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W. Cosyn∗ and M. Sargsian
Department of Physics, Florida International University, Miami, Florida 33199, USA

(Dated: April 12, 2011)

Semi-inclusive deep inelastic scattering off the Deuteron with production of a slow nucleon in recoil
kinematics is studied in the virtual nucleon approximation, in which the final state interaction (FSI)
is calculated within generalized eikonal approximation. The cross section is derived in a factorized
approach, with a factor describing the virtual photon interaction with the off-shell nucleon and a
distorted spectral function accounting for the final-state interactions. One of the main goals of the
study is to understand how much the general features of the diffractive high energy soft rescattering
accounts for the observed features of FSI in deep inelastic scattering(DIS).

Comparison with the Jefferson Lab data shows good agreement in the covered range of kinematics.
Most importantly, our calculation correctly reproduces the rise of the FSI in the forward direction
of the slow nucleon production angle.

By fitting our calculation to the data we extracted the W and Q2 dependences of the total cross
section and slope factor of the interaction of DIS products, X, off the spectator nucleon. This
analysis shows the XN scattering cross section rising with W and decreasing with an increase of
Q2. Finally, our analysis points at a largely suppressed off-shell part of the rescattering amplitude.

PACS numbers: 11.80.-m,13.60.-r,13.85.Ni

I. INTRODUCTION

In recent years, a process that has garnered a fair amount of attention is the d(e, e′ps)X reaction at high Q2. In
this reaction, deep inelastic scattering (DIS) occurs on a constituent of the deuteron and a slow spectator proton
is detected in coincidence with the scattered electron. This reaction can be used in several ways to study the role
of the QCD dynamics at nucleonic length scales. At very small spectator proton momenta, the DIS occurs on a
nearly on-shell neutron and it allows one to extract information about the “free” neutron structure function F2N

in a way that minimizes the nuclear effects inherent to a bound neutron. Detailed information about the neutron
structure function helps to constrain the QCD models of the nucleon and can be used to determine the relative d
to u quark densities at large Bjorken x. At larger spectator momenta, high density configurations of the deuteron
will occur in which the proton and neutron are in very close proximity to each other. Under these circumstances
the partonic structure of nucleons could strongly modify [1] with the possibility of two nucleons merging into six
quark configurations at asymptotically large relative momenta in the deuteron [2, 3]. Consequently, experiments that
explore these kinematics can be used to study the modifications of nucleon properties and the role of quark degrees
of freedom in these situations. Two recent Jefferson Lab Hall B experiments have studied the d(e, e′ps)X reactions:
one at high [4], and the other at low spectator momenta [5]. New measurements will be possible after the 12 GeV
upgrade of JLab is completed.

In experiments exploring the partonic structure of the nucleon, one generally wants to have kinematics that minimize
the final-state interactions (FSI) of the produced X-states with the spectator nucleon as this FSI make the extraction
of the observable one is looking for less straightforward. On the other hand the d(e, e′ps)X reaction in kinematics that
favor larger contributions from FSI can be used in order to study the process of hadronization. The attenuation of the
produced hadronic state by the spectator when compared to the free process can yield information on the space-time
structure of the hadronization process. Thus in this respect FSI becomes very important part of the semi-inclusive
DIS process. To quantify the effects of FSI in DIS, model calculations are needed and this has already resulted in the
development of several theoretical approaches [1, 6–12].

The major problem one faces in calculations of FSI of DIS products with the spectator nucleon in d(e, e′N)X
reactions is the lack of the detailed understanding of the composition and space-time evolution of the hadronic
system produced after the deep inelastic scattering of the virtual photon off the bound nucleon. Moreover both the
composition and space-time evolution are function of the Bjorken x and Q2 probed in the reaction.
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In this paper we study the question on how much the final state interaction of the DIS products are defined by
the general properties of soft reinteractions. In other words, how far we can go with the description of FSI without
knowing the specific properties of the hadronic intermediate state after the initial DIS scattering? Based on the
general properties of the reaction a factorized approach is used in the calculations, whereby the cross section is
split into the parts describing the interaction of the virtual photon with a bound nucleon and the distorted spectral
function which includes the effect of final-state interactions. The deep inelastic interaction with moving bound nucleon
is calculated within the virtual nucleon approximation while the FSI are included using the framework of generalized
eikonal approximation (GEA) [13–15].

The paper is organized as follows. In Sec. II we describe the general properties of the reaction and main assumptions
based on which we derive the plane-wave impulse approximation and final-state interaction parts of the scattering.
An overview of the various approximations used in this derivation is also given. In Sec. III, the results of our model
calculations are discussed and compared to the data from the Deeps experiment performed at JLab [4]. Finally,
conclusions are given in Sec. IV.

II. FORMALISM

A. General Structure of the Reaction

We consider the process

e+ d→ e′ + ps +X, (1)

in which incoming electron e has energy Ee, while Ee′ and θe denote the energy and scattering angle of the final
electron e′. We define the lab frame four-momenta of the involved particles as pD ≡ (MD, 0) for the deuteron,

q ≡ (ν, ~q) for the virtual photon (with the z-axis chosen along ~q), ps ≡ (Es =
√
~p2
s +m2

p, ~ps) for the spectator proton

and px ≡ (EX , ~pX) = (ν + MD − Es, ~q − ~ps) the center of mass momentum of the undetected produced hadronic
system X. We can express the differential cross section for process (1) through the four independent DIS structure
functions in the following form:

dσ

dxdQ2dφe′
d3ps

2Es(2π)3

=
2α2

EM

xQ4
(1− y − x2y2m2

n

Q2
)

(
FDL (x,Q2) + (

Q2

2|q|2
+ tan2 θe

2
)
ν

mn
FDT (x,Q2)+√

Q2

|q|2
+ tan2 θe

2
cosφFDTL(x,Q2) + cos 2φFDTT (x,Q2)

