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Testing Skyrme energy-density functionals with the QRPA in low-lying vibrational
states of rare-earth nuclei

J. Terasaki∗ and J. Engel
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255

Although nuclear energy density functionals are determined primarily by fitting to ground state
properties, they are often applied in nuclear astrophysics to excited states, usually through the
quasiparticle random phase approximation (QRPA). Here we test the Skyrme functionals SkM∗ and
SLy4 along with the self-consistent QRPA by calculating properties of low-lying vibrational states
in a large number of well-deformed even-even rare-earth nuclei. We reproduce trends in energies
and transition probabilities associated with γ-vibrational states, but our results are not perfect and
indicate the presences of multi-particle-hole correlations that are not included in the QRPA. The
Skyrme functional SkM∗ performs noticeably better than SLy4. In a few nuclei, changes in the
treatment of the pairing energy functional have a significant effect. The QRPA is less successful
with “β-vibrational” states than with the γ-vibrational states.

PACS numbers: 21.10.Re, 21.60.Jz, 27.70.+q

I. INTRODUCTION

Modern supercomputers are making the quantitative
theoretical treatment of nuclear structure increasingly
common. In light nuclei, Greens-function Monte Carlo
methods [1, 2] and the no-core shell model [3, 4] yield ac-
curate ab initio results, and in medium-mass nuclei the
coupled cluster method [5, 6] is proving successful. In nu-
clei with A > 50, techniques related to density-functional
theory (DFT) [7] are the state of the art. Accuracy, at
least for ground-state properties, is limited only by the
quality of the functionals, which are continually improv-
ing [8].

One advantage of DFT is its applicability to nearly all
heavy nuclei. Such flexibility is particularly important
for nuclear astrophysics, which attempts to explain the
synthesis of all the elements. Another advantage is a
natural extension, through the self-consistent quasiparti-
cle random phase approximation (QRPA) to excitations.
Excited states are as important as ground states in many
nucleosynthetic reactions, and so Goriely et al. [9], for
example, used the QRPA to compute radiative neutron
capture in a wide range of nuclei. Such calculations, how-
ever, have generally ignored deformation, or treated it in
a crude way. The logical next step is to take the effects
of deformation into account in a self-consistent fashion.

Fortunately, self-consistent QRPA calculations in
heavy deformed nuclei are now becoming possible. Re-
cently, we developed a scaled parallel Skyrme-QRPA
code [10] for arbitrary axially-deformed (parity conserv-
ing) even-even nuclei. Our code is one of the few [11]
to treat heavy deformed nuclei in the QRPA without
simplification. (For other calculations, including those
in lighter nuclei and those in the RPA, the spherical
QRPA, and separable approximations, see the work cited
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in Ref. [10] and, e.g., the more recent Ref. [12].) In
this paper, we present calculations with two Skyrme
energy-density functionals of properties of low-energy vi-
brational states in rare-earth nuclei. As promised in Ref.
[10], we discuss the performance of both the functionals
and the QRPA.

In Sec. II below we list the nuclei that we explore
and present technical information about our calculations.
In Sec. III we show results for γ-vibrational states and
discuss the performance of the Skyrme QRPA, which
we compare with methods used in earlier calculations.
Sec IV treats “β-vibrational” states1 briefly, and Sec. V
is a conclusion. An appendix presents equations for two-
body matrix elements of the Coulomb-direct interaction
and discusses computational efficiency.

II. SELECTION OF NUCLEI AND METHOD
OF CALCULATION

The vibrational states we examine are all in rare-earth
nuclei. The advantage of this region of the isotopic chart
is the abundance of reliable experimental data [14–42],
accumulated over the last half century. Multiple results
exist for many of the nuclei and there are few serious dis-
crepancies. In addition, the large deformation of many
of the rare earths make them better candidates for a suc-
cessful QRPA treatment than transitional nuclei, which
tend to be soft. We choose the 27 nuclei shown in Fig. 1
for our calculation. They are all axially symmetric and
well deformed, with β ≥ 0.3, and for all but a few the
energies of their γ-vibrations (Kπ = 2+, the second or
third Jπ = 2+ states) have been measured and appear
in Ref. [43]. We calculate γ-vibrational energies and E2

