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The role of configuration mixing in the Pt region is investigated. For this chain of isotopes, the
nature of the ground state changes smoothly, being spherical around mass A ∼ 174 and A ∼ 192 and
deformed around the mid-shell N = 104 region. This has a dramatic effect on the systematics of the
energy spectra as compared to the systematics in the Pb and Hg nuclei. Interacting Boson Model
with configuration mixing calculations are presented for gyromagnetic factors, α-decay hindrance
factors, and isotope shifts. The necessity of incorporating intruder configurations to obtain an
accurate description of the latter properties becomes evident.
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I. INTRODUCTION

By now, shape coexistence has been observed in many mass regions throughout the nuclear chart and turns out
to be realized in more nuclei than anticipated a few decades ago [1]. Shell-model [2] and mean-field [3] approaches
have shown that shape coexistence arises naturally, in the first case through inclusion of many-particle, many-hole
excitations across closed shells and in the latter case through constraints on the quadrupole moment in Hartree Fock
(HF) and Hartree-Fock-Bogoliubov (HFB) studies [4–9]. A particularly well-documented example of shape coexistence
is the Pb region. From the closed neutron shell (N = 126) to the very neutron-deficient nuclei, approaching and even
going beyond the N = 104 mid-shell, ample experimental evidence for shape coexisting bands has been accumulated
for the Pb (Z = 82) and Hg (Z = 80) nuclei [10–12]. Recent experiments have extended our knowledge of the
excitation energies in intruding bands [13], lifetime data [7, 14–17], nuclear charge radii [18, 19], 2+1 gyromagnetic
factors [20, 21], and α-decay hindrance factors [22–24].
An important question is how these shape coexisting structures will evolve when one moves further away from the

Z = 82 and N = 126 closed shells. Recently, a lot of new results have become available for the even-even Po, Hg and
Pt nuclei, for which experimental information was highly needed. It is informative to compare the systematics of the
low-lying states of the Z = 82 proton closed shell Pb nuclei (Fig. 1), the Z = 80 Hg nuclei (Fig. 2), and the Z = 78 Pt
nuclei (Fig. 3). The data to construct these figures have been taken from the relevant Nuclear Data Sheets, from [13]
(for the Pb nuclei), from [17, 25–28] (for the Hg nuclei), and [29–35] (for the Pt nuclei). Whereas the intruder bands
are easily singled out for the Pb and Hg nuclei and the excitation energies display the characteristic parabolic pattern
with minimal excitation energy around the N = 104 neutron mid-shell nucleus, this structure seems lost for the Pt
nuclei. Focussing on the systematics of the energy spectra in these Pt nuclei as a function of the neutron number, one
observes a rather sudden drop in the excitation energy of the 0+2 , 4

+
1 , 2

+
3 and 6+1 states between N = 110 (A = 188)

and N = 108 (A = 186), followed by a particularly flat behaviour as a function of N until the energies of those states
start to move up again around neutron number N = 100 (A = 178).
As the Pb nuclei, the Pt nuclei have been studied within the framework of the Interacting Boson Model (IBM)

[36]. Taking into account the presence of proton 2p-2h excitations across the Z = 82 proton closed shell [37], one
achieves an overall good description of both energy spectra, radii, and g-factors [38, 39]. In addition, IBM calculations
that do not explicitly take into account the proton intruder configurations have also been carried out [29, 33, 40],
resulting in a satisfactory description of excitation energies and B(E2) transition rates. In a previous paper [41],
we studied the Pt nuclei extensively and carried out a detailed comparison between calculations that include proton
2p-2h excitations (hence, in the model space [N ]⊕ [N +2], where N denotes the total number of bosons, irrespective
of their charge character) with calculations that consider the smaller model space of the [N ] configurations only. It
turned out that the results for the energy spectra and absolute B(E2) values were very similar up to an excitation
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FIG. 1: (Color online) Energy systematic of the Pb nuclei. The red full lines connect states associated with a prolate structure,
the blue full lines states with an oblate structure and the black lines connect states with a spherical structure.

energy of ∼ 1.5 MeV, even though the corresponding wave functions have to be very different in some cases. As such,
it was concluded that these similarities point towards a picture where the configuration mixing and the larger model
space are somehow “concealed”.
This very same observation has been put forward a long time ago by Cohen, Lawson and Soper [42–44] when

addressing the question “How can the results using a large model space, be very similar to the ones resulting from
a truncated model space”. Starting from a model space of two degenerate 1d3/2 and 1f7/2 single-particle neutron
orbitals (containing a neutron number ranging from 4 to 12) and a given two-body interaction, a Yukawa potential,
they constructed a set of theoretical nuclei which were called the Pseudonium nuclei 40−48Ps. Interpreting the Ps
energy spectra as pseudo-data, they consequently showed that these spectra could be well reproduced within the much
more restricted model space of the 1f7/2 orbital only, now containing between 0 and 8 neutrons. Indeed, the effective
interaction matrix elements adjusted to the spectrum of the Ps nuclei corresponded to quite a different interaction
than those in case of the larger model space. Moreover, they showed that other observables, such as the B(E2)
values for the strongest transitions, were very similar in both approaches, even though the wave functions differed
distinctly. A different set of Pseudonium nuclei was constructed for a model space of two degenerate 1p1/2 and 1d3/2
single-particle states that could contain both protons and neutrons, up to a maximum of 12 nucleons. Very much the
same conclusion was reached after the analysis of the resulting spectra within a restricted model space of the 1d3/2
orbital only [43]. In the latter study, it was pointed out that quadrupole moments seemed to be a better observable to
probe differences. Certain particularly chosen transfer reactions were highly sensitive to the choice of the model space.
This demonstrates that a number of observables such as excitation energies and B(E2)-values are rather insensitive
to configuration mixing arising from the excitation of zero-coupled pairs across the closed shell. The same underlying
mechanism may be responsible for the similarities between the results for the Pt-isotopes obtained within the [N ]
configuration space of the IBM and those obtained for the [N ]⊕[N+2] configuration space. In addition to the detailed
comparison in [41], we have constructed pseudo spectra in the IBM within a [N ] ⊕ [N + 2] configuration space and
consequently adjusted the parameters of an IBM Hamiltonian within the [N ] configuration space [45]. Apart from
very particular B(E2) transition rates, it was impossible to discriminate between the results of the two approaches.
In a more recent example, a study of the actual wave function content and the way to test it has been explored in

the study of the nucleus 40Ca [46]. It turns out that the 0+ ground state consists of only 65% closed sd shell (or 0p-0h)
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FIG. 2: (Color online) Energy systematic of the Hg nuclei. The red lines connect states associated with a prolate structure
and the blue lines states with an oblate structure.

