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We present the finite amplitude method (FAM), originally proposed in Ref. [17], for superfluid
systems. A Hartree-Fock-Bogoliubov code may be transformed into a code of the quasi-particle-
random-phase approximation (QRPA) with simple modifications. This technique has advantages
over the conventional QRPA calculations, such as coding feasibility and computational cost. We per-
form the fully self-consistent linear-response calculation for a spherical neutron-rich nucleus 174Sn,
modifying the HFBRAD code, to demonstrate the accuracy, feasibility, and usefulness of the FAM.
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I. INTRODUCTION

Elementary modes of excitation in nuclei provide valu-
able information about the nuclear structure. The
random-phase approximation (RPA) based on energy
density functionals (EDF) is a leading theory applica-
ble both to low-lying excited states and giant resonances
[1, 2]. Although the fully self-consistent treatment of
the residual (induced) interactions for the realistic energy
functionals is becoming more and more prevalent [3–13],
the RPA calculations for deformed nuclei are still com-
putationally demanding. At present, the quasi-particle
random-phase approximation (QRPA) for deformed su-
perfluid nuclei are limited only to axially deformed cases
[10–15], except for Ref. [16] with an approximate treat-
ment of the pairing interaction.
Recently, there has been a renewed interest in the so-

lution of the RPA problem [17–19]. In Ref. [17], the
finite amplitude method (FAM) was proposed as a fea-
sible method for a solution of the RPA equation. The
FAM allows us to calculate all the induced fields using
a finite difference method, employing a computational
program of the static mean-field Hamiltonian. Recently,
the FAM has been applied to the electric dipole excita-
tions in nuclei using the Skyrme energy functionals [18].
There has been also a calculation making use the itera-
tive Arnoldi algorithm for a solution of the RPA equation
[19]. These newly developed technologies in conjunction
with fast solving algorithms for linear systems open the
possibility to explore systematically the nuclear excita-
tions over the entire nuclear chart.
So far, these new techniques [17–19] have been devel-

oped for solutions of the RPA without the pairing cor-
relations. It is well known, however, that almost all but
magic nuclei display superfluid features. Therefore, a
further improvement is highly desirable to make these
methods applicable to the QRPA equations including
correlations in the particle-particle and hole-hole chan-

nels. The purpose of the present paper is to generalize
the FAM to superfluid systems, which enables us to per-
form a QRPA calculation utilizing a static Hartree-Fock-
Bogoliubov (HFB) code with minor modifications. Our
final goal would be the construction of a fast computer
program for the fully self-consistent and triaxially de-
formed QRPA. This paper is a first step toward the goal,
to present the basic equations of the FAM for the QRPA
and show the first result for spherical nuclei. We use the
spherically symmetric HFB code called HFBRAD [20] to
be converted into the QRPA code.

This paper is organized as follows: In Sec. II, the
QRPA equation is derived as the small-amplitude limit
of the time-dependent HFB (TDHFB) equations. In Sec.
III, we obtain the FAM formulae for the calculation of the
induced fields. In Sec. IV, we summarize all the relevant
formulae for practical application of the FAM. In Sec.
V, we apply the FAM to the HFBRAD and compare
the result with that of another self-consistent calculation.
Sec. VI is devoted to the conclusions.

II. SMALL AMPLITUDE LIMIT OF THE

TDHFB

In this section, we recapitulate the basic formulation
of the TDHFB and its small-amplitude limit. In general,
we will follow the notation in Ref. [1] unless otherwise
specified. We also use ~ = 1 in the following equations.

We start from the energy functional E [ρ, κ, κ∗] which
is a functional of the density matrix and pairing tensor.

ρkl = 〈Φ|c†l ck|Φ〉, κkl = 〈Φ|clck|Φ〉, (1)

where |Φ〉 is the HFB state. The single-particle Hamilto-
nian h and the pairing potential ∆ are obtained with a
variation of the energy functional with respect to ρ and
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κ∗, respectively.

hkl[ρ, κ, κ
∗] =

∂E

∂ρlk
, ∆kl[ρ, κ, κ

∗] =
∂E

∂κ∗
kl

. (2)

The Bogoliubov quasi-particles, (aµ, a
†
µ), have a lin-

ear connection to the bare particles, (ck, c
†
k); a†µ =

∑

k(Ukµc
†
k + Vkµck). Here, the index k indicates the

adopted basis such as the harmonic oscillator states or
the coordinate space. The quasi-particles aµ are chosen
so as to diagonalize the HFB Hamiltonian [1].

