2 . The

final step involves evaluating the dispersion integral thereof, Eq. (20). These steps give us the uncertainties due to
the isospin structure of the background within Model I and Model II. To be conservative, we will choose the larger of
the two as our estimate of the non-resonant model uncertainty.

Anticipating the discussion in the next Section, we note that the overall uncertainty is dominated by the continuum
contribution (“X”) within the naive GVD model. The only significant assumption about the continuum contribution
here is that its size (relative to diagonal vector meson contributions) is energy-independent , and we take it from the
data at very high W 2. Until now, the only dedicated study of the VDM sum rule was performed at W ≥ 70 GeV at
HERA – far from the kinematic region that dominates the dispersion integral for �γZ . It is not a priori clear that
the decomposition of the virtual photon into the VM basis works any differently for 5 GeV photons than for 80 GeV
photons.

As part of a program of future measurements to constrain the uncertainties in the dispersion correction, it would be
useful to have direct data on this sum rule at lower energies: 2 ≤W ≤ 10 GeV. In case that new data on the VDM sum
rule at these energies will become available, it will then be straightforward to include additional W -dependent form
factors in Eq. (45). Data on the virual vector meson photoproduction cross sections in this kinematic regime could
also provide additional important constraints. Together with direct measurements fo the inelastic PV asymmetries at
these kinematics, such measurements could in principle lead to a significant reduction in the quoted theoretical error
bar.

V. RESULTS FOR RE�γZ

We are now in the position to present results for �γZ in the forward direction using the sum rule of Eqs. (16,20), the
Models I and II for the electromagnetic cross sections along with the isospin considerations provided in the previous
sections. We display the sum of resonance and background in Fig. 14.

In Fig. 15, we display the contributions of various kinematic regions to Re �γZ . The upper panel of Fig. 15
evidences that the resonance contribution is dominated by values of Q2 ≤ 1 GeV2, whereas for the total correction,
values of Q2 up to 3 GeV2 have to be taken to saturate the dispersion correction to ≈ 90%. The lower panel of
that Figure demonstrates that values of W 2 up to 25 GeV2 have to be included under the integration to saturate the
dispersion correction Re �γZ . The data from the resonance region W 2 ≤ 5 GeV2 (resonance plus background) only
contribute about 65% of the total. The notation Q2 ≤ Q2

A and W 2 ≤W 2
B refers to evaluating the double integral for

Im �γZ in Eq. (16) only over those values of Q2 (W 2) that lie below Q2
A (W 2

B), respectively. After that, the dispersion
integral of Eq. (20) is evaluated without further modifications.

In Table IV, we display the background contribution as calculated in Model I and II for the QWEAK kinematics.
It can be seen that the background represents both the largest contribution and the source of the largest uncertainty.
Most notably, within the naive GVD approach (Model II), it is completely dominated by the continuum contribution
whose isospin structure is undetermined. In the pQCD approach (Model I), a contribution similar in strength is
assigned to the cc̄ state. However, because in this case we know exactly how the weak boson couples to c-quarks, the
uncertainty is about half the size of that for Model II. This 50% reduction is simply due to the fact that gcV ≈ 1

3 = 1
2ec.

The individual resonance contributions are displayed in Table V. It can be seen that the overall uncertainty in the
resonance contribution is dominated by the uncertainty in two contributions, namely S11(1535) and F37(1950). The
former, in turn is dominated by the uncertainty in the neutron transition helicity amplitude. The heavy resonance
state is not well-determined and should be studied in greater detail to decrease the respective uncertainty for the
dispersion correction.
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FIG. 14: (Color online) Sum of resonance and background contributions to Re �γZ for Models I and II as indicated in the
legend of the plot.
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(dash-dotted curve), W 2 ≤ 16 GeV2 (dotted curve), W 2 ≤ 25 GeV2 (dashed curve), and full result (solid curve).

Background

Model I (2.85 ± 0.85) ×10−3

Model II (3.49 ± 1.92)×10−3

TABLE IV: Background contribution to the dispersion correction to the weak charge of the proton Re�γZ at the QWEAK
energy Elab = 1.165 GeV. Results for Model I and Model II are shown.
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P33(1232) S11(1535) D13(1520) S11(1665) F15(1680) P11(1440) F37(1950)
∑

Res.

