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Abstract

A computer code is presented for solving the equations of Hartree-Fock-Bogoliubov (HFB)

theory by the gradient method, motivated by the need for efficient and robust codes to calculate

the configurations required by extensions of HFB such as the generator coordinate method. The

code is organized with a separation between the parts that are specific to the details of the

Hamiltonian and the parts that are generic to the gradient method. This permits total flexibility

in choosing the symmetries to be imposed on the HFB solutions. The code solves for both

even and odd particle number ground states, the choice determined by the input data stream.

Application is made to the nuclei in the sd-shell using the USDB shell-model Hamiltonian.
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I. INTRODUCTION

An important goal of nuclear structure theory is to develop the computational tools

for a systematic description of nuclei across the chart of the nuclides. There is hardly any

alternative to self-consistent mean-field (SCMF) for the starting point of a global theory, but

the SCMF has to be extended by the generator coordinate method (GCM) or other means

to calculate spectroscopic observables. There is a need for computational tools to carry out

the SCMF efficiently in the presence of the multiple constraints to be used for the GCM.

Besides particle number, quantities that may be constrained include moments of the density,

angular momentum, and in the Hartree-Fock-Bogoliubov (HFB) theory, characteristics of

the anomalous densities. Because the HFB theory includes correlations that are important

in heavy nuclei, it is the preferred based starting point for GCM and other extensions.

Like Hartree-Fock, the HFB is founded on a variational principle for the energy of the

system. In the case of Hartree-Fock, the many-body wave function is varied in the space of

Slater determinants. In the HFB theory, the variation is in the more general space defined by

the Bogoliubov transformation. Both theories can be concisely formulated for Hamiltonians

that are expressible in second quantized notation. For ordinary two-body Hamiltonians,

the energy to be minimized 〈Ĥ〉 is given by Eq. (3) below, or more generally Eq. (18)

in the presence of constraints. As a nonlinear minimization problem, there are no efficient

algorithms that apply to all cases. In the nuclear HFB as well as Hartree-Fock problem, it is

very common practice replace the minimization problem by the problem of finding zeros of

a function of many variables, formally δ〈Ĥ〉/δφi = 0 where φi is a wave function amplitude.

This yields the HFB matrix eigenvalue equation, for which there are many codes available

in the literature, eg. [4–8]. However, as will be discussed below, the matrix eigenvalue

method can have problems particularly when there are many constraints on the solution.

In contrast, the gradient method described by Ring and Schuck ([1], Section 7.3.3) is quite

robust and easily deals with multiple constraints. However, the computational aspects of

the method as applied to HFB have not been well documented in the literature in the detail

that is found for example in Ref. [2], describing the corresponding algorithm for nuclear

Hartree-Fock theory. And we know of no published codes applicable to the nuclear problem.

Here we will describe an implementation of the gradient algorithm for HFB following

the iterative method used by Robledo and collaborators [10]. The main aspects of that
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method up to Eq. (22) below has also been described in Ref. [9]. The code presented

here, hfb shell, is available as supplementary material to this article (see Appendix). The

code has separated out the parts that are basic to the gradient method and the parts that

are specific to the details of the Hamiltonian. As an example, the code here contains a

module for application to the sd-shell with a shell-model Hamiltonian containing one-body

and two-body terms. There is a long-term motivation for this application as well. The

sd-shell could be a good testing ground for the extensions of SCMF such as the GCM

and approximations derived from GCM. Since one has a Hamiltonian for the sd-shell that

describes the structure very well, one could test the approximations to introduce correlations,

such as projection, the random-phase approximation, etc and compare them with the exact

results from the Shell Model. Preliminary results along this line are discussed in [11, 12].

As a first step in this program, one needs a robust SCMF code that treats shell-model

Hamiltonians. Extensions to other shell model configuration spaces are straightforward and

only limited by the availability of computational resources.