1 We put the term in quotes to indicate that many of those states
are not purely vibrational [13].
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FIG. 1: (Color online) Rare-earth region of the isotopic chart.
Shaded area shows nuclei with deformation β ≥ 0.3 in HFB
calculations with SkM∗ (unpublished, see Ref. [47] for SLy4
which gives a similar result). We calculate energies and tran-
sition probabilities of γ-vibrational states for all nuclei whose
isotopic symbols appear in the figure. Squares without sym-
bols correspond to nuclei for which experimental data on γ
vibrations are not in Ref. [43].

excitation strengths in all 27 nuclei with the Skyrme func-
tionals SkM∗ [44] and SLy4 [45], and in a few nuclei
we do the same for “β-vibrational” states (Kπ = 0+)
with SkM∗. We use the traditional volume-pairing en-
ergy functional [46] for simplicity.

Our procedure has two steps: a Hartree-Fock-
Bogoliubov (HFB) calculation with the Vanderbilt HFB
code [48], and a QRPA calculation that uses the results
of the HFB run. Both steps use B splines [49–51] to rep-
resent wave functions on a 42 by 42 cylindrical mesh with
0 ≤ z, ρ ≤ 20 fm. We use box boundary conditions to
discretize the continuum, and introduce a quasiparticle
cutoff energy Ecut of 60 MeV or 200 MeV in the HFB cal-
culation to limit the set of quasiparticle wave functions
that determine the density and the pairing tensor. The
two cutoffs require different pairing strengths, which we
adjust via the three-point formula [52] so as to reproduce
the pairing gaps of 172Yb (obtained from experimental
masses). In the other nuclei, this procedure usually re-
produces overall pairing gaps to within ±150 keV. We
restrict the z-component of the angular momentum of
the wave functions to be less than or equal to 19/2 ~.

Next we transform the quasiparticle wave functions
to the canonical-basis and introduce two cutoff occupa-
tion probabilities (vcutpair)

2 and (vcutph )2, used also in our

prior work [10, 46, 53], to truncate the two-canonical-
quasiparticle basis in which we construct the QRPA
Hamiltonian matrix. We take ((vcutpair)

2, ((vcutph )2) =

(10−4, 10−8) for Ecut = 60 MeV, and (10−3, 10−6) for
Ecut = 200 MeV in the γ-vibration calculation with
SkM∗. Those values make the dimension of the two-
canonical-quasiparticle basis about 22000 in 172Yb, a
number that is large enough to yield a convergent re-

sult. In the other rare-earth nuclei, the dimension ranges
from 19000 to 28000.

Spurious states associated with particle-number con-
servation make the necessary space much larger for
“β-vibrations.” There we use ((vcutpair)

2, ((vcutph )2) =

(10−4, 10−6) with Ecut = 200 MeV, values with which
the dimension of the two-canonical-quasiparticle space is
60000 to 75000. Even with this large dimension, how-
ever, the spurious state does not separate perfectly (the
worst spurious-state energy is 1.757 MeV) and we present
results only for cases in which the separation is good.

Deriving the QRPA equations for an axially-symmetric
system is tedious but not difficult and can be done by
starting from the general equations in, e.g., Ref. [46].
In the appendix, therefore, we display only our repre-
sentation of the Coulomb-direct matrix elements. These
require more numerical effort than matrix elements of a
δ-interaction, and so benefit more from a computation-
ally efficient procedure.

III. γ-VIBRATIONS

A. Energies and transition strengths

Figure 2 shows measured γ-vibration energies along-
side the results of our two QRPA calculations and
a collective-model calculation (with parameters deter-
mined from the Gogny energy functional) by Delaroche
et al. [54]. In all the plots the minimum energy occurs
around A=162. The minimum in the Dy and Er isotopes
is at N = 98, both in the data and the SkM∗. The Yb
isotopes are particularly well reproduced by the SkM∗

calculation. But the QRPA calculations show a stronger
A-dependence than the data, with the SLy4 results show-
ing the strongest dependence. And overall, neither of the
QRPA calculations is as good as that of Ref. [54].

Figure 3 shows E2 transition strengths B(E2; 0+gs →
2+γ ), hereafter denoted B(E2)↑, for the same isotopes.
Overall, the calculations reproduce the data reasonably
well, except in 162Dy with SLy4, and again are partic-
ularly good in the Yb isotopes. As before, SkM∗ is no-
ticeably better than SLy4. The energies and B(E2)↑’s in
our calculations are anticorrelated in general, a feature
expected of harmonic vibrations. On the other hand, the
experimentalB(E2)↑’s in Er decrease monotonically with
A, even though the dependence of the energy is slightly
parabolic.