and exhibits 29% 2p-2h excitations out of the 2s1/2, 1d3/2 normally filled orbitals into the 1f7/2, 2p3/2, 1f5/2, 2p1/2
higher-lying orbitals with even a 5% 4p-4h excitation contribution. This large model space is needed to describe the
higher-lying strongly deformed bands and superdeformation as experimentally observed in 40Ca. The isotopic shifts
in the even-even A = 40 to A = 48 Ca nuclei could be reproduced well through explicit inclusion of mp-nh excitations
across the Z = 20, N = 20 ”closed” shell in a slightly smaller model space than the one mentioned before [47]. This
indicates that one can indeed find observables which are sensitive to the important components of the wave function
and thus can discriminate between various approaches that give quite similar results when restricting to a subset of
data only.
The content of this paper is organised as follows. After Section I, we present the IBM formalism in Section IIA,

the evolution of the character of low-lying states in II B, the systematics of the energy spectra in II C, and the
decomposition of the B(E2) values into regular and intruder contributions in IID. In Section III we explain the
origin of the observed flat energy tendencies around neutron mid-shell on the basis of the crossing of the regular and
intruder unperturbed 0+ states. Section IV is devoted to the study of observables sensitive to the presence of 2p-2h
configuration such as gyromagnetic factors, IVA, α-decay hindrance factors, IVB, and nuclear radii, IVC. Finally,
in Section V we present the summary and the conclusions of this work.

II. CONFIGURATION MIXING AND THE OBSERVATION OF REGULAR PATTERNS

A. The formalism

In this section, we present an abridged introduction to the IBM configuration mixing formalism (or IBM-CM) and to
the fitting-procedure of the IBM-CM parameters for the Pt isotopes. For an in-depth discussion, we refer to [41]. The
IBM-CM allows the simultaneous treatment and mixing of several boson configurations which correspond to different
particle–hole (p–h) shell-model excitations [37]. On the basis of intruder spin symmetry [48, 49], no distinction is
made between particle- and hole-bosons. Hence, the model space including the valence neutrons outside the N = 82
shell as well as the regular 4h and 6h-2p proton configurations with respect to the Z = 82 shell corresponds to a
[N ] ⊕ [N + 2] boson space. The boson number N is obtained as the sum of the number of active protons (counting
both proton particles and holes) and the number of valence neutrons, divided by two. Thus, the Hamiltonian for two
configuration mixing is written

Ĥ = P̂
†
N Ĥ

N
ecqfP̂N + P̂

†
N+2

(

ĤN+2
ecqf +∆N+2

)

P̂N+2 + V̂
N,N+2
mix , (1)



4

FIG. 3: Energy systematic of the Pt nuclei. The dark lines connect the yrast band structure, the full and dashed thin lines
connect the non-yrast levels.

where P̂N and P̂N+2 are projection operators onto the [N ] and the [N+2] boson spaces respectively, V̂ N,N+2
mix describes

the mixing between the [N ] and the [N + 2] boson subspaces, and

Ĥi
ecqf = εin̂d + κ′iL̂ · L̂+ κiQ̂(χi) · Q̂(χi), (2)

is the extended consistent-Q Hamiltonian (ECQF) [50] with i = N,N + 2, n̂d the d boson number operator,

L̂µ = [d† × d̃](1)µ , (3)

the angular momentum operator, and

Q̂µ(χi) = [s† × d̃+ d† × s](2)µ + χi[d
† × d̃](2)µ , (4)

the quadrupole operator. We did not consider the most general IBM Hamiltonian for each Hilbert space, [N ] and
[N + 2], but restricted ourselves to the ECQF formalism Hamiltonian [50, 51]. This approach has been shown to be
a rather good approximation in many calculations.
The parameter ∆N+2 can be associated with the energy needed to excite two particles across the Z = 82 shell

gap, corrected for the pairing interaction energy gain and including monopole effects [52, 53]. The operator V̂ N,N+2
mix

describes the mixing between the N and the N + 2 configurations and is defined as

V̂
N,N+2
mix = w

N,N+2
0 (s† × s† + s× s) + w

N,N+2
2 (d† × d† + d̃× d̃)(0). (5)

The E2 transition operator for two-configuration mixing is subsequently defined as

T̂ (E2)µ =
∑

i=N,N+2

eiP̂
†
i Q̂µ(χi)P̂i , (6)

where the ei (i = N,N +2) are the effective boson charges and Q̂µ(χi) is the quadrupole operator defined in equation
(4).
In our fitting procedure, we focussed on obtaining the best possible agreement with the experimental data available

for the excitation energies and for the B(E2) reduced transition probabilities. In the most general case 13 parameters
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Nucleus εN κ′

N κN κ′

N+2 κN+2 χN+2 eN eN+2

172Pt 725.0 0.00 -39.47 0.00 -22.87 -0.38 - -
174Pt 701.2 0.00 -31.60 0.00 -21.82 -0.30 - -
176Pt 683.4 1.04 -37.62 5.24 -23.56 -0.75 1.86 1.63
178Pt 753.8 -2.31 -37.45 5.27 -25.17 -0.55 3.21 1.52
180Pt 999.3 -15.14 -37.34 6.57 -25.14 -0.32 1.29 1.94
182Pt 939.9 -6.70 -35.39 7.03 -23.50 -0.31 1 1.1
184Pt 750.6 1.47 -32.66 6.64 -23.89 -0.34 1.14 1.71
186Pt 675.3 3.17 -30.50 7.29 -24.23 -0.32 1.44 1.67
188Pt 483.2 4.94 -37.38 6.67 -31.47 -0.11 1.66 1.66
190Pt 338.7 19.33 -34.62 0.83 -32.51 0.00 1.50 1.50
192Pt 314.9 12.01 -45.32 -8.82 -38.84 0.00 1.68 1.77
194Pt 370.9 6.67 -38.26 6.52 -31.02 0.00 1.97 0.25