The code described here is more general than earlier published codes in that it can treat

even or odd systems equally well. The formalism for the extension to odd systems and

to a statistical density matrix will be presented elsewhere [13]. We also mention that the

present code (with a different Hamiltonian module) has already been applied to investigate

neutron-proton pairing in heavy nuclei[14].

II. SUMMARY OF THE GRADIENT METHOD

As emphasized above, he fundamental numerical problem to be addressed is the mini-

mization of the mean value one- plus two-body Hamiltonian under the set of Bogoliubov

transformations in a finite-dimensional Fock space. We remind the reader of the most es-

sential equations, using the notation of Ring and Schuck [1]. The basic variables are the U

and V matrices defining the Bogoliubov transformation. However, these are not the inde-

pendent variables of the problem due to the restriction that the transformation is canonical.

The main physical variables are the one-body matrices for the density ρ and the anomalous

density κ, given by

ρ = V ∗V t; κ = V ∗U t. (1)
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The Hamiltonian may be defined in the Fock-space representation as

Ĥ =
∑

12

ε12c
†
1c2 +

1

4

∑

1234

v1234c
†
1c

†
2c4c3. (2)

The expectation value of the Hamiltonian under a Bogoliubov transformation of the vacuum

is given by

H00 ≡ 〈Ĥ〉 = Tr(ερ+ 1

2
Γρ− 1

2
∆κ∗). (3)

in terms of the fields for the ordinary potential Γ and the pairing potential ∆. These are

defined as

Γ12 =
∑

34

v1423ρ34; ∆12 =
1

2

∑

34

v1234κ34. (4)

The gradient method makes extensive use of the quasiparticle representation for op-

erators related to the ordinary and anomalous densities. For a single-particle operator

F̂ =
∑

ij Fijc
†
icj we write

∑

ij

Fijc
†
icj ≡ c†Fc = F 00 + β†F 11β† + 1

2

(

βF 02β + β†F 20β†
)

. (5)

where β, β† are quasiparticle annihilation and creation operators. The gradient of the mean

value of the operator F is given by the variation of this quantity with respect to the in-

dependent variables defining the Bogoliubov transformation. It is constructed from the

skew-symmetric matrix F 20, which for a normal one-body operator is given by

F 20 = U †FV ∗ − V †F tU∗. (6)

The corresponding representation for an operator Ĝ of the anomalous density is

1

2
(c†Gc† − cG∗c) = G00 + β†G11β + 1

2
(β†G20β† + βG02β) (7)

The skew-symmetric matrix G20 is given by

G20 = U †GU∗ − V †G∗V ∗. (8)

Two operators that are particularly useful to characterize the HFB states are the axial

quadrupole operator QQ and the number fluctuation operator ∆N2. We define QQ as

QQ = 2z2 − x2 − y2; (9)
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its expectation value distinguishes spherical and deformed minima. The number fluctuation

is an indicator of the strength of pairing condensates and is zero in the absence of a conden-

sate. It depends on the two-body operator N̂2, but like the Hamiltonian can be expressed

in terms of one-body densities. We define it as

∆N2 ≡ 〈N̂2〉 − 〈N̂〉2 = 1

2
Tr

(

N20N02
)

= 2Tr (ρ(1 − ρ)) = −2Tr (κ∗κ) . (10)

The full expansion of the Hamiltonian in the quasiparticle basis is given in Eqs. (E.20-

E.25) of [1]. Here we will mainly need H20, given by

H20 = h20 +∆20 = U †hV ∗ − V †htU∗ − V †∆∗V ∗ + U †∆U∗. (11)

where h = ǫ + Γ. Starting from any HFB configuration U, V one can construct a new

configuration U ′, V ′ by the generalized Thouless transformation. The transformation is

defined by a complex skew-symmetric matrix Z having the same dimensions as U, V . All

the elements zij with i > j are independent. One often assumes that the transformation

preserves one or more symmetries such as parity or axial rotational symmetry. Then the

U, V matrices are block diagonal and Z has the same block structure. The transformation

is given by

U ′ = (U + V ∗Z∗)(1− ZZ∗)−1/2 = U + V ∗Z∗ +O(Z2) (12)

V ′ = (V + U∗Z∗)(1− ZZ∗)−1/2 = V + U∗Z∗ +O(Z2).