To characterize the performance of the two functionals
statistically, we introduce, following Refs. [53, 55] the
measures

RE = ln (Ecal/Eexp) (1)

and

RQ = ln
√
B(E2)↑cal /B(E2)↑exp , (2)
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FIG. 2: (Color online) Energies of γ-vibrational states from a) experiment [43], b) SkM∗, c) SLy4, and d) Delaroche et al. [54].

FIG. 3: (Color online) B(E2; 0+
gs → 2+

γ ) corresponding to Fig. 2. The value for 162Dy in c) is 0.562 e2b2. This figure has no
panel d) because the results from the calculation of Delaroche et al. [54] are not published. We include only those experimental
data that are labeled γ-vibrations in Ref. [43]. The symbols for particular isotopic chains are the same in each panel.

where Ecal and Eexp are the calculated and experimen-
tal energies of the γ-vibrational state. The results are
in Tab. I. SLy4 actually does better than SkM∗ in the
averages, but gives much larger dispersions.

Table II shows the statistical measures for the spherical

nuclei treated in Ref. [53] and for the subset of those
nuclei that exhibit “low softness.” (Some of the other
nuclei in Ref. [53] are transitional.) There are far more
nuclei in the spherical data set than in the deformed rare-
earth set, so it is hard to make a precise comparison of
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TABLE I: Average of RE (R̄E), dispersion of RE (σE), and
the same for RQ.

R̄E σE R̄Q σQ

SkM∗ 0.28 0.18 −0.13 0.14

SLy4 0.20 0.50 −0.004 0.31

TABLE II: Statistical measures for the spherical nuclei and
for the subset with low softness from Ref. [53]. RQ and σQ
were not calculated separately for the low-softness nuclei in
that paper because of a lack of E2 data.

R̄E σE R̄Q σQ

All
SkM∗ 0.11 0.44 -0.29 0.53

SLy4 0.33 0.51 -0.32 0.42

Low Softness
SkM∗ 0.27 0.35 — —

SLy4 0.47 0.48 — —

performance. But deformation does not appear to affect
it significantly.

B. N- and Z-dependence

Our calculations show a stronger dependence on N
than do the data in most isotopic chains, behavior that
may be due to insufficient configuration mixing in our cal-
culations. Figure 4 shows the N -dependence of the calcu-
lated γ-vibrational energy, the two-quasiparticle energy
EXn

2qp of the component, in the quasiparticle basis, with
the largest neutron forward amplitude, and the absolute
value of the backward amplitude |YXn| of the same com-
ponent, all for SkM∗. (We transformed amplitudes from
the canonical-quasiparticle basis to do this analysis.) For
N ≤ 100, The γ-vibrational energy is positively corre-
lated with EXn

2qp, and anticorrelated with |YXn|, indicating
a connection between the N -dependence of those solu-
tions and a particular two-quasiparticle state. The down-
ward shift of about 1 MeV between the two-quasiparticle
energy and the full QRPA energy, seen in panels a) and
b), then characterizes the effect of the residual interac-
tion. Fig. 5 shows all the same phenomena in the Z
dependence of our results, except in the energies of the
N = 102 isotones.

Figure 6 shows the absolute values of the nine largest
neutron forward amplitudes in three Dy isotopes around
164Dy, which is the one with the lowest phonon energy.
Clearly the two largest components are far more impor-
tant than the rest. And though we don’t show it, a
similar curve characterizes the protons. From all this,
we conclude that the two-quasiparticle state with the
largest neutron forward amplitudes plays a significant
role in the N -dependences of the QRPA solutions, and
that the same statement is true of proton forward am-
plitudes and Z dependence. (The second largest com-

ponents are potentially also important.) The weaker N -
and Z-dependence in the data suggests that we exagger-
ate the importance of those particular two-quasiparticle
states, perhaps by underestimating configuration mixing.
It is quite possible that a better solution requires many-
body correlations beyond the QRPA.