)
. (2)

Here, αEM is the fine-structure constant, −Q2 = ν2− ~q2 is the four-momentum transfer, Bjorken x = Q2

2mnx
(with mn

the mass of the neutron), y = ν
Ee

, and φ is the angle between the scattering (e, q) and reaction (q, ps) planes .
We now define the nuclear electromagnetic tensor as

Wµν
D =

1

4πMD

1

3

∑
X

∑
ss,sx,sD

〈DsD|J†µ|Xsx, psss〉〈Xsx, psss|Jν |DsD〉

× (2π)4δ4(q + pD − ps − px)d3τx , (3)

with d3τx a phase-space factor for X, and sD, ss, and sx the spin projection of the deuteron, spectator proton and X
respectively. The four deuteron semi-inclusive structure functions FDi (x,Q2) are related to components of the nuclear
electromagnetic tensor Wµν

D as follows:

FDL (x,Q2) = ν
Q4

|q|4
W 00
D (x,Q2) ,

FDT (x,Q2) = mn(W xx
D (x,Q2) +W yy

D (x,Q2)) ,

FDTL(x,Q2) cosφ = −2ν
Q2

|q|2
W 0x
D (x,Q2) ,

FDTT (x,Q2) cos 2φ = ν
Q2

2|q|2
(W xx

D (x,Q2)−W yy
D (x,Q2)) . (4)
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B. Main Approximations

In the further derivations we use the following approximations which are based largely on the general properties of
DIS scattering as well as properties of the subsequent small angle rescattering of the fast moving hadronic system off
the slow recoil nucleon:

- virtual nucleon approximation: To treat the electromagnetic interaction with the bound nucleon in the deuteron
we use the virtual nucleon approximation (VNA) in which it is assumed that the virtual photon interacts with
the off-shell nucleon in the deuteron while the second nucleon is on its mass shell [1, 7, 16]. The VNA is based
on the following main assumptions: (i) only the pn component of the deuteron wave function is considered in
the reaction, (ii) the negative energy projection of the virtual nucleon propagator gives negligible contribution
to the scattering amplitude, and (iii) interactions of the virtual photon with exchanged mesons is neglected.
Assumptions (i) and (ii) can be satisfied when the momentum of the spectator proton is limited to ps ≤ 700
MeV/c [17], while (iii) is satisfied at large Q2 (> 1 GeV2) [15, 18].

The electromagnetic tensor of the γN interaction is off-shell and the gauge invariance is restored by expressing
the longitudinal component of the electromagnetic current through its 0’th component as follows:

J3 =
q0

q3
J0 . (5)

The nuclear wave function in the VNA is normalized to account for the baryon number conservation [19–22]:∫
α|ΨD(p)|2d3p = 1, (6)

where α = 2 − 2(Es−ps,z)
MD

is the light cone momentum fraction of the deuteron carried by the bound nucleon
normalized in such a way that the half of the deuteron momentum fraction corresponds to α = 1. Because of
the virtuality of interacting nucleon it is impossible to satisfy the momentum sum rule at the same time. As a
result ∫

α2|ΨD(p)|2d3p < 1, (7)

which can be qualitatively interpreted as part of the deuteron momentum fraction being distributed to non-
nucleonic degrees of freedom which are unaccounted for within the VNA.

By applying the VNA for calculation of the matrix element 〈Xsx, psss|Jµ|DsD〉, we can limit the Feynman
diagrams taken into account to those of Fig. 1 in which 1(a) represents the plane-wave impulse approximation
(PWIA) diagram. Here DIS occurs on the neutron and the proton is left in the on-shell positive energy state
without further interaction in the final state. The diagram of Fig. 1(b) shows again DIS on the neutron, which
is afterwards followed by a X ′p → Xp rescattering. In calculating this diagram we have to sum over the all
possible intermediate X ′ states.

The calculation of the final-state interactions is based on the following main assumptions for the rescattering
diagram of Fig. 1(b).

- diffractive form of the rescattering amplitude: In the considered reaction the FSI represents a small angle
rescattering of the DIS products off the slow spectator nucleon. It is in principle a very complex problem to
account for the details of the interaction of the intermediate “X ′” state since its structure depends on the Q2

(xBj) and the produced mass W of the γ∗N reaction. However in the limit where the produced intermediate
and final masses are small compared to the transferred momenta:

q �MX′ ,MX′ , (8)

one can assume that the propagation of the produced hadronic system is eikonal and the general structure of
the small angle rescattering is diffractive. The approximation of Eq.(8) allows one to model the FSI amplitude
of the hadronic X ′ system in the following form:∑

X′

fX′N,XN = fXN (t, Q2, xBj) = σtot(Q
2, xBj)(i+ ε(Q2, xBj))e

B(Q2,xBj)

2 t, (9)
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FIG. 1: Diagrams entering in the model for the d(e, e′ps)X reaction. Panel (a) shows the plane-wave contribution. Panel (b)
shows the FSI term.

where the sum of the all possible X ′N → XN amplitudes are represented in the effective diffractive ampli-
tude form, fXN (t, Q2, xBj) with effective total cross section σtot, real part, ε and slope factor B. A similar
approximation is used for the FSI studies in semi-inclusive DIS scattering [1, 6–11] as well as for studies of color
transparency phenomena in which the intermediate state represents an off-shell coherent composite system with
reduced interaction cross section (see e.g. [13, 23–28]). In principle, a more elaborate model which sums the
contribution of different resonances as e.g. in Ref. [29] could be used but this would go beyond the goal in this
paper of describing the reaction with the basic elements of high-energy rescattering.