The last factor, (1−ZZ∗)−1/2, ensures that the transformed set U ′, V ′ satisfies the required

unitarity conditions for the Bogoliubov transformation. It can be efficiently computed using

the Cholesky decomposition [9]. We now ask how the expectation value of some bilinear

operator Q̂ changes when the Thouless transformation is applied. The result is very simple,

to linear order in Z:

Q00

new = Q00 − 1

2
(Tr(Q20Z∗) + h.c.) +O(Z2). (13)

The same formula applies to the Hamiltonian as well,

H00

new = H00 − 1

2
(Tr(H20Z∗) + h.c.) +O(Z2). (14)

From these formulas it is apparent that the derivative of the expectation value with respect
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to the variables z∗ij in Z∗ is1

∂

∂z∗ij
Q00 = Q20

ij . (15)

With a formula for the gradient of the quantity to be minimized, we have many numerical

tools at our disposal to carry out the minimization.

It is quite straightforward to introduce constraining fields in the minimization process.

As seen in Eq. (13) the transformation Z will not change the expectation value of Q̂ to

linear order provided Tr(Q20Z∗)+h.c. = 0. Thus, one can change the configuration without

affecting the constraint (to linear order) by projecting Z to Zc as Zc = Z − λQ20 with

λ = 1

2
(Tr(Q20Z∗) + h.c.)/Tr(Q20Q20 ∗). With multiple constraints, the projection has the

form

Zc = Z −
∑

α

λαQ
20

α . (16)

The parameters λα are determined by solving the system of linear equations,

∑

α

Mαβλα =
1

2
(Tr(Q20

β Z∗) + h.c.) (17)

where Mαβ = Tr(Q20

α Q20 ∗
β ). Since we want to minimize the energy, an obvious choice for

the unprojected Z is the gradient of the Hamiltonian H20. In this case the constraining

parameters λα are identical to the Lagrange multipliers in the usual HFB equations. We

will use the notation Hc for the constrained Hamiltonian

Hc = H −
∑

α

λαQα. (18)

A. Numerical aspects of the minimization

The most obvious way to apply the gradient method is to take the direction for the change

from Eq. (16,17), and take the length of the step as an adjustable numerical parameter. We

will call this the fixed gradient (FG) method. It is implemented in the program as

Zη = ηH20

c . (19)

Typically the starting U, V configuration will not satisfy the constraints, and the Z trans-

formations must also bring the expectation values of the operators to their target values qα.

1 The derivative is taken with respect to the variables in the skew-symmetric Z∗, ie. z∗ji = −z∗ij and zij , z
∗

ij

are treated as independent variables.
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The error vector δqα to be reduced to zero is given by

δqα = Q00

α − qα. (20)

We apply Eq. (13) to first order to obtain the desired transformation Zδq,

Zδq = −
∑

αβ

M−1

αβ δqαQ
20

β . (21)

With these elements in hand, a new configuration is computed using the transformation

Z = Zc + Zδq. (22)

This process is continued until some criterion for convergence is achieved. We shall measure

the convergence by the norm of the gradient |H20

c |. This is calculated as

|H20

c | =
(

Tr[H20

c (H20

c )†]
)1/2

. (23)

An example using this method as given is shown in Fig. 1. The parameter η is fixed to some

value and the iterations are carried out until convergence or some upper limit is reached.

The required number of iterations varies roughly inversely with η, up to some point where

the process is unable to find a minimum in a reasonable number of iterations.