TABLE I: Hamiltonian and T̂ (E2) parameters resulting from the present study. All quantities have the dimension of energy

(given in units of keV), except χN+2 which is dimensionless and eN and eN+2 which are given in units
√
W.u. The remaining

parameters of the Hamiltonian, i.e. χN and εN+2 are equal to zero, except ∆N+2=2800 keV and wN,N+2

0 = wN,N+2

2 =50 keV.

need to be determined for the IBM-CM Hamiltonian (1) and the E2 operator (6). To obtain parameters that vary
smoothly from isotope to isotope, we imposed some constraints. For the regular Hamiltonian, we chose χN = 0, while
we fixed the relative d-boson energy to εN+2 = 0 for the intruder Hamiltonian, the latter choice also supported by
[38]. These choices were made following a number of test calculations in which no substantial improvement in the
value of χ2 was obtained if we allowed εN+2 6= 0 or χN 6= 0. In addition, we kept the value that describes the energy
needed to create an extra particle-hole pair (or 2 extra bosons) at ∆N+2 = 2800 keV (note the typo ∆N+2=1400 keV
in [41]; all calculations were performed with the correct value, though). Similarly, the mixing strengths were chosen

w
N,N+2
0 = w

N,N+2
2 = 50 keV for all the Pt isotopes. Those values are known to be quite appropriate in this part of

the nuclear chart [38, 39], although the choice of the mixing strength remains somewhat arbitrary [38]. Finally, we
also have to determine the effective charges of the E2 operator for each isotope. With these choices, the number of
parameters still to be determined for each nucleus is 8.
The parameters for the IBM-CM Hamiltonian resulting from the fitting procedure are summarised in Table I [41].

Note that some of the Hamiltonian parameters, especially for 172Pt and 174Pt, remain rather arbitrary due to the
lack of experimental data. For 172Pt and 174Pt, the value of the effective charges cannot be determined because not
a single absolute B(E2) value is known. Similarly, for 182Pt, the absolute value of the effective charges could not be
determined because only relative B(E2) values are known. As a consequence, those charges are dimensionless.

B. The evolution of the character of the yrast band

We start our analysis with the structure of the configuration mixed wave functions along the yrast levels, expressed
as a function of the [N ] and [N + 2] basis states,

Ψ(k, JM) =
∑

i

aki (J ;N)ψ((sd)Ni ; JM)

+
∑

j

bkj (J ;N + 2)ψ((sd)N+2
j ; JM) , (7)

where k, i, and j are rank numbers.
In Fig. 4, we present the weight of the wave function contained within the [N ]-boson subspace, defined as the sum of

the squared amplitudes wk(J,N) ≡
∑

i | a
k
i (J ;N) |2, for the yrast states (k = 1) and the 0+2 state, which is indicated

with a dashed line. The results exhibit an interesting behaviour, both as a function of angular momentum J and as a
function of changing mass number. Indeed, the character of the yrast band changes with increasing neutron number,
passing from being spherical (major component in the [N ] space) at mass number A ∼172 towards more deformed
(major component in the [N + 2] model space) close to mid-shell, and changing again to a spherical character when
approaching A∼192. This behaviour is very pronounced for the yrast 0+1 , 2

+
1 , 4

+
1 states but changes for the higher

spin states and in particular for the J = 8+ state, which retains its [N + 2] intruder character along the whole region
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172 ≤ A ≤ 192 (except for 194Pt which is regular). This makes the J = 8+ state the ideal reference state to redraw the
energy spectra of the Pt nuclei and study their evolution [54, 55]. Similarly scaled energy spectra can be obtained for
other nuclei exhibiting this systematic behaviour. Hence, rescaling the energy spectra of the adjacent isotones with
neutron number N = 106 (with w1(J = 0, N) ∼ 30% for 184Pt) gives a most interesting illustration that reveals the
mixing effects in the ground-state and lower-spin yrast states (see Fig. 5). It shows that the energy of the 0+ ground
state and some of the lower-spin yrast states relative to a higher-lying, more pure, reference state is particularly
sensitive to the [N +2] configuration space wave function components. This is studied in more detail in Sec. IV. It is
also clear that the yrast band in 184Pt shows a very strong correspondence with the intruder band structure in 186Hg.
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FIG. 4: (Color online) Regular component of the yrast band states (full lines), together with the 0+2 state (black dashed line),
calculated using the IBM-CM formalism.

Going back to Fig. 4, where we also plotted the regular component of the 0+2 state, one clearly notices its com-
plementary behaviour compared to the 0+1 state. This has an important consequence on the study of the hindrance
factor for α decay from the Hg ground state into the 0+1,2 states in the Pt nuclei, as will be discussed in Section IVB.

C. Energy spectra

Having discussed the wave function content in terms of the [N ] and [N + 2] configurations in the previous section,
as a next step we study the configuration mixed energy spectra in more detail. Especially the energies up to Ex ∼
1.5 MeV are of interest because the extra states coming from the intruder configuration do not show up in an obvious
way (in contrast to, e.g. the Pb and Hg nuclei in Fig. 1 and Fig. 2, respectively). Therefore, we diagonalize the
Hamiltonian (1) without the mixing term in the separate model spaces [N ] and [N + 2]. This results in the wave
functions

Ψ(k, JM)N =
∑

l

ckl (J ;N)ψ((sd)Nl ; JM) , (8)

(and similarly for N + 2) with corresponding energies E(k,J[N]) and E(l,J[N+2]). This method has been described
in detail [56–58] and results in “so-called” unperturbed bands that are an intermediate step before obtaining the full,
configuration-mixed, wave functions and their corresponding excitation energies. These bands are the equivalent of
the unperturbed bands extracted from phenomenological band mixing studies that have been carried out in this mass

region [59, 60]. The introduction of the coupling term V̂
N,N+2
mix leads to a mixing of these unperturbed bands. The
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FIG. 5: Energy spectra in the N = 106 isotones from 70Yb up to 80Hg, relative to the energy of the yrast 8+ state. The
numbers between brackets denote the value of ~2/(2J ) deduced from the energy differences.

intermediate basis of a set of unperturbed “bands” is particularly useful to detect the effects caused by the remaining
mixing term and its influence on the final energy spectra.
In the next figures, we illustrate these various steps highlighting the way in which the energy spectra result.