H0 =
1

2

(

c† c
)

(

h− λ ∆
−∆∗ −(h∗ − λ)

)(

c
c†

)

=
∑

µ

Eµa
†
µaµ.

(3)
Here, the normal ordering is assumed.
In a similar manner, the time-dependent quasi-

particles a†µ(t) are characterized by the time-dependent

wave functions (U(t), V (t)) by a†µ(t) =
∑

k{Ukµ(t)c
†
k +

Vkµ(t)ck}. The time evolution of the quasi-particles un-
der a one-body external perturbation F (t) are deter-
mined by the following TDHFB equation.

i
∂aµ(t)

∂t
= [H(t) + F (t), aµ(t)], (4)

where the TDHFB Hamiltonian is given by

H(t) =
∑

kl

{hkl(t)− λδkl} c
†
kcl

+
∑

k>l

{

∆kl(t)c
†
kc

†
l +∆∗

kl(t)clck

}

=
1

2

(

c† c
)

(

h(t)− λ ∆(t)
∆†(t) −(h∗(t)− λ)

)(

c
c†

)

(5)

Here and hereafter, the constant shift is neglected, since
it does not play any role in the TDHFB equation (4).
h(t) and ∆(t) become time-dependent, since they de-
pend on the densities, ρ(t) = V ∗(t)V T (t) and κ(t) =
V ∗(t)UT (t) = −U(t)V †(t), which are time-dependent.
Note that the static quasi-particles correspond to a quasi-
static solution of Eq. (4), aµ(t) = aµe

iEµt, with F (t) = 0.
Let us assume that the nucleus is under a weak external

field of a given frequency ω.

F (t) = η
{

F (ω)e−iωt + F †(ω)eiωt
}

, (6)

F (ω) =
1

2

∑

µν

{

F 20
µν(ω)A

†
µν + F 02

µν(ω)Aµν

}

+
∑

µν

F 11
µν (ω)Bµν , (7)

where A†
µν ≡ a†µa

†
ν and Bµν ≡ a†µaν . A small real param-

eter η is introduced for the linearization. In the small-
amplitude limit, the second term (B-part) in Eq. (7)
can be omitted, because it doesn’t contribute in the lin-
ear approximation. The Bogoliubov transformation of

the external fields (F 20
µν (ω) and F 02

µν(ω)) is given in Ap-
pendix A2.
The external perturbation F (t) induces a density oscil-

lation around the ground state with the same frequency
ω. The density oscillation, then, produces the induced
fields in the single-particle Hamiltonian, h(t) = h0+δh(t)
and in the pair potential, ∆(t) = ∆ + δ∆(t). Thus, the
Hamiltonian, Eq. (5), is decomposed into the static and
oscillating parts; H(t) = H0 + δH(t).

δH(t) = η
{

δH(ω)e−iωt + δH†(ω)eiωt
}

, (8)

δH(ω) =
1

2

∑

µν

{

δH20
µν(ω)A

†
µν + δH02

µν(ω)Aµν

}

. (9)

Here, the B-part is again neglected in Eq. (9). See Ap-
pendix A1 for the derivation of δH(ω). Explicit expres-
sions for δH20

µν(ω) and δH02
µν(ω) are found in Eqs. (A8)

and (A9), respectively.
The time-dependent quasi-particle operators are de-

composed in a similar manner:

aµ(t) = {aµ + δaµ(t)}e
iEµt, (10)

where δaµ(t) can be expanded in the quasi-particle cre-
ation operators:

δaµ(t) = η
∑

ν

a†ν

(

Xνµ(ω)e
−iωt + Y ∗

νµ(ω)e
iωt
)

. (11)

It should be noted that δaµ can be expanded only in
terms of the creation operators, because the annihila-
tion operators in the right-hand side of Eq. (11) simply
represent the transformation among themselves, aµ(t) =
∑

ν Cµν(t)aν , and do not affect ρ and κ. The amplitudes,
X and Y , must be anti-symmetric to satisfy the fermionic
commutation relation, {aµ(t), aν(t)} = 0. Keeping only
linear terms in η, Eq. (4) becomes

i
∂δaµ(t)

∂t
= Eµδaµ(t) + [H0, δaµ(t)] + [δH(t) + F (t), aµ].