There are a number of ways to speed up the iteration process. If the constraints are

satisfied, the parameter η can be increased considerably. Fig. 2 shows the change inH00

c from

one iteration cycle as a function of η using Zc to update. For small values of η, the change

in constrained energy is given by the Taylor expansion Eq. (14), ∆H00

c ≈ −ηTr (H00 ∗
c H00

c ).

This function is shown as the straight line in the Figure. The actual change is shown by

the black circles. One sees that η could be doubled or tripled from the maximum value

permitted in Fig. 1. However, the constraints and other aspects of the new U, V become

degraded so that such steps are not permissible for many iterations [2]. Still, one can take

advantage of the possible improvement by choosing η at each iteration taking account of the

relevant information from the previous iteration. This can be extracted from the ratio

r =
∆H00

c

ηTr (H00 ∗
c H00

c )
(24)

which is close to one for too-small η values and close to 1

2
at the value corresponding to the

steepest-descent minimum. We call such methods variable gradient. We note that updates

with Zδq alone are relatively quick because there is no need to evaluation matrix elements
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FIG. 1: Number of iterations required for convergence using Eq. (19) and fixed η. At the point

η = 0.12 MeV−1 and beyond, the iteration process is unstable. The converged solutions and their

energies are the same for all values of η shown in the plot. All values producing converged solutions

The system is 24Mg with three constraints, N , Z, and < QQ >= 10 h̄/mω0. The convergence

criterion is |H20
c | < 1.0× 10−2 MeV. See Section VIB for further details.

of the Hamiltonian. These considerations are implemented in the code of Ref. [10] by

interspersing cycles of iteration by Zδq alone among the cycles with updates by Eq. (22).

Another way to improve the efficiency of the iteration process is to divide the elements

of H20

c by preconditioning factors pij,

(Zc)ij = η
(H20

c )ij
pij

. (25)

The choice of the preconditioner is motivated by Newton’s method to find zeros of a

function (here H20

c ) based on knowledge of its derivative. This could be accessible from

the second-order term in Eq. (14), but unfortunately it cannot be easily computed as

it involves the HFB stability matrix. However a reasonable approximation to it can be

obtained from H11

c , the one-quasiparticle Hamiltonian that, when in diagonal form, is the

dominant component of the diagonal of the stability matrix. One first transforms U, V to a

basis that diagonalizes H11

c . Call the eigenvalues of the matrix Ei and the transformation

to diagonalize it C. The U, V are transformed to U ′, V ′ in the diagonal quasiparticle basis
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FIG. 2: Single-step energy change as a function of η in Eq. (19). The configuration that was

updated is the 10th iteration step of the system in Fig. 1.

by

U ′ = UC; V ′ = V ′C (26)

In the new basis the preconditioner is given by

pij = max(Ei + Ej , Emin) (27)

where Emin is a numerical parameter of the order of 1-2 MeV. The main effect of the

preconditioner is to damp away those components of the gradient with high curvatures (i.e.

second derivatives) which correspond to two-quasiparticle excitations with large excitation

energies. This is very important for Hamiltonians that have a large range of single-particle

energies, such as the ones derived from commonly used nuclear energy density functionals

such as Skyrme and Gogny.

In Table I we show the number of iterations required to reach convergence for a case

calculated in Table II, to be described below. We see that there is a gain of more than

a factor of 3 between the naive steepest descent and the preconditioned gradient with a

variable η. Similar ideas have been used in a HF context in [2, 15] with similar speedups.
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Method η ηmin ηmax Iconv

fixed gradient 0.10 MeV−1 140

variable gradient 0.08 MeV−1 0.3 MeV−1 65

fixed pr. 0.7 72

variable pr. 0.7 2.0 34

TABLE I: Number of iterations to convergence Iconv with various treatments of the update. Eq.

(19) with fixed and variable gradients is used for the top two lines and the preconditioned gradients

Eq. (25) are used for the lower two lines. The system is 21Ne as calculated in the top first entry

in Table II.

B. The starting configuration

It is important to understand the role of the starting configuration in the gradient search.