Model I (×10−3) (1.21 ± 0.12) (0.28+0.34
−0.17) (0.18 ± 0.03) (0.06+0.14

−0.06) (0.04+0.013
−0.011) (0.09 ± 0.03) (0.48 ± 0.44) (2.34+0.59

−0.50)

Model II (×10−3) (1.23 ± 0.12) (0.29+0.34
−0.17) (0.18 ± 0.03) (0.06+0.14

−0.06) (0.04+0.013
−0.011) (0.06 ± 0.02) (0.40 ± 0.36) (2.24+0.53

−0.43)

TABLE V: Resonances contributions to the dispersion correction to the weak charge of the proton Re�γZ at the QWEAK
energy Elab = 1.165 GeV, in units of 10−3. For each contribution, we indicate the uncertainty discussed in the text. Results
for Model I and Model II are shown.

0.5 1 1.5 2 2.5 3
E (GeV)

0.002

0.004

0.006

0.008

0.01

0.012

R
e 
☐
ᵧz

(E
, t

=0
)

Re ☐ᵧz - Avg. (Model I,II)
Re ☐ᵧz ± ∆ (☐ᵧz)

QWEAK (E = 1.165 GeV)

FIG. 16: (Color online) Full result for Re �γZ with the theoretical error bar.

According to the discussion in the previous Section, we plot the result for Re �γZ and display the error bar on this
calculation in Fig. 16. For the central value, we take the average of Model I and Model II, and use the difference
between this central value and either of Model I or II as the uncertainty due to modeling the e.-m. data. For the
isospin rotation-related uncertainty, we calculate the error within each model as discussed before, and quote the larger
of the two. We summarize this section by quoting the result of the forward sum rule evaluated within two models as
follows:

Re�γZ(E = 1.165 GeV, t = 0) = [5.46± 0.27 (mod. avg.) ± 1.92 (backgr.)+0.59
−0.50 (res.)]× 10−3, (56)

The first uncertainty is due to averaging over the two models, the second due to uncertainty in isospin rotating the
background, and the third due to isospin rotation of resonances. A possibility of measuring the proton’s weak charge
at Mainz at a lower energy Elab = 180 MeV is under consideration presently [48], and we quote our prediction for the
dispersion γZ correction and the respective uncertainty for that energy,

Re�γZ(E = 0.180 GeV, t = 0) = [1.32± 0.05 (mod. avg.) ± 0.27 (backgr.)+0.11
−0.08 (res.)]× 10−3 . (57)

We see that the total uncertainty in Re�γZ is about six times smaller at Elab = 180 MeV than at Elab = 1.165 GeV.

VI. ADDITIONAL t-DEPENDENCE OF DISPERSION CORRECTIONS

In the previous section, we provided an educated estimate for Re �γZ in the exact forward direction. However,
real experiments are carried out at finite momentum transfer t, in particular |t| = 0.03 GeV2 for the kinematics
of the QWEAK experiment. To extrapolate the forward sum rule to non-zero momentum transfer, we employ the
phenomenological model that was successfully used for the beam normal spin (Mott) asymmetry in elastic ep-scattering
[49–51]. This model is inspired by i) experimental data on the Compton differential cross section at small t and high
energy, and ii) the assumption of the predominantly imaginary phase of the Compton amplitude at high energies (as
for the pomeron).

The data exhibit an exponential t-dependence,

dσ

dt
=

(
dσ

dt

)
t=0

e−B|t| (58)
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FIG. 17: (Color online) The dependence of the combined dispersion correction to QpW on the elastic momentum transfer t. The
central value is shown in red; the thin black lines indicate the uncertainty.

with the slope parameter B = 7 ± 1 GeV−2 [52]. The differential cross section is related to the Compton amplitude
squared, whereas the total cross section – through the optical theorem – is related to the imaginary part of the
Compton amplitude. Naively, then, one might expect the t-dependence of the total cross section near the forward
scattering limit to be close to half as rapid as that of the differential cross section. Based on this ansatz, Ref. [49]
proposed parameterizing the t-dependence of the slightly off-forward total cross section as

σtot(t) ≈ σtot(t = 0) e−
B|t|
2 . (59)

This parameterization becomes precise at very high energies where the cross section is pomeron-dominated. We will
follow a similar parameterization here.