Figure 7 shows EXn
2qp for the SLy4 calculation. Inter-

estingly, the range of the EXn
2qp is close to that produced

by SkM∗, as one can see by comparing with panel b)
of Fig. 4. We conclude that the effects of the residual
interaction on A dependence are quite different in the
two calculations, leading to the noticeable differences in
Fig. 2.

C. δ-pairing functional

Low-energy quasiparticle states are obviously affected
by the choice of pairing functional, and the volume pair-
ing we use can be varied without worsening its ability to
reproduce pairing gaps. The reason is that the δ-function
interaction is singular in the pairing channel and so must
be regularized (see, e. g. Ref. [56]). Here we do so by
cutting off the single-quasiparticle spectrum. This pro-
cedure makes the strength of the interaction depend on
the cutoff as well as on the experimental pairing gaps to
which it is fit. To illustrate the effect of the cutoff on γ
vibrations, we show in Fig. 8 the results of calculations
with the two different cutoffs Ecut mentioned in Sec. II.
The two cutoffs require different pairing strengths Gq (for
the values, see the caption) to ensure similar predictions
for pairing gaps. We refer to the two calculations as A
and B, with A having the smaller Ecut, and therefore the
larger pairing strength.

The differences in the results are mostly minor, but the
B(E2)↑ in 164Dy, the energy and B(E2)↑ in 174Hf, and
the energy in 172Yb are all quite different. We account
for the differences in 164Dy by referring to Fig. 9. Since
calculation A uses a larger pairing strength, it produces
higher energies for low-lying quasiparticles than does cal-
culation B. In the separable approximation [57, 58], the
forward QRPA amplitudes can be written as

X qp1,qp2 ∝ 1/(Eqp1 + Eqp2 − Eγ) , (3)

where qp1 and qp2 denote quasiparticle states, and Eγ
is the energy of the γ-vibrational state. Using Eq. (3)
and the values read from the figures, one can estimate
the ratio of the forward amplitudes of the largest two-
quasiprarticle component in calculations A and B. The
result, under the assumption that the interaction matrix
elements are the same in the two calculations, is∣∣∣∣XA

qp1,qp2

XB
qp1,qp2

∣∣∣∣ ' 0.9 . (4)

Panel b of Fig. 9 shows that the exact ratio is 0.8, so that
half the difference between the two calculations can be
explained by considering only the quasiparticle energies.
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FIG. 4: (Color online) For the functional SkM∗, a) Calculated γ-vibrational energy, b) two-quasiparticle energy EXn
2qp of the

component with the largest neutron forward amplitude, and c) absolute value |YXn| of the backward amplitude of the same
component, all as functions of neutron number N .

FIG. 5: (Color online) The same panels as Fig. 4 but for protons rather than neutrons. The connected points are isotones, and

the same symbol indicates a given isotone in each panel. EXp
2qp and |YXp| now refer to the proton components.

This analysis implies that the QRPA solution is sensitive
to the energies of important quasiparticle states, and thus
to the pairing functional, when those energies are small.
One can take advantage of this to fix the cutoff energy
as well as the pairing strength by fitting to properties
that depend sensitvely on low-energy quasiparticle states.
Our calculation shows, for example, that Ecut = 60 MeV
is better than 200 MeV.

The differences between calculations A and B in 172Yb

and 174Hf are more complicated (the corresponding two-
quasiparticle components do not have the same order as
Fig. 9), and we could not find a simple explanation for
them. And changes in the pairing cutoff are clearly not
enough to fix the problem with N - and Z-dependence
in the QRPA. We should note, however, that a density-
dependent pairing functional needs to be investigated.
Recent work [59] has shown that isovector-density depen-
dence [60] allows a good reproduction of the dependence



6

FIG. 6: (Color online) Absolute values of the nine largest neu-
tron forward amplitudes in a) 162Dy, b) 164Dy and c) 166Dy.
The integer on the x-axis labels the two-quasiparticle compo-
nents.

of pairing gaps on isotope. Such a functional might affect
the isotopic dependence of E2 strength as well.