- factorization: In the situation in which momentum transfer in DIS exceeds the momentum of the recoil slow
nucleon one can factorize DIS scattering from the amplitude of the final state interaction. Such an approximation

commonly referred as distorted wave impulse approximation (DWIA) is valid in the limit of
√
Q2 � ps in which

case the electromagnetic current is insensitive to the momentum of the stuck nucleon. The validity of the
DWIA was checked quantitatively for quasielastic scattering in the case of d(e, e′N)N reactions [17, 30]. These
calculations demonstrated that for Q2 = 2−4 GeV2 factorization approximation works reasonably well for up to
ps = 400 MeV/c and then at larger momenta it systematically underestimates the FSI contribution as compared
to the prediction based on an unfactorized calculation. The underestimation can be understood qualitatively,
since in the case of nonfactorization the amplitude of electromagnetic interaction enters in the FSI amplitude at
smaller values of bound nucleon momenta and therefore predicts more rescattering than the DWIA does. This
pattern one also expects to be generally valid for inelastic interactions.

- approximate conservation law of high energy small angle scatterings: In the eikonal regime of small angle
scattering there is an approximate conservation law for the “−” component [37] of slow nucleon momenta
involved in the scattering [15]. According to this law, because the fast particle attains its momentum after the
small-angle scattering the slow nucleon will conserve its “−“ component. This follows from the conservation of

the “-” component of the total momentum in X ′N ′ → XN scattering and relations pX′− ≈
m2

X′+p
2
X′⊥

2q � 1 and

pX− ≈
m2

X+p2X⊥
2q � 1 provided that the condition of Eq. (8) is satisfied. This yields:

ps′− − ps− = pX− − pX′− ≈ 0 . (10)
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Using this relation and assuming that

p2
s⊥ < k2

⊥ (11)

where k2
⊥ is the average transferred momentum in the rescattering one obtains:

m2
X = (pX′ + ps′ − ps)2 ≈ m2

X′ − 2pX′⊥(ps′⊥ − ps⊥)− k2
⊥ ≈ m2

X′ + k2
⊥ > m2

X′ (12)

where in the above derivation we used the fact that in the limit of Eq. (11) pX′⊥ = −ps′⊥ ≈ k⊥. The above
result qualitatively means that in the situation in which two collinear particles are produced by the diffractive
scattering of a fast and slow particle with equal and opposite transverse momenta the mass of the final fast
particle is larger than the initial mass.

Using the characteristic values of the diffractive slope, B = 4 − 6 GeV−2, one can estimate k⊥,RMS ≈ 500 −
600 MeV/c. This estimate of k⊥ and Eq. (11) further constrains the values of spectator nucleon momenta for
which the calculations will be valid.

Our derivations in the following two subsections are based on the above assumptions.

C. Plane-wave impulse approximation

Applying Feynman diagram rules (see e.g. Ref. [15]) and introducing the effective wave functions of the final
hadronic system X, the amplitude of the PWIA diagram in Fig. 1(a) takes the following form:

〈Xsx, psss|Jµ|DsD〉PWIA = −Ψ̄X(pX , sX)Γµγ∗X
/pi +mn

p2
i −m2

n

· ū(ps, ss)ΓDNN · χsD . (13)

Here, ΨX is a wave function for X and Γµγ∗X represents the electromagnetic vertex of the DIS. The transition of the
deuteron into a pn system is described by the vertex function ΓDNN and χsD denotes the spin wave function of the
deuteron. The lab frame four-momentum of the struck neutron pi in the PWIA is defined as

pi = (MD − Es,−~ps) . (14)

We now split the initial nucleon propagator in on-shell and off-shell parts by adding and subtracting an on-shell
energy part:

/pi +mn = /p
on
i

+mn + (Eoff
i − Eon

i )γ0 , (15)

with Eoff
i = MD − Es and Eon

i =
√
m2
n + p2

s. Next we write

/p
on
i

+mn =
∑
si

u(pi, si)ū(pi, si) , (16)

(Eoff
i − Eon

i )γ0 ≈ Eoff
i − Eon

i

2mn
γ0
∑
si

u(pi, si)ū(pi, si) , (17)

where in the last equation we used
∑
si
u(pi, si)ū(pi, si) ≈ 2mnI, which is consistent with neglecting the negative

energy component of the bound nucleon propagator. Now, with the definition [31, 32]

ΨsD
D (p1s1, p2s2) = − ū(p1, s1)ū(p2, s2)ΓDNN · χsD

(p2
1 −m2

1)
√

2
√

2(2π)3(p2
2 +m2

2)
1
2

, (18)

we can write Eq. (13) as

〈Xsx, psss|Jµ|DsD〉PWIA =
√

2
√

(2π)32Es
∑
si

〈Xsx|Γµγ∗N,X |pisi〉
(

1 +
Eoff
i − Eon

i

2mn
γ0

)
×ΨsD

D (pisi, psss) . (19)
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Even though Eq. (13) is gauge invariant, one can not calculate the off-shell part of the current explicitly since the form

of the electromagnetic vertex Γµγ∗N,X is unknown. Instead, in the reminder of the derivation the term
Eoff

i −Eon
i

2mn
γ0

associated with the off-shell behavior of the photon-neutron interaction will be dropped and the gauge invariance will
be restored through Eq. (5). Inserting Eq. (19) in Eq. (3) we obtain for the PWIA contribution

Wµν
D =

1

4πMD

2

3

∑
X

∑
ss,sx,sD,si,s′i

〈pisi|Γ†µγ∗N,X |Xsx〉〈Xsx|Γ
ν
γ∗N,X |pis′i〉

× (2π)4δ4(q + pi − px)d3τx(2π)32EsΨ
†sD (pisi, psms)Ψ

sD (pis
′
i, psms) . (20)

We can simplify this further by using∑
sD,ss

Ψ†sD (pisi, psms)Ψ
sD (pis

′
i, psms) =

∑
sD,ss

|ΨsD (pisi, psss)|2 δsi,s′i (21)

and ∑
sD,ss

|ΨsD (pisi = +1, psss)|2 =
∑
sD,ss

|ΨsD (pisi = −1, psss)|2 . (22)