It is crucial in determining the number parity, as will be discussed in the next section. But

also it is important for other aspects of the iterative process. The energy H00 is a quadratic

function of symmetry-breaking densities because the products of densities in the functional

must respect the symmetries of the Hamiltonian. If these components are zero in the initial

configuration, the energy is stationary at that point and there is no gradient to generate

nonzero field values. The typical cases are quadrupole deformation in the ordinary density

and any form of anomalous densities. Fortunately, it is very easy to avoid unwanted symme-

tries in the starting U, V . To insure that the solution allows for quadrupole deformation, one

may impose a nonzero quadrupole constraint and then relax it. In fact, this is often carried

out by first calculating the energy curve as a function of deformation, and then search-

ing for the ground state using the lowest energy configurations to start the unconstrained

minimization. This avoids the very slow convergence when the energy curve is nearly flat.

Other kinds of unwanted symmetries are harder to anticipate. In particular, the many

channels of pairing allowing the full spin and isospin degrees of freedom can only be accessed

from a starting configuration that has a nonzero condensate. A powerful way to deal with

all of these cases is to apply a random Z transformation to the starting configurations before

using them in the gradient search. We will illustrate both of these methods in the examples

below, denoting the randomized starting configurations by Ur, Vr.
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III. ODD-A NUCLEI

As discussed by Ring and Schuck[1], each U, V set can be characterized by its number

parity, either even or odd. This means that when the wave function is constructed and states

of definite particle number are projected out, the nonzero components will have either all

even or all odd particle number. Another important fact is that the generalized Thouless

transformation does not change the number parity of the Bogoliubov transformation. Thus,

if we start from a U, V set of odd number parity, the final converged configuration will only

have components of odd nucleon number.

In fact, in the matrix-diagonalization method of solving the HFB equations, the higher

energy of the odd-A configurations requires some modification to the Hamiltonian or to the

iteration process. A common solution is to add additional constraining fields so the that

odd-A system has lower energy[16, 17]. Typically the external field to be added breaks time

reversal symmetry in some way. But then one can no longer assert that a true minimum has

been found, because the extra constraints can affect the configuration. The gradient method

does not have this shortcoming. If the space of odd-number parity Bogoliubov transforma-

tions is adequately sampled, it will find the global minimum of the odd-A configurations.

Moreover, with the gradient method one does not need to modify the computer code to treat

odd-A systems. Only the initial U, V set is different for the two cases.

We note the H11

c has negative quasiparticle eigenenergies in the odd number-parity space,

assuming that the true minimum of the HFB functional is an even number-parity configu-

ration.

IV. IMPOSED SYMMETRIES

The U, V matrices have a dimension of the size of the Fock space of nucleon orbitals and

in principle can be dense matrices. However, one often imposes symmetries on the wave

function by assuming that the U, V have a block structure with all elements zero outside

the blocks. For example, most codes assume separate blocks for neutrons and protons. This

is well-justified when there is a significant difference in neutron and proton numbers but

in general it is better to allow them to mix. Other quantum numbers that are commonly

imposed on the orbital wave functions are parity and axial symmetry. There are only a
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few exceptional nuclei that have HFB ground states breaking these symmetries. For the

parity, there are the Ra nuclei and Th nuclei. Concerning axial symmetry, a global study

of even-even nuclei with the Gogny functional [18] found only three cases of nonaxial HFB

minima among 1712 nuclei.

The number of orthogonal minima that can be easily calculated in the gradient method

depends on the assumed block structure. In the even number-parity space there is just one

global minimum. But in the odd number-parity space the number parity of each block is

conserved in the iteration process, so there will be one state for each block. For example,

states of different K-quantum number may be calculated by imposing a block structure

that imposes axial symmetry. Thus for odd-A nuclei, the quasiparticle can be in any of the

K-blocks, giving a spectrum of states with K specified by the block.

V. THE CODE HFB SHELL

The code hfb shell presented in this paper is described in more detail in the Appendix.