We consider, as examples, the nuclei 174Pt, 180Pt, 186Pt, and 192Pt which are positioned around neutron mid-shell
N = 104. Starting with 174Pt (N = 96), we present the unperturbed bands resulting from diagonalizing in the
[N ] space (called “Regular”) and in the [N + 2] space (called “2p-2h”) on the left-hand side of Fig. 6. The lowest
unperturbed regular bands correspond to the less collective structure whereas the higher-lying unperturbed 2p-2h
bands have a rotational-like structure, including bands that resemble excited Kπ=2+ and Kπ=0+ bands. The inclusion
of the mixing then leads to the energy spectra (called CM for “configuration mixed”) at the right-hand side of the
figure. On each of the levels, the weight wk(J,N) ≡

∑

i | a
k
i (J ;N) |2 (see Section II B for its definition) of the regular

[N ] part of the model space is displayed. This nicely illustrates the gradual degrading of the [N ] percentage when
going up the yrast band (see also Fig. 4). It also explains why the 2p-2h intruder band is not clearly separated from
the regular band structure: the mixing induces a particular redistribution of the energy levels such that lowest band
members originating from the unperturbed 2p-2h configuration end up in different final sets of states. We stress that
the bands were constructed as sequences of levels connected through large B(E2) reduced transition probabilities. We
also mention that only the lowest 3 bands are shown in the CM spectrum as we focus on those bands which appear
mostly below ∼ 1.5 MeV. Finally, it is clear that the CM spectrum strongly resembles that of the regular configuration
even though the energies are more compressed. Evidently, the wave functions are largely different in both cases.
In Fig. 7, we illustrate the situation for 180Pt (N = 102), which is situated close to neutron mid-shell N = 104. Here,

one clearly notices two things as compared with 174Pt: (i) the inversion of the energies of lowest 2p-2p unperturbed
bands with the regular unperturbed bands, and (ii) the change in structure of the regular unperturbed bands. When
comparing with the CM spectrum, one notices that the yrast band has its main components within the [N + 2]
model space, becoming gradually pure with increasing angular momentum. The even angular momentum states in
the two excited bands in the CM spectrum retain mostly a [N + 2] character but with a much larger contribution
from the [N ] components as compared to the yrast band. In fact, they result mostly from strong mixing between the
lowest unperturbed regular band and the two excited unperturbed 2p-2h bands. In 186Pt (N = 108, see Fig. 8), the
unperturbed bands are almost degenerate. This is reflected in the composition of the wave functions, in particular
for the lower spin states where strongly mixed configurations result. For both 180Pt and 186Pt, the strong mixing of
the unperturbed bands conceals the presence of the two different configurations for the bands in the CM spectrum
starting off well below 1.5 MeV.
For comparison, we also present in Fig. 9)the results for 192Pt (N = 114), a nucleus well past the neutron mid-shell

N = 104. In this case, the 2p-2h unperturbed bands have moved up considerably compared to the regular bands
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FIG. 6: Unperturbed regular and intruder (“2p-2h”) energy levels together with the theoretical fully mixed calculation (“CM”)
for 174Pt. The small numbers in the “CM” column correspond to the regular component percentage.
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FIG. 7: The same as Fig. 6 but for 180Pt.

which exhibit a clear O(6) structure in this mass region. Even though the unperturbed regular and 2p-2h bands
seem well separated at first sight, the states above the 2+1 level remain quite mixed in the spectrum resulting after
configuration mixing.
As a conclusion to this part of our study, in which we investigated the unperturbed bands (regular and 2p-2h) and

subsequently added the mixing interaction, we state that a very strong mixing of the bands for the Pt nuclei close to
neutron mid-shell makes it virtually impossible to distinguish between the regular and 2p-2h configurations. Because
of the strong mixing in the Pt nuclei, in particular in the mid-shell region, (i) it is hard to distinguish the precise
nature of a band by just observing the energy systematics, and, (ii) remarkably, the energy spectra resulting from the
IBM-CM calculation, below ∼ 1.5 MeV, resemble spectra that can be described with an IBM Hamiltonian in the [N ]
space.
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FIG. 8: The same as Fig. 6 but for 186Pt.
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FIG. 9: The same as Fig. 6 but for 192Pt.

D. Electric quadrupole transitions

More detailed information on the admixture of the wave functions can be obtained from the E2 transition matrix
elements. Whereas the wave functions in eq. (7) are expressed using the [N ] and [N + 2] basis states, we can equally
well express them using the eigenfunctions corresponding with the unperturbed regular and intruder bands, as given
in eq. (8). Under this basis transformation, the E2 transition matrix elements are decomposed into corresponding E2
transition matrix elements within the unperturbed bands each having a certain weight factor. This allows to filter
out those transitions in the unperturbed bands that contribute most to a certain transition in the fully configuration
mixed bands and provides additional information on the admixture in the wave function.
In Fig. 10, we present the ratio R for (a) 174Pt, (b) 180Pt, (c) 186Pt, and (d) 192Pt. This quantity R is defined

as the ratio of a contributing reduced transition matrix element of the Ji(i
′) → Jf (f