Eq. (20) then becomes

Wµν
D =

1

4πMD

∑
X

∑
sx,si

〈pisi|Γ†µγ∗N,X |Xsx〉〈Xsx|Γ
ν
γ∗N,X |pisi〉(2π)4δ4(q + pi − px)d3τx

× (2π)32Es
1

3

∑
sD,ss,s′i

|ΨsD (pis
′
i, psss)|

2
. (23)

After defining the spectral function

S(ps) ≡
1

3

∑
sD,ss,si

| ΨsD (pisi, psss) |2 , (24)

and using the following expression for the nuclear tensor of the DIS process on a moving nucleon

Wµν
N =

1

4πmn

1

2

∑
X

∑
sx,si

〈pisi|Γ†µγ∗N,X |Xsx〉〈Xsx|Γ
ν
γ∗N,X |pisi〉(2π)4δ4(q + pi − px)d3τX . (25)

we can write Eq. (23) as

Wµν
D = Wµν

N S(ps)(2π)32Es , (26)

where we also used 2mn

MD
≈ 1. Substituting Eq. (26) in (4) allows us to relate the four deuteron DIS structure functions

to the nucleon structure functions. After straightforward calculations one obtains the following relations for the
deuteron structure functions:

FDL (x,Q2) =

[
(αi +

αq(pi · q)
Q2

)2(1 + cos δ)2 ν

ν̂
F2N (αi, x̂, Q

2)− ν

mn
sin2 δF1N (αi, x̂, Q

2)

]
× S(ps)(2π)32Es , (27)

FDT (x,Q2) =

(
2F1N (αi, x̂, Q

2) +
p2
T

mnν̂
F2N (αi, x̂, Q

2)

)
S(ps)(2π)32Es , (28)

FDTT (x,Q2) =
ν

ν̂

p2
T

m2
n

sin2 δ

2
F2N (αi, x̂, Q

2)S(ps)(2π)32Es , (29)

FDTL(x,Q2) = 2(1 + cos δ)
pT
mn

(αi +
αq(pi · q)

Q2
)
ν

ν̂
F2N (αi, x̂, Q

2)S(ps)(2π)32Es , (30)

where αi =
2p−i
MD

, αq = 2q−

MD
, ν̂ = pi·q

mn
, x̂ = Q2

2mnν̂
,cos δ = ν

|q| , sin2 δ = Q2

|q|2 , and F1N , F2N are the effective nucleon

structure functions, which are defined at x̂ and in principle could be modified due to the nuclear binding (see e.g.
Ref. [1]).
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Note that the inclusive F2, F1 and F inL structure functions of the deuteron can be obtained from the above given
semi-inclusive structure functions through the following relations:

F2,D =
∑
N

∫ [
FDL +

Q2

2|q|2
ν

mN
FDT

]
d3ps

(2π)22Es
≈
∑
N

∫ [
FDL + xFDT

] d3ps
(2π)22Es

,

F1,D =
∑
N

∫
FDT
2

d3ps
(2π)22Es

F inL,D ≡ F2,D − 2xF1,D =
∑
N

∫ [
FDL + (

Q2

2|q|2
ν

mN
− x)FDT

]
d3ps

(2π)22Es

≈
∑
N

∫
FDL

d3ps
(2π)22Es

, (31)

where one sums by the contributions of both the proton and neutron. The L.H.S. parts of the equations represent
the expressions in the case of the Bjorken limit with x fixed and Q2, ν →∞.

D. Final-state interaction amplitude

With the same notations as in Sec. II C, we can write for the amplitude of the FSI diagram in Fig. 1(b)

〈Xsx, psss|Jµ|DsD〉FSI = −
∑
X′

∫
d4ps′

i(2π)4

Ψ̄X(pX , sX)ū(ps, ss)FX′N,XN [/ps′ +mp]

[p2
s′ −m2

p + iε]

×
G(PX′)Γ

µ
γ∗X′ [/pi′ +mn]ΓDNN · χsD

[p2
X′ −m2

X′ + iε][p2
i′ −m2

n + iε]
, (32)

where G(pX′) describes the Green’s function of the intermediate state X ′ which has four-vector pX′ ≡ pi′ + q =
(ν+MD−Es′ , ~q−~ps′) and a mass mX′ , while the intermediate struck neutron has four-vector pi′ = (MD−Es′ ,−~ps′).
FX′N,XN represents the invariant X ′N → XN scattering amplitude which is expressed in the following form

FX′N,XN (s, t) =
√

(s− (mn −mX′)2)(s− (mn +mX′)2)fX′N,XN (s, t)

= β(s,mX′)fX′N,XN (s, t), , (33)

with s = (pX + ps)
2 = (pX′ + ps′)

2 the total invariant energy of the scattering system and the scattering amplitude
fX′N,XN defined such that Im [fX′N,XN (t ≡ 0)] = σtot, where σtot represents the total cross section of the scattering
of the produced X ′ system off the spectator nucleon. Based on the assumptions of the VNA from Sec. II B, the
intermediate spectator nucleon can be placed on the nucleon mass-shell by integrating d0ps′ through the positive
energy pole only: ∫

d0ps′

p2
s′ −m2

p + iε
→ −i π

Es′
. (34)

This allows us to use the on-shell spinor relation /ps′ + mp =
∑
ss′
u(ps′ , ss′)ū(ps′ , ss′) in the nominator of Eq. (32).