The main point we want emphasize about the code is that it is organized in modules that

separate out the functions that are independent of the Hamiltonian from those that are

specific to it. Also, the block structure is specified only by the code input, and can easily be

changed. The examples we show are for the sd-shell using the USDB Hamiltonian [19]. Since

that Hamiltonian is specified by the fitted numerical values of the 3 single-particle energies

and the 63 JT -coupled two-particle interaction energies, it does not have any symmetries

beyond those demanded by the physics. In particular, the HFB fields obtained with it

should provide a realistic description of aspects such as the time-odd fields, that are difficult

to assess with the commonly used energy functionals such as those in the Skyrme family.

A. Application to the sd-shell

The sd shell-model space has a dimension of 24 and the principal matrices U, V, Z, ... have

the same dimension. In the application presented here, we assume axial symmetry which

splits the matrices in blocks of dimension 12, 8 and 4 for m-quantum numbers ±1

2
, ±3

2
,

and ±5

2
respectively. Neutron and proton orbitals are in the same blocks, so the basis is

sufficiently general to exhibit neutron-proton pairing, if that is energetically favorable. We
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also assume that the matrices are real.

We often start with a U, V configuration of canonical form, namely U diagonal, Uij =

uδij. The nonzero entries of the V are all equal to ±v = ±
√
1− u2, and are in positions

corresponding to pairing in the neutron-neutron channel and the proton-proton channel.

We arbitrarily take u = 0.8 and v = 0.6 for the starting configuration U0, V0. This may be

modified in a number of ways before it is used as a starting configuration in the gradient

minimization. When calculating a nucleus for which N or Z is zero or 12, it is more efficient

to use U, V matrices that have those orbitals empty or completed filled in the starting

configuration. This is carried out by changing u, v to zero or one for the appropriate orbitals.

The particle number of that species is then fixed and is not constrained in the gradient search.

For odd-number parity configurations, the U, V is changed in the usual way by inter-

changing a column in the U matrix with the corresponding column in V . The space that

will be searched in the gradient method then depends on the block where the interchange

was made. In principle it does not depend on which column of the block was changed.

However, there is some subtlety is making use of this independence which will be discussed

below.

In principle one could also start from the U, V configuration of the vacuum: U = 1, V = 0.

We have tried this and found, as might be expected, that the proportion of false minima is

larger than is obtained with U0, V0.

VI. THREE EXAMPLES

In this section we will describe the HFB calculations for three nuclei, 32Mg, 24Mg, and

21Ne. The first one is typical of a spherical nucleus that exhibits identical-particle pairing.

The second is a well-deformed nucleus. The third illustrates the method for an odd-A

system.

For calculating matrix elements of the quadrupole operator QQ, we will treat the single-

particle wave functions as harmonic oscillator functions of frequency ω0, and report the

quadrupole moments in units of h̄/mω0.
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A. 32Mg

The nucleus 32Mg ((N,Z) = (12, 4) in the sd-shell) behaves as expected of a semimagic

nucleus in HFB. Please note that we do not include in our configuration space the f7/2

intruder shell required to explain the deformation properties of this nucleus [20, 21]. We

calculate the HFB ground state in two ways, illustrating the role of the starting configuration.

The first is to use a randomized Ur, Vr configuration and constraining the particle numbers

to the above values. Another way is to start with a prolate configuration similar to U0, V0

for the protons and with all the neutron orbitals filled. In that case, only the proton number

is constrained. Both iteration sets converge to the same minimum, a spherical configuration

having a strong proton pairing condensate. The output characteristics are EHFB = −135.641

MeV, Q00

Q = 0.00 and ∆Z2 = 2.93. The zero value for Q00

Q shows that the configuration is

spherical, and the nonzero value for ∆Z2 shows that protons are in a condensate. Next we

calculate the condensation energy, defined as the difference between EHFB and the Hartree-