D. Comparison with older calculations of
γ-vibrational states

Early work on vibrations in rare-earth nuclei of-
ten made use of the pairing-plus-QQ (quadrupole-
quadrupole) Hamiltonian, both in the (Q)RPA [61–65]
and in approximations that went beyond the QRPA or-
der, e. g. [66–68]. Single-particle energies were usually
obtained from the Nilsson potential, with slight shifts to
improve phenomenology, and the strength of the QQ in-
teractions was modified slightly from the self-consistent
value so as to reproduce the energies of the γ-vibrational
states. The adjustment to energies means that B(E2)↑’s
are an important test of the model’s predictive power.

Figure 10 shows the energies and B(E2) ↑ from
Ref. [62]. Their energies were perhaps not quite as good
overall as ours, but also did not exhibit the sharp min-

FIG. 7: (Color online) EXn
2qp produced by SLy4. The symbols

correspond to those of Fig. 4.

imum we get around A ∼ 164. The authors themselves
stated that no single interaction strength reproduces the
energies of all nuclei calculated. Their B(E2)↑’s are too
large by a factor of two or more, a deficiency that was
pointed out again in Refs. [61, 64]. Marshalek et al. [61]
listed approximations that might cause problems in pre-
dicted B(E2)↑’s. Since we do better in that observable,
we believe that the cause is in fact the interaction.

Rare-earth γ vibrations have also been addressed in
other models. Reference [66], using the boson-expansion
method, obtained B(E2)↑ = 0.130 e2b2 in 154Sm, a value
somewhat larger than ours. Soloviev et al. [67, 68] used
the quasiparticle-phonon nuclear model, which includes
two-phonon couplings, and obtained B(E2) ↑ = 0.127
e2b2 (168Er), 0.042 e2b2 (172Yb), and 0.122 e2b2 (178Hf).
Those transition probabilities are close to the experimen-
tal data (0.116 e2b2in 178Hf [67]), and the fit of the in-
teraction meant that energies were also reproduced well.
See also Ref. [65] which used a modified QQ and an ef-
fective three-body interactions.

Explicitly collective models have also been used. Ku-
mar [69] obtained an energy of 1.438 MeV (close to the
measured value) and a B(E2)↑ of 0.163 e2b2 for the γ-
vibrational state of 154Sm by solving the Schrödinger
equation in collective quadrupole degrees of freedom
(Bohr and Mottelson’s collective model) with the Myers-
Swiatechi potential. Garćıa-Ramos et al. [70] used the in-
teracting boson model (IBM) to obtain low-energy states
in about 20 even-even rare-earth nuclei, eight of which
are discussed here. For each isotopic chain they deter-
mined the parameters of the IBM Hamiltonian by ap-
proximately reproducing the measured excitation ener-
gies for Jπ = 2+1 , 4+1 , 6+1 , 8+1 , 0+2 , 2+3 , 4+3 , 2+2 , 3+1 , and
4+2 states, and determined the boson effective charge by
reproducing several measured B(E2)’s. With regard to
the γ-vibrational B(E2)↑’s of the eight nuclei computed
here, they reproduced those of 158,160Gd well but overes-
timated others. See also Ref. [71], which presented an-
other set of IBM calculations.
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FIG. 8: (Color online) Results of two calculations with different values for Ecut and the pairing strength Gq, where q=p (proton)
or n (neutron). Calculation A (panels a and c) uses (Ecut, Gn, Gp) = (60 MeV, 218.521 MeV fm3, 176.364 MeV fm3), and
calculation B (panels b and d) uses (200 MeV, 168.384 MeV fm3, 143.996 MeV fm3). The SkM∗-based results discussed in
prior sections were obtained from Calculation A.

IV. β-VIBRATIONS

In Tab. III we show calculated and measured energies
and B(E2) ↑’s, with SkM∗, for “β-vibrational” states.
As mentioned earlier, the Kπ = 0+ channel contains a
spurious state, and we display only those “β-vibrations”
that are clearly uncontaminated by spurious motion (see
the last column of the table).

TABLE III: Properties of “β-vibrational” states in four nuclei.
Eβcal and Eβexp are the calculated (with SkM∗) and experimen-

tal energies. B(E2)↑βcal and B(E2)↑βexp are the corresponding
reduced upward transition probabilities. Espur. is the energy
of the spurous state and RN is the ratio of the (spurious)
strength associated with the particle-number operator [10]
for the “β-vibrational” state to that for the spurious state
(average of proton and neutron).