(12)
Substituting Eqs. (6)-(11) into Eq. (12), we obtain the
linear-response equations:

{

(Eµ + Eν − ω)Xµν(ω) + δH20
µν(ω) = F 20

µν(ω)

(Eµ + Eν + ω)Yµν(ω) + δH02
µν(ω) = F 02

µν(ω)
. (13)

In Eq. (13), setting the frequency complex, ω → ω+iγ/2,
we can introduce a smearing with a width γ.
Expanding δH20(ω) and δH02(ω) in terms of the for-

ward and backward amplitudes, X and Y , we obtain a
familiar expression of the equation [1]:

[(

A B
B∗ A∗

)

− ω

(

II 0
0 −II

)](

X(ω)
Y (ω)

)

=

(

F 20(ω)
F 02(ω)

)

.

(14)
This matrix formulation requires us to calculate the
QRPA matrix elements, Aµν,µ′ν′ and Bµν,µ′ν′ . This is
a tedious task and their dimension, which is equal to the
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number of two-quasi-particle excitations, becomes huge
especially for deformed nuclei. Instead, in the FAM [17],
we keep the form of Eq. (13) and calculate the induced
fields δH20(ω) and δH02(ω) using the numerical differ-
entiation. We explain this trick in the next section.

III. FINITE AMPLITUDE METHOD FOR THE

INDUCED FIELDS

The expressions for δH20 and δH02 in Eq. (13) are
given in Eqs. (A8) and (A9), respectively. Thus, we
need to calculate δh(ω) and δ∆(±)(ω) for given X and
Y . We perform this calculation following the spirit of the
FAM [17].
From Eqs. (10) and (11), we obtain the time-

dependent quasi-particle wave functions:

(

Uµ(t)
Vµ(t)

)

=

(

Uµ(t)
Vµ(t)

)

eiEµt, (15)

where

Ukµ(t) =
{

U + η
(

V ∗X∗eiωt + V ∗Y e−iωt
)}

kµ
, (16)

Vkµ(t) =
{

V + η
(

U∗X∗eiωt + U∗Y e−iωt
)}

kµ
. (17)

First, let us discuss how to obtain δh(ω). The time-
dependent single-particle Hamiltonian h(t) depends on
the densities which are determined by the wave func-
tions (U(t), V (t)). Therefore, h(t) can be regarded as a
functional of wave functions as

h [U∗(t), V ∗(t);U(t), V (t)] = h [U∗(t),V∗(t);U(t),V(t)] .
(18)

Here, it should be noted that the phase factors, eiEµt

in Eq. (15), do not play a role. This is because h is a
functional of densities, ρ, κ, and κ∗, which are given by
products of one of (U, V ) and one of the complex con-
jugate (U∗, V ∗), such as ρ = V ∗V T and κ = V ∗UT .
Therefore, the time-dependent phases in Eq. (15) are
always canceled, thus can be omitted.
Now, we take the small-amplitude limit, keeping only

the linear order in η.

h(t) = h [U∗(t),V∗(t);U(t),V(t)]

= h [U∗, V ∗;U, V ] + η
{

δh(ω)e−iωt + h.c.
}

.(19)

Here, δh(ω) can be obtained using Eqs. (16) and (17),
expanding up to the first order in η and collecting terms
proportional to e−iωt, as

δh(ω) =
∂h

∂U∗
· V X +

∂h

∂V ∗
· UX

+
∂h

∂U
· V ∗Y +

∂h

∂V
· U∗Y. (20)

The calculation of the derivatives, such as ∂hkl/∂U
∗
k′µ, is

a tedious task and requires a large memory capacity for
their storage in the computation. In the FAM, we avoid

this explicit expansion, instead write the same quantity
as follows:

δh(ω) =
h
[

Ū∗
η , V̄

∗
η ;Uη, Vη

]

− h [U∗, V ∗;U, V ]

η
+O(η2),

(21)
where Ū∗

η , V̄
∗
η , Uη, and Vη are given by

Ū∗
η ≡ U∗ + ηV X, V̄ ∗

η ≡ V ∗ + ηUX,

Uη ≡ U + ηV ∗Y, Vη ≡ V + ηU∗Y.
(22)

This is the FAM formula for the calculation of δh(ω).
All we need in the computer program is a subroutine to
calculate the single-particle Hamiltonian as a function of
the wave functions, h[Ū∗, V̄ ∗;U, V ].
For the pair potential, basically, the same arguments

lead to the FAM formulae for δ∆(±). The time-dependent
pair potential ∆(t) can be written as

∆(t) = ∆ [U∗(t),V∗(t);U(t),V(t)]

= ∆ [U∗, V ∗;U, V ]

+η
{

δ∆(+)(ω)e−iωt + δ∆(−)(ω)eiωt
}

. (23)

Here, δ∆(+) and δ∆(−) are independent, since ∆(t) is
non-Hermitian in general. δ∆(+) can be written in the
same form as Eq. (21).