For the propagator of the initial neutron we again use the prescription of Eqs. (15) to (16). For the intermediate state
X ′ an on-shell relation for the Green’s function G(pX′) =

∑
sx′

ψ(px′ , sx′)ψ
†(px′ , sx′) is used as in the high Q2 limit

the off-shell contribution in Eq. (32) becomes small due to the large momentum involved in the propagator of the
intermediate state X ′. By making use of p2

X = (q + pD − ps)2 = m2
X , the denominator of the X ′ propagator can be

rewritten as

p2
X′ −m2

X′ + iε = 2 | ~q | (ps′,z − ps,z + ∆ + iε) , (35)

with

∆ =
ν +MD

| ~q |
(Es − Es′) +

m2
X −m2

X′

2 | ~q |
. (36)
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All this combined with the deuteron wave function of Eq. (18) allows us to write the FSI amplitude as

〈Xsx, psss|Jµ|DsD〉FSI = −
∑
X′

∑
si,ss′ ,sx′

∫
d3ps′

(2π)3
β(s,mX′)〈Xsx, psss|fX′N,XN (s, t)|X ′sx′ , ps′ss′〉

×
〈X ′sx′ |Γµγ∗N,X′ |pi′si〉ΨsD (pi′si, ps′ss′)

4Es′ | ~q | [ps′,z − ps,z + ∆ + iε]

√
2
√

(2π)32Es′ . (37)

In a next step, we assume the rescattering amplitude conserves the helicities of all particles involved

〈Xsx, psss|fX′N,XN (s, t)|X ′sx′ , ps′ss′〉 ≈ 〈Xsx, psss|fX′N,XN (s, t)|X ′sx, ps′ss〉δss,ss′ δsx,sx′ , (38)

and we use the following approximation to take the current matrix element out of the integration:

〈X ′sx|Γµγ∗N,X′ |pi′si〉 ≈ 〈Xsx|Γ
µ
γ∗N,X |pisi〉 . (39)

This allows us to factorize the nuclear tensor again like in Eq. (26). For the sum of the plane-wave and FSI amplitudes,
we then obtain

Wµν
D = Wµν

N Sdist.(ps)(2π)32Es , (40)

with the distorted spectral function defined as

S(ps)
dist. ≡ 1

3

∑
sD,ss,si

∣∣∣∣∣ΨsD (pisi, psss)−
∑
X′

∫
d3ps′

(2π)3

β(s,mX′)

4 | ~q |
√
EsEs′

×〈Xsx, psss|fX′N,XN (s, t)|X ′sx, ps′ss〉
ΨsD (pi′si, ps′ss)

[ps′,z − ps,z + ∆ + iε]

∣∣∣∣2 . (41)

E. Distorted spectral function

For calculation of the distorted spectral function in Eq.(41) we use VNA model of deuteron wave function of Eq. (18)
which can be related to the non-relativistic deuteron wave function by [7, 17, 20]

ΨD(p) = ΨNR
D (p)

√
MD

2(MD − Es)
, (42)

which explicitly conserves the baryonic sum rule of Eq. (6). The parameterizations for the non-relativistic wave
function used in this paper all take the following form (see e.g. Refs. [33, 34]):

ΨsD
D (~ps1,−~ps2) = χ†,s1χ†,s2

∑
j

cj
p2 +m2

j

+
∑
j

dj
p2 +m2

j

S(~p)

χsD , (43)

with S(~p) =
√

1
8

(
3~σ1·~p~σ2·~p

p2 − ~σ1 · ~σ2

)
the tensor operator. Such form allows to perform the dps′,z integration in the

distorted spectral function of Eq. (41) analytically by making use of the pole structure of these parameterizations as
well as the pole of the propagator in Eq. (41) at p̃s′,z = ps,z−∆. In the latter case the mass of the produced intermediate
state mX′ enters in the phase factor ∆. We note that even though we sum over the all possible intermediate states
X ′ the mass mX′ is defined by the four momenta of the interacting virtual nucleon and virtual photon q. Based on
the assumption that FSI is dominated by a small angle diffractive scattering, the phase factor ∆ is evaluated based
on the property of the approximate conservation law of “−” components of rescattering particle momenta discussed
in Sec.II B. Taking into account the relation of Eq. (12) in the definition of the ∆ factor in Eq. (36) we evaluate:

∆ =
ν +MD

| ~q |
(Es −mp) +

m2
X − γ

2 | ~q |
for γ ≤ m2

X ,

∆ =
ν +MD

| ~q |
(Es −mp) for γ > m2

X , (44)
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where γ ≡ m2
X′(pi′ = 0) = m2

n + 2mnν − Q2 is the produced DIS mass off the stationary nucleon. The latter
approximation for mX′ is justified by the fact that due to the peaking of the deuteron wave function at small
momenta the integrand in Eq. (41) is dominated by smaller virtual nucleon momenta than in the PWIA term

The ps′,z integration in Eq. (41) is performed analytically by closing the integration contour into either the upper
or lower complex hemispheres. In both cases [38] one obtains:∫

dps′,z
ΨsD (pi′si, ps′ss)

ps′,z − ps,z + ∆ + iε
= −iπΨsD (p̃s,z, ps′,⊥, si, ss)− πp̃s,zΨ̃(p̃s,z, ps′,⊥, si, ss) (45)

where the distorted wave function Ψ̃ is defined in Eq (47). In the above equation the first term can be identified with
the (imaginary) on-shell part of the ps′,z propagator while the second term with the (real) principal value integration.
Inserting Eq. (45) into Eq. (41) one obtains for the distorted spectral function:

S(ps)
dist. =

1

3

∑
sD,ss,si

∣∣∣∣∣ΨsD (~ps, si, ss) +
i

2

∑
X′

∫
d2ps′,⊥
(2π)2

β(s,mX′)

4 | ~q |
√
EsEs′

×
[
〈X, ps|fon

X′N,XN (s, t)|X ′, p̃s′〉ΨsD (p̃s′ , si, ss)

−i〈X, ps|foff
X′N,XN (s, t)|X ′, p̃s′〉p̃s′,zΨ̃sD (p̃s′ , si, ss)

]∣∣∣2 , (46)

where for the distorted wave function of the deuteron one obtains:

Ψ̃sD (ps, s1, s2) =

[
u1(ps) +

w1(ps)√
8
S(ps) +

w2(ps)√
8

p2
s,⊥

p2
s,z

(S(ps)− S(ps,⊥))

]
χs1χs2 , (47)

with

u1(p) =
∑
j

cj√
p2
⊥ +m2

jp
2 +m2

j

,

w1(p) =
∑
j

dj√
p2
⊥ +m2

jp
2 +m2

j

,

w2(p) =
∑
j

dj

m2
j

√
p2
⊥ +m2

j

. (48)

The distorted spectral function in Eq.(46) depends on the intermediate state X ′ through the final state rescattering
amplitude only. As a result one can factorize the sum over the X ′ in the form of Eq.(9) and represent the on-shell
forward scattering amplitude in the form of

fonXN = σtot(Q
2,W )(i+ ε(Q2,W ))e

B(Q2,W )
2 t , (49)

with W the invariant mass of the produced hadronic state X. For the off-shell amplitude foff there is no clear
prescription, but following our main goal of studying the semi-inclusive DIS based only on basic properties of the
high-energy scattering we identify two extreme cases for off-shell part of the rescattering amplitude, one when it is
taken to be zero (no off-shell FSI) and the other in which off-shell amplitude is assumed to be equal to the on-shell
amplitude fon

XN referred as maximal off-shell FSI. The numerical estimates for foff
XN we used in our calculations will

be discussed below in Sec. III.
With this, we have all the ingredients needed to compute the cross section of Eq. (2).

III. RESULTS

A. Experimental observables

In this section, we compare calculations in our model with the first results extracted from data taken in the Deeps
experiment at JLab [4]. Events of the data set were binned in Q2, ps, cos θs (with θs = q̂, ps) and x̂ (or the invariant
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mass of the produced hadronic state W ). In order to compare our model calculations with the data, we integrate
Eq. (2) over φe′ , use

dx̂

dx
=

2x̂2

x

ν

|q|

∣∣∣∣αiαq +
1

2x̂

∣∣∣∣ , (50)

and relate F1N (αi, x̂, Q
2) to F2N (αi, x̂, Q

2) for a moving nucleon:

F1N (αi, x̂, Q
2) =

2x̂

1 +R

[(
αi
αq

+
1

2x̂

)2

− p2
T

2Q2
R

]
F2N (αi, x̂, Q

2) , (51)

where R = σL

σT
≈ 0.18 is the ratio of the longitudinal to transverse cross sections for scattering off the nucleon. This

yields for the differential cross section:

dσ

dx̂dQ2d3ps
=

4παEM

Q2x̂

|q|
mn

(
1− y − x2y2m2

n

Q2

)(
Q2

|q|2
+

2 tan2 θe
2

1 +R

)∣∣∣∣αiαq +
1

2x̂

∣∣∣∣−1

×

[(
αi
αq

+
1

2x̂

)2

+
p2
T

2Q2

]
F2N (αi, x̂, Q

2)S(ps) . (52)

Now using Eq. (52) we need to reproduce the quantity F2NP (~ps) (with P (~ps) = αiMD

2(MD−ES) |Ψ
NR
D (ps)|2) for which the

experimental data are given in Ref. [4]. For this we divide the cross section of Eq. (52) with the following prefactor

F =
4παEM

Q2x̂

[
ŷ

2(1 +R)
+ (1− ŷ) +

p2
i x̂

2ŷ2

Q2

1−R
1 +R

]
, (53)

where ŷ = pi·q
pi·ke . This results to the following representations of our model calculations:

(F2NP )model =
1

F

(
dσ

dx̂dQ2d3ps

)
model

. (54)

In numerical estimates we use the SLAC parameterizations for the neutron structure functions F1N and F2N [35]
in the calculations as these were used in the analysis of the Deeps data [4]. The arguments of the nucleon structure
functions are defined from the off-shell kinematics (pi + q) = W 2, where the four momentum of the initial nucleon is
defined as pi = pD − ps. No additional modifications due to nuclear modifications like the EMC effect are assumed
for the nucleon structure functions. This is in accordance to our approach of estimating the properties of the reaction
based on the basic properties of the high energy scattering rather than modeling the specific details of the reaction.
Additionally we deem the influence of these modifications small in comparison with the typical magnitude of the
experimental uncertainties to extract unambiguous information here.

B. Numerical Estimates

We start first with the calculation of the quantity of Eq. (54) for the typical kinematic setting of the experiment [4]
with Q2 = 1.8 GeV2, W 2 = 2 GeV and ps = 390 MeV/c. For on-shell part of the rescattering XN → XN amplitude
we use the diffractive form of the parameterization of Eq. (9) with characteristic values of σtot = 50 mb, B = 6 GeV−2
and ε = −0.5. Our estimate of the total XN cross section is based on the assumption that the final state consists of
the hadronic state equivalent to one nucleon and one pion. In principle it is possible to develop specific model (see
e.g. Ref. [12]) describing the XN rescattering, however we follow here our main goal of understanding how far we can
go with describing data on basic properties of high energy scattering. For the off-shell part of the XN rescattering

we use two limiting cases as discussed above: foff−shellXN = 0 (no off-shell FSI ) and foff−shellXN = fon−shellXN (maximal
off-shell FSI). The results of these calculations are given in Fig. 2.