Eβcal Eβexp B(E2)↑βcal B(E2)↑βexp Espur. RN

(MeV) (MeV) (e2b2) (e2b2)
166Yb 1.802 1.043 0.0398 0.772 0.004
168Yb 2.039 1.155 0.0343 0.672 0.012
172Yb 1.605 1.117 0.0049 0.0081(17) 0.932 0.054
170Er 1.596 0.960 0.0030 0.0079(9) 0.727 0.054

We obtained these results with calculation B (see
above), the large cutoff in which should lead to a more
accurate treatment of the spurious state, though contam-

ination in nuclei not shown in the table indicates that a
finer mesh is necessary with a large cutoff. In our pre-

vious paper [10], which used Ecut = 60 MeV, Eβcal and

B(E2) ↑βcal were 1.390 MeV and 0.0049 e2b2 in 172Yb;
our new energy is thus 15% larger. Compared to the
γ-vibrational states, overall we apparently overestimate
energies and underestimate B(E2)↑’s, and do not do as
good a job as with γ-vibrational sates. Reference [13]
points out that “β-vibrational” states are not purely vi-
brational, and in many cases are better interpreted as
the second member of the Kπ=0+ yrare rotational band.
The QRPA cannot describe rotational bands and so the
discrepancy between our results and experiment is not
totally surprising.

V. CONCLUSION

We have used the QRPA with the Skyrme functionals
SkM∗ and SLy4 and volume-δ-pairing to calculate the
energies and B(E2) ↑’s of γ-vibrational states in well-
deformed even-even rare-earth nuclei. SkM∗ proves to
be the better functional. The range of calculated values
overlaps well with that of the experimental data. Since
the QRPA energies are appreciably different from their
unperturbed counterparts, that counts as a success for
the residual interaction; the vibrational states discussed
here are not taken into account at all in determining en-
ergy functionals. In detail, however, the calculations are
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FIG. 9: (Color online) Analysis of two-proton-quasiparticle
configurations in the γ-vibrational state of 164Dy, with SkM∗:
a) Two-quasiparticle energies, b) absolute values of the for-
ward amplitude, c) contribution to the transition matrix el-
ement. The x axis is the same as in Fig. 6. The pairing
parameters characterizing calculations A and B are given in
the caption of Fig. 8.

far from perfect, and their N - and Z- dependence sug-
gest the importance of many-body correlations that are
not included in the QRPA. And our representation of
“β-vibrational” states turns to be worse than that of γ
vibrations, probably because “β vibrations” are often not
really vibrations.

We also suggested that the cutoff associated with vol-
ume pairing can be fixed along with the pairing strength
by examining properties that are sensitive to the struc-
ture of low-lying quasiparticles.

Our calculation is better overall than the works of half
a century ago. The aims of the pairing-plus-QQ model
are much more limited than those of nuclear DFT; the
mean field arising from pairing-plus-QQ is an infinitely
deep well, and so the model cannot make predictions for
binding energies or for excitation energies near the drip
line (where the underlying Nilsson single-particle poten-
tial is not appropriate). Despite the increasing sophisti-
cation of the many-body methods that have been applied

FIG. 10: (Color online) Energy (panel a), and B(E2)↑ (panel
b) of γ-vibrational states in calculations by D. R. Bès et
al. [62]

together with the pairng-plus-QQ model, a more general
framework such as DFT appears necessary for the unified
description of heavy nuclei.

Finally, we have shown that in this era of supercom-
puting a scalable code makes systematic and fully self-
consistent Skyrme-QRPA studies possible. We expect, as
a result, that excited states will play an increasing role
in the determination of nuclear density functionals.
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Appendix: Coulomb-direct matrix elements

The computation of the direct two-body matrix ele-
ments of the Coulomb interaction consumes a lot of com-
puting time. In this appendix we present our implemen-
tation of that computation.
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The Coulomb interaction is

VC(r1, r2) =
e2

|r1 − r2|
. (A.1)

We take advantage of axial symmetry to write the wave
function as

Xa(r) =
1√
2π

∑
σ=±1/2

Fa(σ; z, ρ)ei(j
z
a−σ)φ|σ〉 , (A.2)

The label a stands for (qπjzi), i. e. particle type, par-
ity, angular-momentum z-component, and an additional
label i to fully specify the state. The position r is repre-
sented in cylindrical coordinates, and the label σ = ±1/2
is the z-component of the spin. The function Fa(σ; z, ρ)
is treated numerically. The set {Xa(r)} can refer to any
single-particle basis (or components of quasiparticle basis
states, in which case another label to distinguish upper
from lower is necessary) with axial and parity symme-
tries. In our calculations we use the canonical single-
particle basis.