δ∆(+)(ω) =
∆
[

Ū∗
η , V̄

∗
η ;Uη, Vη

]

−∆ [U∗, V ∗;U, V ]

η

+O(η2), (24)

where Ū∗
η , V̄

∗
η , Uη, and Vη are given by Eq. (22).

The expression for δ∆(−) is also obtained from Eq.
(23), collecting terms proportional to eiωt. It is given by
the same expression as Eq. (24),

δ∆(−)(ω) =
∆
[

Ū∗
η , V̄

∗
η ;Uη, Vη

]

−∆ [U∗, V ∗;U, V ]

η

+O(η2). (25)

However, (Ū∗
η , V̄

∗
η ;Uη, Vη) here are different from Eq.

(22) and given by

Ū∗
η ≡ U∗ + ηV Y ∗, V̄ ∗

η ≡ V ∗ + ηUY ∗,

Uη ≡ U + ηV ∗X∗, Vη ≡ V + ηU∗X∗.
(26)

The essential trick of the FAM is to calculate the in-
duced fields, δh(ω) and δ∆(±), according to Eqs. (21),
(24), and (25) with a small but finite parameter η. Of
course, the η2 and higher-order terms bring some nu-
merical errors, but they are negligible. Therefore, for
given X and Y , we are able to calculate these induced
fields, by using the static HFB code with some minor
modifications. δH20(ω) and δH02(ω) of Eq. (13) in the
quasi-particle basis can be calculated with Eqs. (A8) and
(A9), respectively. Then, we may solve the QRPA linear-
response equation (13) to obtain the self-consistent am-
plitudes, X and Y , utilizing an iterative algorithm (See
Sec. IV).



4

A. Induced fields in terms of densities

Although the basic formulae of the FAM has been pro-
vided in Sec. III, we may need to modify them in the
practical implementation of the FAM. For instance, some
HFB codes, such as HFBRAD, contain subroutines to
calculate mean fields as functions of densities, not of wave
functions. In this subsection, we rewrite Eqs. (21), (24),
and (25) in terms of densities.
The density δρ(t) is written up to linear order in η as

ρ(t) = V ∗(t)V T (t)

= ρ0 + η
(

δρ(ω)e−iωt + h.c.
)

,
(27)

where

δρ(ω) = UXV T + V ∗Y TU †. (28)

This can be written in the FAM form:

δρ(ω) =
ρη − ρ0

η
+O(η2)

=
V̄ ∗
η V

T
η − V ∗V T

η
+O(η2), (29)

where V̄ ∗
η and Vη are given in Eq. (22).

The pair tensor κ(t), which is non-Hermitian, can be
expressed in a similar manner.

κ(t) = V ∗(t)UT (t)

= κ0 + η
(

δκ(+)e−iωt + δκ(−)eiωt
)

.
(30)

Here, κ(±) can be given in the explicit form as

δκ(+)(ω) = UXUT + V ∗Y TV †, (31)

δκ(−)(ω) = V ∗X†V † + UY ∗UT , (32)

and in the FAM form as

δκ(±)(ω) =
κ
(±)
η − κ0

η
+O(η2)

=
V̄ ∗
η U

T
η − V ∗UT

η
+O(η2), (33)

where V̄ ∗
η and Uη are given in Eq. (22) for κ

(+)
η while

they are given by Eq. (26) for κ
(−)
η .

Now, let us present how to obtain the induced fields
in terms of the densities. In general, h(t) and ∆(t) may
depend on ρ, κ, and κ∗.

h(t) = h [ρ(t), κ(t), κ∗(t)] , ∆(t) = ∆ [ρ(t), κ(t), κ∗(t)] .
(34)

In order to obtain the induced fields, all we need to do is

to replace ρ by ρη defined in Eqs. (29), and κ by κ
(±)
η in

Eq. (33), as follows:

δh(ω) =
h
[

ρη, κ
(+)
η , κ

(−)∗
η

]

− h [ρ, κ, κ∗]

η
, (35)

δ∆(+)(ω) =
∆
[

ρη, κ
(+)
η , κ

(−)∗
η

]

−∆ [ρ, κ, κ∗]

η
, (36)

δ∆(−)(ω) =
∆
[

ρη, κ
(−)
η , κ

(+)∗
η

]

−∆ [ρ, κ, κ∗]

η
, (37)

where the terms of the second and higher orders in η are
neglected.