This intrinsic t-dependence of the γZ-box contribution should be combined with the γγ-box contribution that
becomes non-zero when going to finite t. We found the effect of the dispersive contributions to �γγ on APV to be
negligibly small, of order below 0.1% at the QWEAK kinematics at −t = 0.03 GeV2. The reason for this smallness
is due to an explicit t-suppression of �γγ with respect to the tree level PC amplitude. Using the same approach, we
obtain for the t-dependence of the dispersion correction

�γZ(E, t) = �γZ(E, 0)
exp(−B|t|/2)

F γp1 (t)
, (60)

according to the definition of �γZ as the ratio of the γZ-box contribution to the PV amplitude f4(E, t) to the elastic
proton electromagnetic form factor F γp1 (t).

In Fig. 17, we display the t-dependence of the combined dispersion correction for small values of the elastic
momentum transfer. It can be seen that one can expect that at |t| = 0.03 GeV2, the dispersion correction decreases
by only about 2% relative to its value at t = 0, and the same is valid for the uncertainty in calculating this correction.
We emphasize, however, that the model for the t-dependence is derived from high-energy Compton data, and it is
not necessarily applicable to the resonance contributions. Thus, our estimate of the effect of the t-dependence should
be considered as an exploratory investigation. Having this caveat in mind and taking into account this t-dependence,
we obtain our final result for the dispersion γZ correction at the kinematics of the QWEAK experiment:

Re�γZA(E = 1.165 GeV, t = −0.03 GeV2) = (61)[
5.39± 0.27 (mod. avg.) ± 1.88 (backgr.)+0.58

−0.49 (res.)± 0.07 (t− dep.)
]
× 10−3 .

To assess the relative impact of the energy-dependent contribution from �γZA we first quote the result from
Refs. [3, 6] for the weak charge, as defined in Eq. (2):

QpW = 0.0713± 0.0008 (62)
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Compared to this prediction, the relative effect of the �γZA contribution at the kinematics of the QWEAK exper-
iment is

Re�γZA
QpW

= (7.6± 2.8)% (63)

Because this contribution was initially neglected in the analysis of radiative corrections for the QWEAK experiment,
the final theory prediction and the respective uncertainty have to be corrected to include it. Treating all the individual
uncertainties quoted above as independent, we obtain

lim
t→0

WPV

WEM
= QpW +�γZA

= (0.0767± 0.0008± 0.0020γZ) . (64)

As discussed in Refs. [3, 6], the first error includes a conservative ∼ 1% error associated with CγZ that appears in
the prediction for QpW . The additional uncertainty associated with the energy-dependent contribution from �γZA is
almost entirely due to the uncertainty due to the isospin structure of the background. The latter, in turn, is largely
dominated (70%) by the uncertainty due to the “continuum” contribution that does not have well-defined isospin
content.

To recollect, the continuum contribution that arises in both the näıve GVD and GVD/CDP frameworks is a
measure of the incompleteness of the vector meson basis for the energetic photon. Its value at the real photon point
is obtained from the direct comparison of the VDM sum rule with the experimental photoproduction cross sections
where one finds roughly a 20% deficit in the näıve GVD approach. Departing from the real photon point, one employs
phenomenological models for the Q2-dependence for this contribution, such that in this way the generalized VDM
description fits the virtual photoabsorption data at moderate Q2. It turns out that above Q2 = 2 GeV2, the continuum
contribution becomes dominant.

Strictly speaking, these observations only apply at high energies, as the VDM sum rule measurement at HERA was
performed at W = 82 GeV. In absence of an independent evaluation at lower eneriges, we are forced to extrapolate
this isospin decomposition down to lower energies. While this extrapolation is in line with the general assumptions of
the VDM, there is no guarantee that the isospin decomposition of the photon wave function is energy-independent. To
illustrate where the high-energy assumptions may break down, we note that one of the purely high energy scattering
assumptions in the derivation of the VDM sum rule is the neglect of the real part of the forward Compton amplitude
with respect to the imaginary part. While this holds for the Pomeron – whose phase is almost purely imaginary
– Reggeon exchanges contribute to both real and imaginary part. The main contribution to Re�γZ comes from
energies of W . 5 GeV where the reggeon contribution dominates. Thus, a re-evaluation of the VDM sum rule at
JLab energies will likely help to reduce the theory uncertainty on the Re�γZ calculation.