Fock minimum EHF . The easiest way to find the HF minimum is to repeat the calculation

with an additional constraint that forces the condensate to zero. This is done by adding a

G-type operator that is sensitive to the presence of a condensate. Carrying this out, we find

a minimum at EHF = −134.460 MeV and Q00

Q = 5.08. The extracted correlation energy is

EHF−EHFB = 1.18 MeV, which is much smaller than what one would obtain with schematic

Hamiltonians fitted to pairing gap. It is also interesting to extract the quasiparticle energies,

since they provide the BCS measure of the odd-even mass differences. These are obtained

by diagonalizing H11

c . The results for the HFB ground state range from 1.5 to 9 MeV, with

the lowest giving the BCS estimate of the pairing gap.

B. 24Mg

The next nucleus we consider, 24Mg with N = 4 and Z = 4, is strongly deformed in

the HFB ground state. We find that the converged minimum has a quadrupole moment

〈QQ〉 = 12.8, close to the maximum allowed in the space. More surprisingly, the pairing

condensate vanishes at the HFB convergence. We now make a set of constrained calculations

to display the energy as a function of quadrupole moment. The starting configuration is

generated by applying a random transformation to U0, V0. The gradient code carries out the
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FIG. 3: Error in constrained quantities as a function of iteration number for the η = 0.1 run of

the 24Mg iterations in Fig. 1. Quantities constrained are: N , open circles; Z, filled squares; and

QQ, filled circles.

iterations with the constraints N = 4, Z = 4, and the chosen value of Q. The convergence

of the constraints to their target values is very rapid, using the update in Eq. (21). This is

illustrated in Fig. 3, showing the deviation from the target values as a function of iteration

number in one of the cases (Q = 10). On the other hand, the convergence to the minimum

of the HFB energy can be slow, using a fixed-η update with Eq. (19). The calculations were

carried out setting the convergence criterion |H20

c | < 0.01 MeV. Fig. 4 shows the number of

iterations required to reach convergence for the various deformations. They range from 40

to 250. In a number of cases, the iterations seem to be approaching convergence, but the

system is actually in a long valley, and eventually a lower minimum is found. It may also

happen that the gradient method finds a local minimum that is not the global one. This can

often be recognized when carrying constrained calculations for a range of constraint values,

as it gives rise to discontinuities in the energy curves. We show in Fig. 5 the energies as

a function of deformation made by combining two runs starting from each side, and taking

the lowest energy at each point. The global minimum is at a large prolate deformation as
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FIG. 4: Number of iterations required to convergence for the calculated configurations on the

deformation energy curve Fig. 5.
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FIG. 5: HFB energies as a function of deformation, using the QQ quadrupole constraint. The

nucleus is 24Mg, N = Z = 4 in the sd-shell.
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FIG. 6: Local minima for 50 runs of 24Mg with different random starting configurations. Shown

are the number of cases as a function of energy.

mentioned earlier. There is also a secondary minimum at a large oblate deformation. For

all deformations, the ordinary neutron-neutron and proton-proton pairing condensates are

small or vanish.

A global picture of the different minima can be obtained using randomized starting UV

configurations. For this exercise, we have carried out the minimization from 50 different

starting configurations, imposing only particle-number constraints on the 24Mg iterations.

The first configuration was generated from the vacuum state. Successive configurations were

constructed by applying to the previous configuration a transformation Z whose independent

elements are sampled from a Gaussian distribution with zero mean and a variance 〈z2ij〉1/2 =
2. We find that all runs converged, and there were just three converged states. A histogram

of the number of cases for each state is shown in Fig. 6. We see that both minima that

appear on Fig. 5 are present, as well as a third local minimum at somewhat higher energy.

The lowest energy, −80.76 MeV, is the most likely to be obtained from a random starting

configuration. This gives one a high degree of confidence that the state is in fact the global

minimum.
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C. 21Ne

The next nucleus we discuss, 21Ne with (N,Z)sd = (3, 2), illustrates how the gradient

method makes use of the conserved number parity to find the minimum of odd-A systems.