As the figure shows, FSI effects continuously grow in the forward angles of production of recoil proton. This result
is strikingly different from the case of the quasielastic d(e, e′N)X scattering in which case the FSI is maximal at
transverse angles (∼ 700) of recoil nucleon production (see e.g. [17]) and diminishes in the forward direction. The
continuously growing FSI contribution in the forward direction for DIS scattering follows from the specific structure
of the phase factors (∆) entering in Eq. (44) which follows from Eq. (12). For forward angles the dominant mass
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+ max. off-shell FSI

FIG. 2: (Color online) Comparison between the Deeps data [4] and model calculations at Q2 = 1.8 GeV2. The dashed black
curve is a plane-wave calculation, the other include final-state interactions. The effective total cross section and slope parameter
in the final-state interaction amplitude are fixed to σtot = 50mb, B = 6GeV−2 and ε = −0.5. The dotted blue curve has an
off-shell rescattering amplitude amplitude equal to the on-shell one (maximal off-shell FSI ), the dash-dotted red curve has no
off-shell FSI.

contribution m′X decreases, as can be seen in the stationary approximation (virtual photon energy ν decreases with
forward angles). As m′X decreases the off-diagonal mass term in Eq. (44) grows bigger and so does ∆ causing the
peak to shift to more forward angles.

Another observation from Fig. 2 is the relatively small contribution due to the off-shell part of the XN rescattering
amplitude. This result is in agreement of the space-time analysis of high energy small angle rescattering of Ref. [36],
according to which the longitudinal distances that off-shell particle propagates before rescattering significantly shrinks
in the high Q2 and fixed Bjorken x limit. This results in the suppression of the off-shell part of the FSI.

The next question we address is whether the parameters of X ′N rescattering amplitude are sensitive to the produced
DIS mass W and Q2. For this we assume some of the parameters entering the rescattering amplitude of Eq. (9) to
be free parameters. We made fits using one (effective total cross section σtot) or two (σtot and slope factor B) free
parameters. The real to imaginary part ratio of the amplitude was fixed at ε = −0.5, a value extrapolated from
nucleon-nucleon scattering parameterizations.

For the off-shell rescattering amplitude in addition to above mentioned no off-shell FSI and maximal off-shell FSI
options we consider the third approach in which case we parameterize the off-shell amplitude as

foff
XN = σon

tot(Q
2,WN )(i+ εon(Q2,WN ))e−

Boff(Q2,WN )

2 t , (55)

were the effective cross section and real part parameters were taken equal to the on-shell ones, but the slope parameter
was taken as a new free parameter in the fit. This will give us some measure of the size of the suppression as compared
to the on-shell amplitude, this approach is referred to as fitted off-shell FSI.

The parameters were fitted for each (Q2,W ) to all measured spectator momenta. When comparing the results of
the fits to the data it became clear that the model fits systematically underestimate the data at the highest measured
spectator momentum ps = 560 MeV. This may be a consequence of the factorization used in this model, which begins
to break down at these momenta (see discussion in Sec. II B). In subsequent fits we decided to exclude the highest
spectator momentum as we deem the model not adequate enough to describe the data in these kinematics.

Figures 3 to 6 show the results of these fits in which both the effective cross section σ and slope factor B were free
parameters. The plane-wave calculations generally show little dependence on the spectator angle, in clear disagreement



12

1.0 0.0 1.0
0.0

1.5

3.0

10
2
F

2N
P
(p
,c
os
θ) W=1.25 GeV,p=300 MeV

1.0 0.0 1.0
0.0

1.5

3.0
W=1.25 GeV,p=340 MeV

1.0 0.0 1.0
0.0

1.5

W=1.25 GeV,p=390 MeV

1.0 0.0 1.0
0.0

1.5

3.0
W=1.5 GeV,p=300 MeV

1.0 0.0 1.0
0.0

1.5

3.0
W=1.5 GeV,p=340 MeV

1.0 0.0 1.0
0.0

1.5

3.0
W=1.5 GeV,p=390 MeV

1.0 0.0 1.0
0

3

6

W=1.73 GeV,p=300 MeV

1.0 0.0 1.0
0

3

6
W=1.73 GeV,p=340 MeV

1.0 0.0 1.0
0

3

W=1.73 GeV,p=390 MeV

1.0 0.0 1.0
0

6

W=2 GeV,p=300 MeV

1.0 0.0 1.0
0

3

6

W=2 GeV,p=340 MeV

1.0 0.0 1.0
0

3

6
W=2 GeV,p=390 MeV

1.0 0.0 1.0
0

6

12

W=2.4 GeV,p=300 MeV

0.8 0.4 0.0 0.4 0.8
0

15
W=2.4 GeV,p=340 MeV

0.8 0.4 0.0 0.4 0.8
0

15

cosθ

W=2.4 GeV,p=390 MeV

FIG. 3: (Color online) Comparison between the Deeps data [4] and model calculations at Q2 = 1.8 GeV2 at measured values of
invariant mass W and spectator momenta p (≡ ps in the text) of 300, 340 and 390 MeV. The dashed black curve is a plane-wave
calculation, the other include final-state interactions. The effective total cross section and slope parameter in the final-state
interaction amplitude are fitted parameters for each W , the real part is fixed at ε = −0.5. The dot-dashed green curve only
considers on-shell rescattering, the dotted blue curve has an off-shell rescattering amplitude equal to the on-shell one and the
full red curve uses the off-shell parameterization of Eq. (55).
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FIG. 4: (Color online) Comparison between the Deeps data [4] and model calculations at Q2 = 1.8 GeV2 at measured values
of invariant mass W and spectator momenta p (≡ ps in the text) of 460 and 560 MeV. Graphs as in Fig. 3.

with the change seen in the data. The calculations including FSI manage fairly well to describe the data over the
covered kinematics. When comparing the three off-shell descriptions, we see that differences between the three
become smaller with higher spectator momentum. This indicates the diminished importance of the off-shell part of
the rescattering amplitude in these kinematics.

At the lowest missing momentum of ps = 300 MeV, there is an oscillating structure in the data which disappears
for high W but is still present in the calculations. When comparing the three calculations including FSI, we see
that there is a large difference between them in the backward angles. There, the no off-shell FSI calculation is
smaller than the plane-wave calculations while the maximal off-shell FSI calculation becomes significantly bigger.
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FIG. 5: (Color online) Comparison between the Deeps data [4] and model calculations at Q2 = 2.8 GeV2 at measured values
of invariant mass W and spectator momenta p (≡ ps in the text) of 300, 340 and 390 MeV. Graphs as in Fig. 3.