With the help of a few well-known formulae from Ap-
pendix B of Ref. [72], one can obtain the expansion

1

|r1 − r2|
=

∞∑
l=0

(
√
ρ2< + z2<)l

(
√
ρ2> + z2>)l+1

l∑
m=−l

(l −m)!

(l +m)!

Plm

(((
z1√
ρ21 + z21

)))
Plm

(((
z2√
ρ22 + z22

)))
eim(φ2−φ1) , (A.3)

where

ρ2< + z2< = ρ21 + z21
ρ2> + z2> = ρ22 + z22

}
, if ρ22 + z22 > ρ21 + z21 ,

ρ2< + z2< = ρ22 + z22
ρ2> + z2> = ρ21 + z21

}
, if ρ22 + z22 < ρ21 + z21 , (A.4)

and the Plm are associated Legendre polynomials [72].
By using Eqs. (A.1)−(A.4), one can then write the matrix
element of the Coulomb-direct interaction as

V C
ab,cd =

∫
d3r1

∫
d3r2X

†
a(r1)X†b (r2)VC(r1, r2)Xc(r1)Xd(r2)

= e2
∑
σa,σb

∞∑
l=0

l∑
m=−l

δ−jza−m+jzc ,0
δ−jzb+m+jzd ,0

∫ ∞
−∞

dz1

∫ ∞
0

dρ1ρ1

∫ ∞
−∞

dz2

∫ ∞
0

dρ2ρ2Fa(σa; z1, ρ1)

Plm

(((
z1√
ρ21 + z21

)))
Fc(σa; z1, ρ1)Fb(σb; z2, ρ2)Plm

(((
z2√
ρ22 + z22

)))
Fd(σb; z2, ρ2)

(((√
ρ2< + z2<

)))l(((√
ρ2> + z2>

)))l+1

(l −m)!

(l +m)!
. (A.5)

Changing variables to

(z,R =
√
ρ2 + z2) , (A.6)

and noting that

Fa(σa;−z, ρ) = (−)j
z
a−σaπaFa(σa; z, ρ) , (A.7)

Plm(−x) = (−)l−mPlm(x) , (A.8)

we arrive at

V C
ab,cd = 4e2δ−jza+jzc ,jzb−jzd δπaπc,πbπd

∑
σa,σb

∞∑
l=|−jza+jzc |

δπaπc,(−)l
(l −m)!

(l +m)!

{{{∫ ∞
0

dR1
T1(R1)

Rl−11

∫ R1

0

dR2R
l+2
2 T2(R2)

+

∫ ∞
0

dR1T1(R1)Rl+2
1

∫ ∞
R1

dR2
T2(R2)

Rl−12

}}}∣∣∣∣∣∣∣∣∣∣∣∣
m=−jza+jzc

, (A.9)

where

T1(R1) =
1

R1

∫ R1

0

dz1Fa
(((
σa; z1,

√
R2

1 − z21
)))
Plm

(((
z1
R1

)))
Fc
(((
σa; z1,

√
R2

1 − z21
)))
,

T2(R2) =
1

R2

∫ R2

0

dz2Fb
(((
σb; z2,

√
R2

2 − z22
)))
Plm

(((
z2
R2

)))
Fd
(((
σb; z2,

√
R2

2 − z22
)))
. (A.10)
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Though it is not explicit in the notation, T1(R1) depends
on the labels a, c, σa, and (l,m), and T2(R2) on similar
quantities.

Equations (A.9) and (A.10) are what we use, with mi-
nor modifications for hole states, in our code. We calcu-
late T1(R1) and T2(R2) on a mesh and store them in ar-
rays. Once this is finished, the time to calculate Eq. (A.9)
is determined mainly by the nest structure of the two-fold
integrals and the summation with respect to l. For a sys-
tem with quadrupole deformation β ∼ 0.3 the number of
terms necessary in the sum over l (much fewer than 20
in practice, with only even or only odd l contributing)
is much smaller than the number of mesh points in the

integration.
If an equidistant mesh is used for integrals in which

an upper or lower bound is a variable, the computational
effort to calculate the two-fold integrals in Eq. (A.9) is
nearly the same as that of single integrals. Thus, we
calculate the wave functions on a new mesh by interpo-
lating between B-spline points, and then use Simpson’s
rule with three times more mesh points than B-spline
points to preserve accuracy (while still speeding up the
integration). We have checked our procedure by using
the two-body matrix elements that it produces to calcu-
late the Coulomb-direct energy of the HFB ground state,
which we then compared to the output of the HFB code.
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G 36, 085103 (2009).