IV. SUMMARY OF THE FINITE AMPLITUDE

METHOD

Here we provide a summary of the FAM for the
QRPA linear-response calculation for a prompt applica-
tion. Later, we discuss applications of the FAM to the
Skyrme functionals, however, the FAM formulated in this
and previous sections is applicable to any kind of energy
density functional (mean-field) models.

A. Numerical procedure

The aim is to solve the linear-response equation (13)
for a given external field F . In order to obtain the for-
ward and backward amplitudes, X and Y , we resort to
an iterative algorithm. Namely, we start from the ini-
tial guess for (X,Y ) = (X(0), Y (0)) ≡ ~x(0), and calcu-
late δh(ω) and δ∆(±)(ω) according to the formulae, (21),
(24), and (25). Then, they are converted into δH20(ω)
and δH02(ω), using Eqs. (A8) and (A9), respectively. In
this way, we can evaluate the left and right hand sides of
Eq. (13) for a given (X,Y ).
Since Eq. (13) is equivalent to Eq. (14), it is a lin-

ear algebraic equation for the vector ~x ≡ (X,Y ), in the

form of A~x = ~b. Many different algorithms are avail-
able for the solution of linear systems. In this paper, we
resort to a procedure based on Krylov spaces called gen-
eralized conjugate residual (GCR) method [21]. Within
these kinds of methods, a succession of approximate so-
lutions (~x(0), ~x(1), ~x(2), · · · ) converging to the exact one is
obtained by the iteration. The GCR algorithm consists
in a series of steps each containing the operation of the
matrix A on a given vector, and sums and scalar products
of two vectors. For the given ~x = (X,Y ), A~x is equal to
the left hand side of Eq. (13). Therefore, the quantity
A~x can be calculated without the explicit knowledge of
the QRPA matrix itself.
Here, we summarize the formulae. The linear response

equation is given by A~x = ~b, where

~x ≡

(

Xµν

Yµν

)

, ~b ≡

(

F 20
µν

F 02
µν

)

,
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and

A~x =

(

(Eµ + Eν − ω)Xµν(ω) + δH20
µν(ω)

(Eµ + Eν + ω)Yµν(ω) + δH02
µν(ω)

)

,

where

δH20
µν(ω) = U †δhV ∗ − V †δ∆(−)∗V ∗

+ U †δ∆(+)U∗ − V †δhTU∗,

δH02
µν(ω) = −V T δhU + UT δ∆(−)∗U

− V T δ∆(+)V + UT δhTV.

Denoting h and ∆ collectively asH ≡ (h,∆), the induced
fields δH are calculated by the FAM formulae,

δH =
H
[

Ū∗
η , V̄

∗
η ;Uη, Vη

]

−H [U∗, V ∗;U, V ]

η
, (38)

where (Ū∗
η , V̄

∗
η ;Uη, Vη) are given by

Ū∗
η ≡ U∗ + ηV Y ∗, V̄ ∗

η ≡ V ∗ + ηUY ∗,

Uη ≡ U + ηV ∗X∗, Vη ≡ V + ηU∗X∗.

for the calculation of δh(ω) and δ∆(+). For δ∆(−), they
are

Ū∗
η ≡ U∗ + ηV X, V̄ ∗

η ≡ V ∗ + ηUX,

Uη ≡ U + ηV ∗Y, Vη ≡ V + ηU∗Y.

The final result does not depend on the parameter η,
as far as it is in a reasonable range. The choice of η is
discussed in Sec. V.

B. Calculation of the strength function

Using the solution (X,Y ), we can calculate the
strength function following the same procedure as Ref.
[17].

dB(ω;F )

dω
≡
∑

n>0

|〈n|F |0〉|2δ(ω − En) = −
1

π
ImS(F ;ω).