The fitted off-shell FSI calculations sits somewhere in between and tends to agree more with the maximal off-shell
FSI calculation at low W and with the no off-shell one at high W . At this value of spectator momentum, the
plane-wave and final-state interaction amplitudes are of comparable magnitudes[39]. This makes the final result quite
sensitive to small variations in the FSI amplitude and its off-shell description, thus providing some way of explaining
the larger discrepancy between data and different calculations as compared to higher ps values.

At higher spectator momenta, the no off-shell FSI calculations more or less exhibit three regimes. At backward
angles they almost coincide with the plain-wave calculations. Around 90 degrees they show a steep rise, which flattens
out at the forward angles. This agrees with the intuitive picture of final-state rescattering. The maximal off-shell
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FIG. 6: (Color online) Comparison between the Deeps data [4] and model calculations at Q2 = 2.8 GeV2 at measured values
of invariant mass W and spectator momenta p (≡ ps in the text) of 300, 340 and 390 MeV. Graphs as in Fig. 3.

FSI calculations on the other hand have a more constant slope for the whole of the spectator momentum range. The
calculations with a fitted off-shell FSI description show the best agreement with the data, which is to be expected
as they have an extra free parameter. Over the whole of the kinematics they generally agree more with the no
off-shell FSI calculations than the maximal off-shell FSI ones, pointing at a largely suppressed off-shell amplitude.
At the highest measured spectator momentum the FSI curves systematically underestimate the data, pointing in the
direction of a breakdown of the factorization used in this model.

The final question we addressed in the above described fitting procedure is whether the data indicate on Q2 and
W dependence of the parameters of XN rescattering.
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FIG. 7: (Color online) The fitted values of effective cross section σ and slope factor B for the no off-shell FSI calculations
used in Figs. 3 to 6 as a function of the invariant mass W . Full blue curve is for Q2 = 1.8 GeV2, the dashed green curve for
Q2 = 2.8 GeV2.
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FIG. 8: (Color online) The fitted values of effective cross section σ and slope factor B for the maximal off-shell FSI calculations
used in Figs. 3 to 6 as a function of the invariant mass W . Full blue curve is for Q2 = 1.8 GeV2, the dashed green curve for
Q2 = 2.8 GeV2.

Figures 7 and 8 show the values of the fitted parameters σtot and B used in respectively the no off-shell and the
maximal off-shell FSI calculations. At W ≈ 1.2 GeV (corresponding to the production of a ∆), we get a σtot around
40 mb. For the higher invariant masses, the cross section drops to around 20-25 mb and rises with increasing W ,
consistent with the production of more hadronic constituents in the intermediate state of the DIS reaction. The
cross section doesn’t flatten out at the highest W , showing that hadronization occurs before the rescattering in these
kinematics. With increasing Q2, the value of the (XN) cross section parameter also becomes consistently smaller
in this region, indicating reduced final-state interactions. This could be a sign of an onset of a color transparency
effect, in which with increasing Q2 the hadronic state is produced in a state with smaller transverse size, subject to
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reduced QCD interactions with the medium. The values for the slope parameter B are also largely correlated with
those of σtot with a smaller slope parameter at higher Q2 and larger B for higher W , although we also see some
clear deviations from this picture (e.g. at W = 2.4 GeV in the no off-shell FSI fit). Overall our fitting procedure
indicates that the availability of more Q2 and W data points may allow to gain important insight about the Q2 and
W dependence of the total cross section of NX scattering.

IV. CONCLUSION

Based on the virtual nucleon approximation framework, we developed a model to describe semi-inclusive deep
inelastic scattering of the deuteron. To describe the final-state interaction of the spectator nucleon with the produced
hadronic state X, the general features of diffractive soft rescattering were used, without specifying the structure or
space-time evolution of X. The generalized eikonal approximation was used to calculate the scattering amplitudes
based on effective Feynman diagram rules. A factorized approach was used to split the cross section into a part
describing the virtual photon interaction with the off-shell neutron and a distorted spectral function containing the
final-state interactions.

The model calculations were compared to data taken in the Deeps experiment at Jefferson Lab. We first compared
our calculation with the data for typical kinematics of the experiment with characteristic parameters for final state
interactions. This comparison indicates a good agreement with the data most importantly describing correctly the
rise of FSI in forward direction. This result is opposite to what observed in quasi-elastic kinematics.

To gain insight on the Q2 and W evolution of the FSI further calculations were done in which two free parameters
(effective cross section σ and slope factor B) in the rescattering amplitude and three different off-shell rescattering
prescriptions were considered. Results were fitted for each (Q2,W ) to the available data. The fitted off-shell rescatter-
ing parameterizations yielded results similar to the calculations with only an on-shell rescattering amplitude included
over a wide range of the kinematics, giving evidence for a largely suppressed off-shell rescattering. The resulting
calculations showed reasonable agreement between the data and the calculations including final-state interactions.
There were some discrepancies at the highest spectator momentum, which may be caused by the breakdown of the
factorization used in the model. At the lowest ps = 300 MeV there is also an oscillating structure in the calculations
which isn’t exactly present in the data at higher W . The calculations in this case proved to be very sensitive to the
size of the off-shell amplitude.

When inspecting the values of the parameter fits, three features emerge: i) The effective cross section rises with
increasing W , consistent with the creation of more hadronic constituents taking part in the rescattering. ii) There is
no evidence for a plateau at the highest measured W values, indicating that the hadronic state has hadronized before
rescattering takes place. iii) We obtain lower values for σtot for the higher Q2 value, which could be interpreted as a
sign of emerging color transparency. However, more data at higher Q2 are needed to make more definitive statements.
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