[5] G. Hagen, D. J. Dean, M. Hjorth-Jensen, T. Papenbrock,
and A. Schwenk, Phys. Rev. C 76, 044305 (2007).

[6] D. Dean and M. Hjorth-Jensen, Phys. Rev. C 69, 054320
(2004).

[7] J. Dobaczewski, e-print arXiv:nucl-th/1009.0899 (2010),
to be published in J. of Phys. : Conference Series.

[8] M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz,
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Kavka, W. J. Kernan, E. G. Vogt, C. Y. Wu, R. M.
Diamond, A. O. Macchiavelli, et al., Nucl. Phys. A 517,
365 (1990).

[19] D. G. Burke, G. Løvhøiden, and T. F. Thorsteinsen,
Nucl. Phys. A 483, 221 (1988).

[20] T. Ichihara, H. Sakaguchi, M. Nakamura, M. Y. M. Ieiri,
Y. Takeuchi, H. Togawa, T. Tsutsumi, and S. Kobayashi,

Phys. Rev. C 36, 1754 (1987).
[21] P. M. Walker, Phys. Scr. T5, 29 (1983).
[22] R. M. Ronningen, R. S. Grantham, J. H. Hamilton, R. B.

Piercey, A. V. Ramayya, B. van Nooijen, H. Kawakami,
W. Lourens, R. S. Lee, W. K. Dagenhart, et al., Phys.
Rev. C 26, 97 (1982).

[23] J. R. Cresswell, P. D. Forsyth, D. G. E. Martin, and R. C.
Morgan, J. Phys. G 7, 235 (1981).

[24] F. K. McGowan and W. T. Milner, Phys. Rev. C 23,
1926 (1981).

[25] L. L. Riedinger, E. G. Funk, J. W. Mihelich, G. S.
Schilling, A. E. Rainis, and R. N. Oehlberg, Phys. Rev.
C 20, 2170 (1979).

[26] F. K. McGowan, W. T. Milner, R. L. Robinson, P. H.
Stelson, and Z. W. Grabowski, Nucl. Phys. A 297, 51
(1978).

[27] H. J. Wollersheim and Th. W. Elze, Z. Phys. A 280, 277
(1977).

[28] R. M. Ronningen, J. H. Hamilton, A. V. Ramayya,
L. Varnell, G. Garcia-Bermudez, J. Lange, W. Lourens?,
L. L. Riedinger, R. L. Robinson, P. H. Stelson, et al.,
Phys. Rev. C 15, 1671 (1977).

[29] C. W. Reich, R. C. Greenwood, and R. A. Lokken, Nucl.
Phys. A 228, 365 (1974).

[30] C. Baktash, J. X. Saladin, J. O’Brien, I. Y. Lee, and J. E.
Holden, Phys. Rev. C 10, 2265 (1974).

[31] R. N. Oehlberg, L. L. Riedinger, A. E. Rainis, A. G.
Schmidt, E. G. Funk, and J. W. Mihelich, Nucl. Phys. A
219, 543 (1974).

[32] M. H. Cardoso, P. F. A. Goudsmit, and J. Konijn, Nucl.
Phys. A 205, 121 (1973).

[33] C. E. Bemis Jr., P. H. Stelson, F. K. McGowan, W. T.
Milner, J. L. C. Ford Jr., R. L. Robinson, and W. Tuttle,
Phys. Rev. C 8, 1934 (1973).

[34] J. M. Domingos, G. D. Symons, and A. C. Douglas, Nucl.
Phys. A 180, 600 (1972).

[35] M. T. Gillin and N. F. Peek, Phys. Rev. 4, 1334 (1971).
[36] A. Charvet, D. H. Phuoc, R. Duffait, A. Emsallem, and
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