VII. COMPARISON TO RELATED WORKS ON DISPERSION γZ CORRECTION

In this Section, we briefly outline the main improvements achieved in this article with respect to our previous work,
as well as the recent work carried out by other groups. In Ref. [11], the forward dispersion relation for �γZ was
derived and evaluated with the result of Re�γZ ≈ 0.003. However, that study used an over-simplified model of virtual

photoabsorption and for the sake of simplicity assumed that F γZ1,2 = F γγ1,2. These assumptions did not allow for a
realistic study of uncertainty of that result.

In Ref. [16], we improved on these two points: we employed a phenomenological model of Bosted and Christy that
fits virtual photoabsorption data over a large kinematic range; considered the isospin structure of each contribution;
and discussed the possible ways to estimate uncertainty on this calculation. Although in [16] we were able to develop
the general method that we use in this manuscript, no robust theory error bar was obtained.

Sibirtsev, Melnitchouk, Blunden and Thomas in Ref. [15] re-checked the findings of Ref. [11]. That group carefully
re-derived the sum rule pointing out two errors in [11] which have been corrected here. Furthermore, the authors of
[15] proposed a model of the virtual photoabsorption that was directly fit to the experimental data. This allowed
them to obtain an estimate for the uncertainty in the dispersive calculation of �γZ from the error bar of the fit. To

obtain the interference structure functions F γZ1,2 from the purely electromagnetic ones F γγ1,2, the authors of [15] relied
on isovector dominance in the resonance region. For the background, employed a simple scaling prescription for the
background

F γZ2

F γγ2

=

[
F γZ2

F γγ2

]DIS
, (65)



28

extrapolating the isospin structure from the DIS region to low energies. Ref. [15] confirmed that the dispersion correc-
tion is sizeable, obtaining the value quoted in Table I, where the error bar is due solely to fitting the electromagnetic
data. The uncertainty on the isospin rotation of the electromagnetic data was not included. Correspondingly, the
error bar quoted in [15] only contains one part of the total theoretical uncertainty in evaluating Re�γZ .

Rislow and Carlson subsequently performed another computation of the dispersive contribution to �γZA [17]. These
authors again confirmed the derivation of the sum rule and re-evaluated it obtaining the somewhat larger result quoted
in Table I. This was achieved by using a different model for the resonances (the same as used in our present work)
that allows for a better fit of electromagnetic data. The central value of Re�γZ is very close to our estimate in
forward direction, see Eq. (56). The background was taken in a phenomenological form and continued into the DIS
region. The authors discussed in some detail the procedure of isospin-rotating the resonance contributions using the
constituent quark model. For the background, Ref. [17] follows to a large extent the isovector dominance picture with
a perturbation on top of that that provides an estimate of the uncertainty.

Both Refs. [15, 17] argue that the uncertainty on the dispersive calculation of Re�γZ is well under control and
can be easily accomodated within the error budget of the QWEAK. However, because they do not provide a model-
independent analysis of the isospin structure, we believe that the estimates of the error bars obtained in those two
works is unlikely to be complete.

In this manuscript, we believe we have developed the most robust and model-independent estimate to date of the
absolute size and the uncertainty of the dispersion γZ correction to APV in the forward limit. We used the most
recent fit to resonance data, supplemented by two different models of the background. We demonstrated that the two
models used in this work indeed provide a good description of the experimental data in a very wide kinematic range
of two variables W,Q2.

For the I = 1/2 resonances, we employed an isospin rotation that is reminiscent of that for the elastic electroweak
form factors. This allows one to unambiguously relate the ratio of interference γZ and the electromagnetic cross
sections to combinations of transition helicity amplitudes for the photoexcitation of a given resonance on the proton
and the neutron. We used the most recent values and uncertainties for the latter from PDG [40]. The main sources
of the uncertainty for the I = 1/2 resonances is the neutron transition helicity amplitude of S11(1535), where a more
precise extraction of the transition helicity amplitude on the neutron would be needed. For the I = 3/2 resonances,
the isospin rotation is straightforward. However, we assigned a 100% uncertainty to the contribution of the heavy
resonance state that lies close to F37(1950) but cannot be reliably identified with the latter and whose isospin structure
is, therefore, uncertain.