′) transition in the unperturbed
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regular band 〈(f ′, Jf )N || T̂ (E2) || (i′, Ji)N 〉 (and similar for N+2) times its weight factor, with respect to the reduced

transition matrix element of the corresponding transition in the fully configuration-mixed system 〈(f, Jf ) || T̂ (E2) ||
(i, Ji)〉 it contributes to (f ′, i′, f, i being rank numbers). We have plotted the most important contributions (ratios),
such that, when adding them, we arrive to within 10% of the full matrix element. The inset legend in Fig. 10 gives
the specific contributions in the unperturbed band. For example, in blue (N, 1) → (N, 1), the contributing ratio

R(N) =W
〈(1, J − 2)N || T̂ (E2) || (1, J)N 〉

〈(k, J − 2) || T̂ (E2) || (k, J)〉
, (9)

with W the weight factor (see [57, 58] for the detailed expression), is shown (the same can be defined for [N + 2]).
The effective charges used for these decompositions are taken from Table I, except for 174Pt where arbitrary charges
eN = eN+2 = 1 have been used.
Inspecting the transitions in the yrast band (i.e. 2(1) − 0(1), 4(1) − 2(1), and 6(1) − 4(1)), we observe a pattern

to be expected from the discussion of the energy spectra in Sect. II C. Whereas, the largest contributions are coming
from the unperturbed regular yrast band for 174Pt and 192Pt, with an increasing contribution from the unperturbed
intruder yrast band when going to higher spin, the transitions in the yrast band of 180Pt and 186Pt are almost entirely
determined by the contribution of transition in the unperturbed 2p-2h yrast band.
The transitions in the first excited band are more interesting. Starting with 192Pt, we notice that those transitions

are dominated by the corresponding transitions in the first excited unperturbed regular and 2p-2h band. Though this
may seem surprising at first sight from inspection of the spectrum, one should keep in mind that the intruder part of
the Hamiltonian is very close to the case of O(6) symmetry and that selection rules for the transitions will apply. For
the other nuclei, the decomposition of the E2 matrix elements looks more complicated. For 180Pt and 186Pt (excluding
the 2(2) − 0(2) transition for the moment), the relatively largest contribution is coming from the transitions in the
first excited unperturbed intruder band, followed by contributions from transitions in the unperturbed yrast regular
band and some smaller contributions. Indeed, the strong lowering of the unperturbed intruder bands around neutron
mid-shell and the typical spreading of the energies in the unperturbed bands brings the 4+ and 6+ states of the
unperturbed regular yrast band and of the unperturbed first excited 2p-2h band pretty close in energy. Even though
one would also expect a non-negligible contribution from the transitions involving the second excited unperturbed
2p-2h band from comparison of the unperturbed energies, they do not or barely contribute. In 174Pt, finally, the
unperturbed 2p-2h bands have moved up in energy again and the E2 transitions in the first excited band of the CM
spectrum contain contributions from both yrast and first excited unperturbed regular and 2p-2h band, indicating a
wider ’spreading’ of the wave function. Finally, note that the 2(2)− 0(2) transition, being an inter-band transition,
often has a structure that slightly differs from the rest of the second excited band. Hence, we may state that the
decomposition of the E2-transition matrix elements gives some more insight into the precise ’spreading’ of the wave
function in the basis of the unperturbed states. The relative purity of the E2 ratios within the yrast band also hints
at the possibility to describe those transitions in a reduced [N] space. From inspection of the more complex structure
of the E2 ratios in the first excited band and especially for the interband transition, one would expect differences
between calculations with different model spaces to show up.

III. EFFECT OF CONFIGURATION MIXING ON THE SYSTEMATICS OF ENERGY LEVELS

In this section, we concentrate on how the strong mixing effects discussed in Sect. II B-IID give rise to the
characteristic energy systematics of the even-even Pt nuclei.
In panels a), b), and c) of Fig. 11, we plot the energy systematics of respectively the unperturbed 0+1,2, 2

+
1,2, and

4+1,2 states. The energies are plotted relative to the energy of the unperturbed regular 0+ state, which enhances the
parabolic behaviour of the energy intruder band. To compare those unperturbed energies to the final spectrum, we
should plot them relative to the energy of the 0+ state that is lowest in energy. The unperturbed energies of the 0+2 ,
2+1 , and 4+1 states with respect to the energy of the 0+ state are plotted in panels d), e), and f), respectively. We
observe a very striking tendency due to the crossing of the 0+1 and 0+2 states. The evolution of 0+2 state is mexican hat
shaped whereas the 2+1 and 4+1 states exhibit an almost flat behaviour around mid shell. This characteristic behaviour
is exclusively due to the crossing of 0+1 and 0+2 states. Upon inclusion of the mixing interaction, it is clear that the
mixing effect will be maximal near the crossing at mass number A = 178 and A = 186, in particular for the 0+ states
and likewise for the higher angular momentum states. It is the interplay of the crossing with subsequent mixing for
the 0+ states that largely determines the final behaviour of the energy systematics. The resulting spectra up to spin
8+ are shown in panel g) and still clearly display the very specific pattern of the 0+2 and 4+1 states after the mixing.
When comparing those same states with the experimental systematics (see panel h), a clear-cut correspondence shows
up.
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FIG. 10: (Color online) Decomposition of the E2 matrix elements for 174Pt (panel a), 180Pt (panel b), 186Pt (panel c), and
192Pt (panel d). The E2 ratio R is defined as in [58]. The initial and final state are indicated as Ji(i)-Jf (f) at the bottom of the
figure. The color coding for the contributions of the corresponding transition from Ji(i

′) to Jf (f
′) in the unperturbed regular

band (indicated as (N,i’)→ (N,f’)) is given at the right-hand side of the figure (similar for contributions in the unperturbed
2p-2h band).

Therefore, we can conclude that the crossing of the set of unperturbed regular and intruder bands is of major
importance to describe the energy systematics as observed in the Pt nuclei, even though the configuration mixing
effects are highly concealed in the energy levels and B(E2) values of a given nucleus.

IV. STUDY OF OBSERVABLES SENSITIVE TO CONFIGURATION MIXING

Following from our discussion in the previous sections, it should be clear that nuclear structure effects caused by
the strongly changing character of the wave function in the [N ] and [N + 2] space are to be expected for a number of
variables. Indeed, observables such as charge radii, gyromagnetic factors, and α-decay hindrance factors are sensitive
to an increased number of active protons (generated through particle-hole pair excitations across the Z = 82 closed
shell), or to a change towards more explicit prolate deformation near neutron mid-shell (N = 104). Therefore, we
will focus on these experimental quantities as they allow to probe precisely those components of the nuclear wave
functions.