(39)
Here, S(F ;ω) is obtained from the solution (X,Y ). For
the operator in the form of Eq. (A10), we may calculate
S(F ;ω) as

S(F ;ω) = tr
{

f †δρ(ω)
}

, (40)

For the operator in the form of Eq. (A13), we have

S(F ;ω) = tr
{

g†δκ(+)(ω) + g
′†δκ(−)∗(ω)

}

. (41)

For both cases, in the two-quasi-particle basis, Eqs. (40)
and (41) can be written in the unified expression.

S(F, ω) =
1

2

∑

µν

{

F 20∗
µν Xµν(ω) + F 02∗

µν Yµν(ω)
}

, (42)

where F 20 and F 02 are given by Eqs. (A11) and (A12)
for the former case, and by Eqs. (A14) and (A15) for the
latter.

V. APPLICATION OF THE FAM TO THE

HFBRAD

In order to assess the validity of the FAM, we install the
FAM in the HFBRAD code [20]. It has to be noted that
the formalism of the HFBRAD is slightly different from
the one used in this paper which follows the notations in
Ref. [1]. In particular, the wave functions (ϕ1µ, ϕ2µ), the

pairing tensor ρ̃, and the pair potential h̃ are defined in
a different manner; ϕ1µ(k) = Ukµ, ϕ2µ(k) = Vk̄µ, ρ̃kl =

κkl̄, and h̃kl = ∆kl̄, where k̄ is the time-reversal state of
k. A detailed discussion on the difference among the two
notations can be found in Ref. [25].
The HFBRAD [20] is a well known code which solves

the HFB in the radial coordinate space assuming the
spherical symmetry. It has been designed to provide fast
and reliable solutions for the ground state of spherical
even-even nuclei. For these nuclei, the time-odd densities
are identically zero and thus they have not been imple-
mented in the code. In order to render the QRPA fully
self-consistent, we have to add the time-odd terms in the
calculation of the induced fields. This task can be sim-
plified for a case of the presence of spherical and space-
inversion symmetry, such as in the case of monopole ex-
citations. For this case, the only time-odd terms with
non-zero contribution are those due to the current den-
sity [22], moreover the only non-vanishing component of
the current density is radial.
We calculate the strength function of the isoscalar

monopole for a neutron-rich nucleus, 174Sn. To check
the self-consistency by looking at the spurious compo-
nent, we also calculate the strength of the nucleon num-
ber operator. Both operators are given by the form of
Eq. (A10) with fkl = 〈k|r2|l〉 for the isoscalar monopole
operator and fkl = δkl for the number operator.
In order to obtain the strength function, first, we have

to solve the HFB equations to construct the ground-state
wave functions (U, V ). It is accomplished by using the
HFBRAD code. The parameters of the present calcu-
lation are adjusted to the values used by Terasaki and
co-workers in Ref. [6]; The box size is Rbox = 20 fm, the
quasi-particle energy cutoff is Ec

qp = 200 MeV, the max-
imum angular momenta of the quasi-particle states are
jnmax = 21/2 for neutrons, and jpmax = 15/2 for protons.
We use the Skyrme functional with the SkM* parameter
set [23] in the ph-channel and a delta interaction of the
volume type with the strength V0 = −77.5 MeV fm3 for
the pp- and hh-channels.
The next step is solving the linear-response equation

for a given external field of the frequency ω. At first, we
build the induced fields, δh(ω) and δ∆(±)(ω), starting
from a guess choice of the QRPA amplitudes (X(0), Y (0)),
according to Eq. (38). In the present calculation, we
choose eitherX(0) = Y (0) = 0 or the values ofX and Y at
the previous energy ω calculated. We resort to the itera-
tive algorithm of the GCR method to solve the equation
(13). We include all the two-quasi-particle states (µν)
within the HFB model space defined above (Eµ(ν) ≤ 200
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174 Sn, 0+

ω = 4 MeV ω = 12 MeV ω = 20 MeV

η ǫ Niter ǫ Niter ǫ Niter

10−2 0.44 1000 1.63 ·10−1 1000 8.84 · 10−3 1000

10−4 6.10 · 10−5 1000 1.76 ·10−5 1000 < 10−5 469

10−5 < 10−5 161 < 10−5 439 < 10−5 469

10−8 < 10−5 161 < 10−5 439 < 10−5 469

10−9 < 10−5 161 < 10−5 439 < 10−5 469

10−10 < 10−5 161 1.19 ·10−5 1000 1.46 · 10−5 1000

TABLE I: Convergence properties of the calculation. The

obtained accuracy ǫ = ‖A~x−~b‖2/‖~b‖2 and the number of GCR
iteration Niter to reach ǫ < 10−5 are shown for different values
of η. The initial vector is chosen as ~x(0) = (X(0), Y (0)) = (0, 0)
and the maximum number of iterations is set at Niter = 1, 000.