For the background we utilized two models based on the framework of vector dominance model (VDM) that provides
a prescription for the isospin decomposition of total photoabsorption at high energies. The VDM sum rule states an
equality between the total photoabsorption and differential cross sections for forward vector meson production. This
sum rule has been tested experimentally, albeit only at very high energies. The precision to which this sum rule holds
provides us with one handle for assessing for the robustness of our isospin decomposition of the electromagnetic data.
To investigate the model dependence, we use two different models that obey the general requirements of the VDM
but originate from two kinematically distinct regimes: Model I is a pQCD color dipole model (what we have called
the GVD/CDP approach) that is continued down to the real photon point by employing phenomenological input
[37]. Model II is a “naive” generalization of VDM quoted in [39]. The two models lead to similar numerical results,
but within each model the estimate of uncertainties is different. The largest contribution to our quoted theoretical
uncertainty arises from lack of knowledge of the isospin structure of the terms in these models that are not uniquely
associated with any one of the three lightest vector mesons. To be conservative, we have chosen the largest of the
corresponding uncertainties from the two models.

Finally, we considered a phenomenological model for the intrinsic t-dependence to extrapolate the forward sum rule
to the experimental kinematics. We find that the effect of such extrapolation is not significant. However, we consider
this approach to be exploratory, and an additional uncertainty on t-dependence may have to be taken into account.

To reduce the uncertainty associated with �γZ to a level below 2%, there exist a number of avenues that could be
pursued. The most direct would be to perform measurements of the inelastic PV asymmetries in the kinematic region
that dominates the dispersion integral: W < 5 GeV and Q2 . 3 GeV2. Doing so would provide information on the

electroweak structure functions F γZ1,2 that enter the dispersion integral for �γZ , thereby mitigating the need for a model
with which to carry out the isospin rotation. Additional constraints could be obtained by experimentally testing the
VDM sum rule at the lower energies relevant to the aforementioned kinematics; by performing precise measurements
of the electromagnetic neutron-to-resonance transition cross sections, thereby yielding the corresponding helicity
amplitudes — particularly for the S11(1535); and identifying the isospin of the F37(1950) resonance.

An alternate strategy would be to perform a measurement of APV at lower energy, given that the magnitude of,
and uncertainty in, �γZ decrease monotonically with decreasing energy as indicated in Fig. 16 and Eq. (57). From
the standpoint of probing physics beyond the Standard Model, a measurements of atomic PV observables for different
isotopes may also be interesting. The largest atomic theory uncertainties cancel from ratios of these observables[53],
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and the leading sensitivity to new physics is dominated by the effects on the proton weak charge[4]. To the extent
that uncertainties in the neutron distributions can be constrained (e.g., through measurements of the elastic PV
asymmetry for heavy nuclei), “isotope ratio” experiments may provide a cross-check on any inferences about new
physics derived from the QWEAK measurement. Given the experimental and theoretical challenges involved in each
of these efforts, an ideal program may entail a combination of the aforementioned measurements.
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Appendix A: Isospin rotation of the resonance contributions

In Standard Model, the Z and γ couplings to the quarks are related by an isospin rotation,

Jµem = qI=0JµI=0 + qI=1JµI=1 + qsJµs

JµNCV = gI=0
V JµI=0 + gI=1

V JµI=1 + gsV J
µ
s , (A1)

with

JµI=0 =
1√
2

(ūγµu+ d̄γµd)

JµI=1 =
1√
2

(ūγµu− d̄γµd)

Jµs = s̄γµs (A2)

The e.m. charges given by qI=0 = 1
3
√
2
, qI=1 = 1√

2
, qs = − 1

3 , and the weak charges are gI=0
V = − 1√

2
4
3s

2θW ,

gI=1
V = 1√

2
(2− 4s2θW ), gsV = −1 + 4

3s
2θW . Consequently, this isospin decomposition relates weak proton form factors

to the proton and neutron electromagnetic form factors,

〈p|JµNC,V |p〉 = (1− 4 sin2 θW )〈p|Jµem|p〉 − 〈n|Jµem|n〉
(A3)