A. Gyromagnetic factors

A, for our purpose, particularly interesting set of data are the g-factor measurements for the 2+1 state in the mid-shell
184,186,188Pt nuclei [20]. The data display a rather flat behaviour as a function of the neutron number in the vicinity
of mid-shell. Early calculations by Kumar and Baranger that were quite consistent with the data [61] indicated a
change from a prolate towards a more oblate ground-state shape between A = 188 and A = 190 and were later
substantiated by studies from Bengtsson et al. [62]. Stuchbery et al. [20] analysed gyromagnetic factors starting from
the two-band mixing study carried out by Dracoulis et al. [63], in which the mixing between a regular and an intruder
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FIG. 11: (Color online) Energy systematic of the unperturbed (IBM-CM) first regular and intruder states (full line for regular,
while dashed line for intruder states in panels a), b), and c)), a) 0+1,2 energies relative to the energy of the 0+ regular state, b)

2+1,2 energies relative to the energy of the 0+ regular state, c) 4+1,2 energies relative to the energy of the 0+ regular state, d) 0+2
energies relative to the energy of the 0+1 state, e) 2+1 energies relative to the energy of the 0+1 state, f) 4+1 energies relative to
the energy of the 0+1 state. Panel g) corresponds to the full (including now all states) IBM-CM calculation and panel h) shows
the experimental data of the yrast band states plus the 0+2 state.

configuration consistent with the measured B(E2) and with E0 measurements by Xu et al. [64] was extracted. The
calculations by Stuchbery et al. [20] pointed out that the data cannot be described using only a single configuration
but are consistent with the mixing of two configurations. In particular, the need of an increased number of active
proton pairs for the description of the A = 184, 186, 188 results was demonstrated. The same conclusion was reached
by Harder et al. [38]. More recently, Bian et al. [21] carried out projected shell-model calculations starting from a
deformed basis, concentrating on g-factors for the 2+1 state throughout the rare-earth region, i.e. from Gd up to the
Pt nuclei. Although they obtained a rather good agreement for most of the region, the calculated results show a
distinct set of too low g-factors in the Pt nuclei in the mass region 184 ≤ A ≤ 198. Only by means of an artificial
increase of the deformation, one could improve the agreement. Thus, g-factors are sensitive observables to the precise
configuration content of the nuclear wave function describing the 2+1 state.
Within an IBM context, magnetic moments can be calculated with the IBM-2 [65, 66], which differentiates between

proton (π) and neutron bosons (ν) . The M1 operator can then be written as

T̂ (M1) =

√

3

4π

(

P̂
†
N (gπN L̂π + gνN L̂ν)P̂N + P̂

†
N+2(g

π
N+2L̂π + gνN+2L̂ν)P̂N+2

)

. (10)

Using the standard microscopic values for the g factors [67], i.e. gνN = gνN+2 = 0 and gπN = gπN+2 = µN , the M1
operator reduces to,

T̂ (M1) =

√

3

4π

(

P̂
†
N (L̂π)P̂N + P̂

†
N+2(L̂π)P̂N+2

)

µN . (11)

The calculation of the matrix element of this operator cannot be accomplished directly with IBM-1, but if one assumes
F-spin symmetry for the IBM-2 Hamiltonian [66], it can be readily shown that the gyromagnetic factor can be written
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as [38],

g(2+1 )

µN
=

1

2µN
µ(2+1 ) =

Nπ

N
ω1(2, N) +

Nπ + 2

N + 2
(1− ω1(2, N)), (12)

where Nπ is the number of protons out of the closed shell divided by two and ω1(2, N) is that part of the wave function
of the 2+1 state within the [N ]-boson (regular) space (see Section II B for its definition). In Fig. 12, we present the
calculated g-factors and the experimental values. This figure is qualitatively similar to the one in [38], but displays
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FIG. 12: (Color online) Gyromagnetic factor for the even-even Pt isotopes (experimental data from [21]). Full circles for the
experimental data, full and dashed lines for [N ] and [N + 2] unperturbed results, respectively, and red full diamonds with full
line for the IBM-CM calculations.

a better agreement with the experimental data. Note that this calculation is parameter free once the wave functions
are determined. As a reference, we also plotted the limits corresponding to wave function with either fully regular
[N ] character or intruder [N + 2]. The theoretical results obtained after the mixing calculation should be situated
between both lines. Note that, according to the IBM, this flat behaviour of the g-factors is necessarily explained by
a strong mixing between the regular and intruder 2p-2h configurations.

B. α-decay hindrance factors

In the Pb-region, most interesting results were obtained when the content of the nuclear wave functions was tested
through α-decay measurements. It was shown by Andreyev et al. [68] that α-decay was instrumental as a sensitive
probe to prove the presence of a triplet of 0+ states in 186Pb, each corresponding to a different shape.
Wauters et al. [22, 23] carried out experiments on the α-decay from the Po, Pb and Hg nuclei to the Pb, Hg and

Pt nuclei, respectively, concentrating in particular on the N = 104 mid-shell region. α decay is a highly sensitive
fingerprint, precisely because an α particle is emitted in the decay, a process which requires the extraction of two
protons and two neutrons from the initial nucleus. The comparison of s-wave l=0 α-decay branches from a given
parent nucleus (the Hg 0+ ground state in the present situation) to 0+ states in the daughter nucleus (the Pt 0+

ground state and excited 0+ states) is important in that respect. The reduced α-decay widths themselves are very
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FIG. 13: A schematic view of the α-decay proceeding from the 0+ Hg ground state in the 0+1,2 states in the Pt nuclei. The
inset boxes present the experimental α decay hindrance factors, which were taken from [22–24] and from Nucl. Data Sheets.