MeV). The two-quasi-particle space amounts to 12,632
states for Jπ = 0+. Note that this number becomes
much larger if we treat deformed systems. We set the
accuracy of the convergence to be ǫ < 10−5, where

ǫ ≡ ‖A~x − ~b‖2/‖~b‖2. The number of iterations needed
depends on ω; at low energies, about 50-60 iterations
are enough to reach the convergence, while, close to the
central peak at 12 MeV, more than 300 iterations are
needed.

We studied the convergence quality of the solutions
as a function of the parameter η used for the numeri-
cal derivative. This is shown in Table I. If η is too big
(η ≥ 10−4) the derivative of the FAM becomes inaccu-
rate and the linearity of the procedure is partially broken.

The residue ‖A~x−~b‖ reaches a plateau where increasing
the number of iterations cannot improve it anymore. For
10−5 ≤ η ≤ 10−9, the calculations converge well and the
resulting strength function is stable. If η becomes smaller
than 10−10, the numerical precision limits are reached
and the GCR procedure can no longer obtain the required
precision. Therefore, we may conclude that the parame-
ter η in the range of 10−5 ≤ η ≤ 10−9 is appropriate to
obtain the induced fields accurately. Although the con-
stant value η = 10−8 is adopted in this paper, we may
use a more sophisticated choice, such as the ω-dependent
η values [17, 18],

We report the strength function of the isoscalar
monopole mode. To smear the strengths at discrete
eigenenergies, we add an imaginary term to the energy:
ω → ω + iγ/2, where γ = 1.0 MeV. This procedure is
almost equivalent to smearing the strength function with
a Lorentzian function with a width equal to γ. The cal-
culated energy-weighted strengths are summed up to 300
MeV and we found that they exhaust 99.6 % of the the-
oretical sum-rule value given by 2

m
A〈r2〉.

In Fig. 1, we compare our results (solid red curve)
with the one in Ref. [6] (dashed green curve). The self-
consistent result obtained by Terasaki et al. [6] also em-
ploys the HFB solutions calculated with the HFBRAD.
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FIG. 1: (Color online) Calculated transition strength of the
isoscalar monopole 0+ excitations in 174Sn (solid red curve),
compared with the result in [6] with the cutoff (iii) (green
dashed curve). The transition strength associated to the
number operator, magnified by a factor of 10,000, in units
of MeV−1 is shown by the blue dotted curve. See text for
details.

However, in Ref. [6], the QRPA matrix is calculated
in the canonical-basis representation and an additional
truncation of the two-quasi-particle space is introduced
for the construction of the QRPA matrix . In contrast,
we introduce no additional truncation for our FAM cal-
culation. We compare our results with the one of the
cutoff (iii) in Ref. [6] which takes into account the high-
est number of states for the construction of the QRPA
matrix; all the proton quasi-particles up to 200 MeV and
the neutron canonical levels with occupancy v2 > 10−16.
In the first two peaks at E ∼ 5 and 8.5 MeV, the two

curves are almost perfectly overlapping. The peaks be-
tween 11 MeV and 18 MeV occur at the same energy
for the two calculations while their height is slightly dif-
ferent. The bump close to zero energy resulting in our
calculations has to be attributed to the presence of a spu-
rious mode. To check the position of the spurious mode
related to the pairing rotation of the neutrons, we in-
cluded in Fig. 1 the transition strength associated to the
number operator, by the blue dashed line. The spurious
mode is well localized close to zero energy.
The present result demonstrates the accuracy and use-

fulness of the FAM for the superfluid systems. Even if the
two codes include some differences in the truncation of
the two-quasi-particle space, the similarity of the results
is very satisfying