Above, we neglected strangeness contributions that are generally small.
A similar relation is valid for I = 1

2 resonances, as well:

〈X|JµNC,V |p〉 = (1− 4 sin2 θW )〈X|Jµem|p〉 − 〈X|Jµem|n〉
(A4)

Then, the contribution of a resonance R with isospin 1/2 to the interference γZ cross section can be related to its
contribution to the electromagnetic cross section by

〈p|Jµem|R〉〈R|J
µ
NC,V |p〉 = (1− 4s2θW )|〈R|Jµem|p〉|2

− 〈p|Jµem|R〉〈R|Jµem|n〉 (A5)

To proceed, we use the definition of the transition helicity amplitudes,

A
p(n)
R,1/2(W 2, Q2) = 〈R,ΛR = 1/2|Jµem(λγ = 1)|p(n),ΛN = −1/2〉

A
p(n)
R,3/2(W 2, Q2) = 〈R,ΛR = 3/2|Jµem(λγ = 1)|p(n),ΛN = 1/2〉

S
p(n)
R,1/2(W 2, Q2) = 〈R,ΛR = 1/2|Jµem(λγ = 0)|p(n),ΛN = 1/2〉 (A6)



30

where we introduced photon helicity λγ = 0,±1, nucleon helicity ΛN = ±1/2 and the helicity of the resonance R that
is related to the former two as ΛR = ΛN + λγ . Resonance contributions to the total cross sections σT,L are related to
the helicity amplitudes as

σ
γp(γn),R
T =

2M

MRΓR

{
|Ap(n)R,1/2|

2 + |Ap(n)R,3/2|
2
}
,

σ
γp(γn),R
L =

4M

MRΓR

Q2

q2R
|Sp(n)R,1/2|

2, (A7)

with MR,ΓR and qR the resonance mass, width and the three-momentum of the virtual photon on the resonance
position, respectively. In the above equation, the arguments W 2, Q2 of the cross sections and helicity amplitudes were
suppressed.

We combine the definition of Eq. (35) with Eqs. (A5), (A6), (A7), and finally obtain

ξRZ/γ(Q2) = (1− 4s2θW )−
Ap
R, 12

An∗
R, 12

+Ap
R, 32

An∗
R, 32

|Ap
R, 12
|2 + |Ap

R, 32
|2

,

ζRZ/γ(Q2) = (1− 4s2θW )−
Sn
R, 12

Sp
R, 12

, (A8)

For spin- 12 resonances, only Ap,n1/2 pieces contribute in the transverse ratios ξRZ/γ . To a good approximation, the

width and position of a resonance can be assumed to be the same for proton and neutron induced reactions. In this
case, the W -dependence cancels out in the ratio, and it is fucntion of Q2 only.

We write in general

ξRZ/γ(Q2) = (1− 4s2θW )− yR × xR(Q2),

ζRZ/γ(Q2) = (1− 4s2θW )− ỹR × x̃R(Q2),

(A9)

with yR (ỹR) the values of the ratio of the neutron and proton transverse (longitudinal) helicity amplitudes in Eq.
(A6) at Q2 = 0, and xR (x̃R) the respective form factors. The form factors are normalized to unity at the real photon
point.

For the resonances of isospin 3/2, the transition is purely isovector, and the ratio of the cross sections is given by
gI=1
V

qI=1 = 2 − 4 sin2 θW , and is Q2-independent. However, for the phenomenological analyses of the inclusive virtual

photoabsorption data on the proton and neutron, Refs. [38, 42] widely used in this work, this rule does not hold.
For the ∆(1232) it holds to about 10%. For the F37(1950), the proton and neutron transition form factors show
very different behavior (monopole for the proton vs. dipole for the neutron). Furthermore, the unnaturally mild
monopole form factor raises a question of whether this contribution should be considered as part of the background
where monopole form factors arise naturally in the VDM picture. Correspondingly, rather than operate with a form

factor xR(Q2 for the two isospin-3/2 resonances we will assign an uncertainty to the ratios y
I=3/2
R = −1: 10% for the