difficult to calculate on an absolute scale, but hindrance factors reflect possible changes amongst the wave functions
describing various 0+ states in a given daughter nucleus [24] well. Hindrance factors of an α-decay branch to an
excited state with a strength Iex, relative to the α-decay branch to the ground state with intensity Igs are defined by
the ratio

HF =
δ2gs

δ2ex
=
IgsPex

IexPgs
, (13)

where δ2i is the reduced α width, Pαi
the penetration probability through the combined Coulomb and centrifugal

barrier [24] and Ii the α-decay intensity (with i = gs, ex for the ground state and excited state, respectively). They
indicated that, in the neutron mid-shell region, the 0+ ground-state in the Pb and Hg nuclei is essentially consistent
with a closed Z = 82 core and a two-proton hole configuration in the Z = 82 core [22, 23] (see upper part of Fig. 13;
only the proton structure is depicted, as one does not expect the neutron part to be different in the final states).
However, α-decay feeding into the first-excited 0+2 state exhibits a hindrance factor which is increasing with decreasing
mass number (see Fig. 13, lower part. The specific values of the hindrance factors are the adopted values as given in
Nucl. Data Sheets, starting from the original data [22, 23]). The observed large increase in hindrance when moving
towards N = 100 (A = 178) is consistent with the two-band mixing calculations by Dracoulis et al. [63] which results
in a 0+ ground state exhibiting an increasing regular [N ] configuration weight of ≈ 50% for mass A=180 and A=178
up to ≈ 80% for mass A=176. This is consistent with the results presented in Fig. 4, where the the 0+1 ground state
is progressively becoming a regular [N ] configuration, moving from mass A = 180 (with ≈ 30% of [N ] component)
towards A = 178 (≈ 45% of [N ] component) and A = 176 (≈ 75% of [N ] component). The important point here,
as also stressed by Van Duppen and Huyse [24], is the consistent picture that results when treating the Po, Pb, Hg,
and Pt nuclei jointly. More detailed calculations have been carried out by Delion et al. [69, 70], and more recently by
Karlgren et al. [71], and by Xu et al. [72], emphasising the need for a microscopic QRPA description that encompasses
both neutron and proton pairing vibrations and that includes proton 2p-2h excitations across the Z = 82 closed shell.
They calculated hindrance factors for α-decay into the neutron-deficient Po, Pb, Hg, and Pt nuclei. The hindrance
factors for decay into the 176,178,180Pt first excited 0+2 state exhibit a large increase when moving down from mass
A = 180 towards A = 176, corroborating the results from a simple two-level analysis [23]. Thus, α-decay hindrance
factors can serve as a sensitive fingerprint to test structural changes of the nuclear wave functions.
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C. Isotopic shifts

Experimental information about ground-state charge radii is also available for both the even-even and odd-mass
Pt nuclei. Combined with similar data for the adjacent Pb and Hg as well as the odd-mass Bi, Tl and Au nuclei the
systematic variation of the charge radii supplies invaluable information on the ground-state wave function [73]. In
particular, detailed studies by Hilberath et al. [74] for the 183−198Pt nuclei and by Le Blanc et al. [75] have extended
the charge radii measurements down to 178Pt. We illustrate the relative changes defined as ∆〈r2〉A ≡ 〈r2〉A+2 -〈r2〉A
in Fig. 14 and the overall behaviour of 〈r2〉A relative to the radius at mass A = 194 in Fig. 15. The mean-square
charge radius exhibits a clear-cut change at and below mass A = 188 with respect to the almost linear decrease for the
heavier mass Pt nuclei, as can be seen in Fig. 15 . This kink gives rise to a pronounced dip in the relative difference of
charge radii for mass A = 186 and A = 184, as illustrated in Fig. 14. An extrapolation of the linear trend downwards
from mass A = 198 (see dotted line in Fig. 15), hints towards an increased deformation of the 0+ ground state. This
experimental mass dependence is rather well reproduced in the Hartree-Fock-Bogliubov calculations (HFB) using the
Gogny force [76, 77], as illustrated in Fig. 5 and Table V in the study by Le Blanc et al. [75].

178 180 182 184186 188 190 192 194196
A

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

<
r2 >

A
+

2 -
 <

r2 >
A

 (
fm

2 )

Exp
IBM-CM

FIG. 14: (Color online) Experimental data and theoretical values for the isotope shifts ∆〈r2〉
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for the
even-even Pt isotopes (from [74] and [75]).

The IBM-CM calculations that were carried out by Harder et al. [38] as well as the present, more detailed, IBM-CM
study of the even-even Pt nuclei yield the same qualitative results for the decomposition of the ground-state 0+ wave
function presented in Fig. 3 of [41] and in the present Fig. 4. The regular component with N bosons becomes minimal
at A ≈ 182 (about 10% and 30% in the more schematic and more extensive IBM-CM calculations, respectively) and
reaches a value of 80% in both calculations for masses heavier than A = 188 and lighter than A = 176. This latter
mass interval corresponds in a qualitative way to the bump in the evolution of the mean-square charge radii relative to
the dotted-line background. The mixing calculations carried out by Harder et al. [38] (see their Fig. 3) are consistent
with a dip in the relative variation ∆〈r2〉A at the mass numbers A = 184 and 186. To calculate the isotope shifts, we
have used the standard IBM-CM expression for the nuclear radius

r2 = r2c + P̂
†
N (γN N̂ + βN n̂d)P̂N + P̂

†
N+2(γN+2N̂ + βN+2n̂d)P̂N+2. (14)

The four parameters appearing in this expression are adjusted to the experimental data. Note that only the exper-
imental values past mid shell (A = 182) are used. The resulting values are γN = −0.099 fm2, βN = 0.004 fm2,
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FIG. 15: (Color online) Experimental and theoretical variation of the mean-square charge radii (relative to mass A = 194).
The dotted line is an extrapolation of the linear decrease for masses above A = 192 (from [74, 75]).

γN+2 = −0.059 fm2, and βN+2 = 0.013 fm2 and are only valid for the second half of the shell. The comparison
with the experimental data show a very good quantitative agreement, which confirms the assumption that the bal-
ance between [N ] and [N + 2] contributions to the wave function along the whole chain of Pt isotopes is very well
described.