We start with the U0, V0 configuration, and convert it to an odd-number parity configuration

by exchanging two columns in them = ±1

2
block. There are 6 possible columns withm = +1

2

that can be exchanged. The results for the converged energies are shown in the top row of

Table II. All of the neutron exchanges give the same final energy, −40.837 MeV. However,

the energy is different for proton exchanges. The reason is that the starting configurations do

not mix neutrons and protons, and for reasons discussed earlier the corresponding gradients

are zero. This unwanted symmetry can be broken by making a random transformation of

the initial configuration. The results are shown in the second row. Now all the energies are

equal, showing that the minimum can be accessed from any column exchange. Interestingly,

the energy is lower than in the previous set of minimizations. This shows that there is a

significant neutron-proton mixing in the condensate for 21Ne.

U, V dn
5/2,1/2 dn

3/2,1/2 sn
1/2,1/2 dp

5/2,1/2 dp
3/2,1/2 sp

1/2,1/2

U0, V0 -40.837 -40.837 -40.837 -40.215 -40.176 -40.176

Ur, Vr -41.715 -41.715 -41.715 -41.715 -41.715 -41.715

TABLE II: HFB energies of 21Ne, with different starting configurations. For the top row, the

starting configuration is U0, V0 with the indicated column in the m = ±1

2
block interchanged. The

second row starts from a randomized configuration Ur, Vr as discussed in Sect. VA.
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Appendix: explanation of the code

The code hfb shell that accompanies this article implements the gradient method dis-

cussed in the text2 The code is written in Python and requires the Python numerical library

numpy to run (see [22] and accompanying papers for a description of Python in a scientific

environment). The main program is contained in hfb.py. It first carries out the initializa-

tion using information from the primary input data file that in turn contains links to other

needed data files. There are three of these, one for the Hamiltonian parameters, one for the

correspondence between orbitals and rows of the U, V matrices include the assumed block

structure, and one for the input U, V configuration. The input data format is explained in

the readme.txt of the code distribution.

Following initialization, program enters the iteration loop, calling the various functions

used to carry out the iteration. The loop terminates when either a maximum number

of iterations itmax is reached or the convergence parameter |H20

c | go below a set value

converge.

The function calls that are specific to the sd-shell application are collected in the module

sd specific.py. The tasks carried out by these functions include:

• initialization of matrix sizes and block structures

• setting up the matrices representing single-particle operators in the shell-model basis.

• calculation of the fields Γ,∆ from the densities ρ, κ. This function makes use of a

table of interaction matrix elements vijkl that are read in from a file. The present

distribution of the code only provides the Hamiltonian data for the USDB interaction

[19].

The functions that are generic to the gradient method are collected in the module

hfb utilities.py. Many of these functions are defined by equations in the text; the

correspondence is given in Table III.

The output of hfb.py reports the expectation values of the Hamiltonian and the single-

particle operators N,Z and QQ at each iteration step, together with the convergence pa-

rameter |H20

c |. After the final iteration, the values are reported for the expectation values

2 See the EPAPS archive.
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Function call Equation in text

rho kappa (1)

F20 (6)

G20 (8)

H20 (11)

H00 (3)

Ztransform (12)

TABLE III: Python functions in hfb utilities.py corresponding to equations in the text.

of constraining parameters λα and the number fluctuations ∆N2,∆Z2. The final U, V con-

figuration is written to the file uv.out. Thus additional iterations can be performed simply

by specifying uv.out as the new input file.

In addition, there is a set of functions collected in the module hfb tools.py. These are

useful for making input U, V configurations and for analyzing the output U, V configuration,

but are not needed to run hfb.py. For example, a randomizing transformation can be applied

to a U, V configuration by the function randomize. Another useful function is canonical,

used to extract the eigenvalues of the ρ operator needed for the canonical representation.
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