∆(1232) and 100% for the F37(1950), and use xR(Q2) = 1 for both.
We next turn to the form factors xR(Q2) of the isospin-1/2 resonances. To estimate these, one needs the Q2-

dependence of the transition helicity amplitudes for the excitation of these resonances. Unfortunately, the phe-

nomenological fits of Refs. [38, 42] do not provide us with this information: they only give us |Ap(n)R,1/2|
2 + |Ap(n)R,3/2|

2

and |Sp(n)R,1/2|
2. Instead, we need e.g., Ap

R, 12
An∗
R, 12

+ Ap
R, 32

An∗
R, 32

. For spin-1/2 resonances, only A1/2’s contribute. Then,

one has for the second terms in Eq. (A8)

Ap
R, 12

An∗
R, 12

|Ap
R, 12
|2

= ±

√
σγn,RT

σγp,RT

,

Sp
R, 12

Sn∗
R, 12

|Sp
R, 12
|2

= ±

√
σγn,RL

σγp,RL

, (A10)

and the only missing piece above is the relative sign of the proton and neutron helicity amplitudes. This sign is well
defined and can be taken, for instance, from the PDG or from quark model [43]. For spin-3/2 resonances D13(1520)
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and F15(1680), the information provided by Refs. [38, 42] is not sufficient to determine respective xR(Q2). We can
only approximately estimate those by noticing that for these resonances, the PDG suggests that the p→ N∗ transition
is completely dominated by the A3/2 helicity amplitude [40]. Then, we can adapt the same logic as for the spin-1/2
resonances, by substituting A3/2’s in place of A1/2’s in Eq. (A10).

However, this procedure cannot be considered reliable since such “extracted” form factors xR(Q2) will contain a
model dependence that is very hard to estimate. Instead, we will use the following reasoning. We verified that with
the approximations described above, the results of Refs. [38, 42] lead to the form factors xR(Q2) that differ from 1
by at most 10-20% for values of Q2 ≤ 0.6− 0.8 GeV2 for all five isospin-1/2 resonances. At the same time, the PDG
quotes the errors for the helicity amplitudes [40] for the excitation of those resonances that are conservative enough to
accomodate these 10-20% discrepancy. Indeed, the PDG values represent an average over world data and over various
analyses, therefore the errors that they quote contain not only the statistical and systematic error of each experiment,
but also the systematic error due to model dependence of those analyses. This means that at low values of Q2, the
error introduced if setting xR(Q2) ≈ xR(0) = 1 is reasonably small as compared to the error in the respective yR.
While at larger values of Q2 this is not the case any longer, due to resonance form factors the impact of these values
of Q2 on the dispersion correction �γZ is small. From the discussion of the results, we see that

• the resonance contribution is dominated by the ∆(1232) for which the issue of the uncertainty in xR(Q2) is
controlled within 10%, as discussed earlier;

• the overall uncertainty on the resonance contribution is dominated by that due to the problem of the identification
of the high lying resonance in the analysis of Bosted and Christy with the F37(1950);

• the total uncertainty in the dispersion correction �γZ is dominated by the uncertainty due to the background
contribution. Then, even doubling the uncertainty in the contribution of the S11(1535) due to xR(Q2) will not
significatly change our overall conclusions.

This allows us to set all xR(Q2) = 1 for all seven resonances considered here (including the isospin-3/2 resonances
discussed earlier). The error introduced by this approximation is safely covered by using the conservative PDG errors
for the resonance helicity amplitudes.

Finally, we discuss the ratios of the longitudinal cross sections ζRZ/γ . In Ref. [42], it was shown that the hypothesis

that the ratio of the resonance contributions to longitudinal and the transverse cross sections for the proton and for the
neutron target are equal, is well supported by the experimental data. Although this conclusion is model-dependent,
as well, the general impact of the longitudinal cross section on the �γZ was found to be very small. This allows us to
use the assumption of Ref. [42] here and set ζRZ/γ = ξRZ/γ for all seven resonances. As a result, we arrive at Eq. (37)

with ξRZ/γ = 1− 4 sin2 θW − yR where the values of yR are listed in Table III.
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