V. CONCLUSIONS

Upon comparison of the level systematics of the Pb, Hg and Pt nuclei, from the neutron closed shell at N = 126
towards very neutron-deficient nuclei and even beyond the neutron mid-shell at N = 104, some conspicuous differences
show up. For the Pb and Hg nuclei, intruding bands are observed in a compelling way and have been explained as
the occurrence of prolate and oblate bands (coexisting with the spherical states at the Z = 82 proton closed shell Pb
nuclei) within the context of mean-field theory or as many-particle many-hole proton excitations across the Z = 82
closed shell within a highly-truncated shell-model approach that approximates the nucleon pairs as s- and d-boson
pairs (IBM). For the Pt nuclei, however, the energy systematics does not obviously point towards the presence of two
different structures, as was the case in the Hg nuclei.
In a former paper [41], we have extensively compared configuration mixing IBM calculations incorporating both

2p-2h excitations [N + 2] and the regular configuration [N ] with IBM calculations that restrict the model space to
just the regular configurations [N ]. At first sight, one would expect to observe strong differences. However, the results
showed that, up to an excitation energy of ∼ 1.5 MeV, the energy spectra, absolute B(E2) values, B(E2) branching
ratios, and quadrupole moments turned out largely similar. The point was raised that, somehow, configuration mixing
did not show up explicitly when only considering a restricted set of data. Therefore the name “concealed” is in order.
In the present paper, we have extensively studied how configuration mixing between two distinct model spaces, i.e.

the [N ] and [N + 2] configurations, may give rise to results that resemble those obtained when only using a subset of
the full model space. We have noticed that it is important to have the two families of energy bands (i.e. the regular,
[N ], and the intruder 2p-2h, [N + 2], bands) of which the lowest cross at A = 176 − 178 and A = 186 − 188. This
particular crossing, reminiscent of similar situations of inversion of regular and intruder configurations as observed e.g.
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in the N = 20 and N = 28 neutron rich nuclei, and the mixing between the regular and intruder 2p-2h bands gives rise
to a specific structure of the wave functions along the yrast bands. Near mid-shell (N = 104), we observe a progressive
change of character from the higher-spin members (at Jπ=8+,6+) that are almost of pure intruder character towards
more mixed configurations, though still mainly of intruder character, at the lower spin values. With the higher-
spin members retaining a rather pure intruder character for most of the mass region studied here (with 172 ≤ A
≤ 192), it is natural to redraw energy spectra relative to the higher-spin member at 8+. The changing character
in the wave function is evident from the energy spectra, which result from the mixing of the regular configuration,
with a more spherical character and typical energy-spacing of 300− 400 keV, and the intruder 2p-2h configuration,
with a more deformed character and a typical energy spacing of 100 − 150 keV. We have illustrated this for the
nuclei at A = 174, 180, 186, and A = 192, hence passing through the mid-shell region. In addition to the study of
energy spectra, we have also carefully studied the decomposition of the most important E2 reduced matrix elements
〈(f, Jf ) || T̂ (E2) || (i, Ji)〉 into its components originating from the regular and intruder bands. In this way, the
specific effect of the mixing is highlighted in both, the appearance of the correct energy spectra and B(E2) values,
when comparing with the experimental data.
We stress in particular the importance of the crossing of these unperturbed regular and intruder bands for the

description of the specific systematics of the energy spectra of the Pt nuclei. They are characterised by a rather
sudden drop in the excitation energy of the 0+2 , 4

+
1 , 2

+
3 and 6+1 levels between neutron number N = 110 and N = 108,

with energies starting to move up again between neutron number N = 100 and N = 98. In the intermediate region,
the energy spectra exhibit a particularly flat behaviour with changing neutron number and even a slightly ’upward’
bump for the 0+2 , 2

+
2 , 4

+
2 levels. Within a schematic 2-level model, such an effect is caused by the mixing of a single

regular band and an intruder band that has parabolic-like evolution of the absolute energy. When one plots the energy
spectrum relative to the lowest 0+ state, a slight bump results.
At this point, the remaining question is whether the configuration mixing can be ’unveiled’, in particular for the

lowest-lying levels such as the ground-state (through study of isotopic shifts, transfer reaction intensities, etc) and
lowest 2+1 state (g-factor for instance) Therefore, we have calculated those observables. The g-factor very clearly
indicates the need for a rather strong mixing, becoming more pure in regular [N ] character for the lightest and
heaviest mass numbers. Until present, transfer reactions are not possible yet, but α-decay can provide such overlap
factors through the hindrance factors. Even though not quantitatively verified, the changing structure in the [N ]
versus [N + 2] content of the wave functions for the 0+1,2 states is consistent with the change in hindrance factor,

becoming increasingly large for the excited 0+ state compared to the ground state with decreasing mass number. The
isotopic shifts are also a very direct measure of the ground-state wave function and as such is a number sensitive to
its precise decomposition. The dip in the isotopic shift curve at A = 186 is well reproduced by the present wave
functions, derived from the mixing calculations and containing two different structures, a more spherical one and a
more deformed component. The variation of the mean-square radii clearly shows a bump structure very much centred
around the mid-shell N = 104 neutron number.
The study of the Pt nuclei is interesting because it demonstrates that calculations of a very different nature can

give rise to a good description of a number of properties. However, different models working in different model spaces
and with different effective interactions should stand the test to as many observables as possible. In this respect,
the study of the configuration mixing is quite illuminating as it consistently describes an as large set of observables
as possible. Ideally, one would like to see transfer data, populating the Pt nuclei through single and double-nucleon
transfer. Moreover, we suspect that the Pt nuclei are not just an isolated case of concealed configuration mixing.
When carefully inspecting the changing structure and systematics in the Po nuclei (which have two protons outside
the Pb core), the observed spectra do not display an obvious presence of extra intruder bands. However, recent studies
point strongly towards the presence of intruding 2p-2h excitations (or the presence of an oblate and a spherical band
in mean-field terminology) near A = 192 [7, 14, 16, 19, 78–80].
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