VI. CONCLUSIONS

The finite amplitude method for the QRPA has been
presented. The basic idea is identical to the original FAM
[17], that we resort to a numerical differentiation to calcu-
late the induced fields and then solve the linear-response
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equation with an iterative algorithm such as the GCR.
With the FAM, a HFB code with simple modifications
can be turned into a QRPA code. Especially, it is very
easy to construct the QRPA code which has the same
symmetry of the parent HFB one whose subroutines are
used to perform the numerical derivative. All the terms
present in the TDHFB calculation, including the time-
odd mean fields, should be taken into account to con-
struct fully self-consistent codes. This requires us some
effort to update the original HFB code. Still, the neces-
sary task for coding the FAM is much less than that for
the explicit calculation of the QRPA matrix elements for
realistic energy functionals. In addition, it does not re-
quire a large memory capacity, since we do not construct
the QRPA matrix. We have built a fully self-consistent
QRPA code using the HFBRAD [20]. The iterative al-
gorithm, for which we adopted the GCR method in this
paper, may be replaced by a better algorithm in future.
The resulting strength functions of the isoscalar 0+ mode
of 174Sn show high similarity with the fully self-consistent
calculations in Ref. [6]. Thus, this paper showed the
first application of the FAM for superfluid systems and
demonstrated the usefulness of the FAM for the construc-
tion of the QRPA code by modifying existing HFB codes.
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Appendix A: Bogoliubov transformation of

one-body fields

1. Induced fields δH

The TDHFB Hamiltonian is given by Eq. (5). We
consider the small-amplitude limit, H(t) = H0 + δH(t),
where H0 is the HFB Hamiltonian of Eq. (3) and

δH(t) =
1

2

(

c† c
)

(

δh(t) δ∆(t)

−δ∆∗(t) −δh∗(t)

)(

c

c†

)

. (A1)

Here, δh(t) and δ∆(t) are oscillating as

δh(t) = η
(

δh(ω)e−iωt + δh†(ω)eiωt
)

, (A2)

δ∆(t) = η
(

δ∆(+)(ω)e−iωt + δ∆(−)(ω)eiωt
)

. (A3)

Note that δ∆(±)(ω) are anti-symmetric but δh(ω) is not
necessarily Hermitian. The induced Hamiltonian, Eq.
(A1), is now expressed in the form of Eq. (8) with δH(ω)
given by

δH(ω) =
1

2

(

c† c
)

(

δh δ∆(+)

−δ∆(−)∗ −δhT

)(

c

c†

)

. (A4)

Hereafter, δh(ω) and δ∆(±)(ω) are denoted by δh and
δ∆(±), for simplicity.
Since the Bogoliubov transformation can be written in

terms of the unitary matrix W [1] as follows:

(

a

a†

)

=

(

U † V †

V T UT

)(

c

c†

)

≡ W†

(

c

c†

)

, (A5)

we may rewrite Eq. (A4) in the quasi-particle basis:

δH(ω) =
1

2

(

a† a
)

W†

(

δh δ∆(+)

−δ∆(−)∗ −δhT

)

W

(

a

a†

)

.

(A6)
This transformation should provide δH20 and δH02 in
Eq. (9).

(

δH11 δH20

−δH02 −(δH11)T

)

= W†

(

δh δ∆(+)

−δ∆(−)∗ −δhT

)

W .

(A7)
We write here their explicit expression:

δH20
µν(ω) =

(

U †δhV ∗ − V †δ∆(−)∗V ∗

+U †δ∆(+)U∗ − V †δhTU∗
)

µν
, (A8)

δH02
µν(ω) =

(

−V T δhU + UT δ∆(−)∗U

−V T δ∆(+)V + UT δhTV
)

µν
. (A9)

2. External field F

The one-body field in general can be written in a form
of Eq. (7) in terms of the quasi-particle operators, ne-
glecting a constant. Suppose that F (ω) in Eq. (6) has a
form

F =
∑

kl

fklc
†
kcl =

1

2

(

c† c
)

(

f 0

0 −fT

)(

c

c†

)

, (A10)

where the difference of a constant shift is neglected. Here,
the matrix fkl is a general complex matrix, since F (ω) is
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non-Hermitian in general. The Bogoliubov transforma-
tion as in Eq. (A7), then, leads to F 20 and F 02 in Eq.
(7),

F 20
µν =

(

U †fV ∗ − V †fTU∗
)

µν
, (A11)

F 02
µν =

(

UT fTV − V T fU
)

µν
. (A12)

In case that F (ω) has a form of pairing-type

F =
1

2

∑

kl

(

gklc
†
kc

†
l + g′klclck

)

, (A13)

the same calculation provides F 20 and F 02 by

F 20
µν =

(

U †gU∗ − V †g′V ∗
)

µν
, (A14)

F 02
µν =

(

UT g′U − V T gV
)

µν
. (A15)
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