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The 157Gd(n,γ) reaction was measured with the DANCE γ calorimeter (consisting of 160 BaF2

scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions
of the γ decay were used to determine the resonance spins up to En = 300 eV. The γ-ray energy
spectra for different multiplicities were measured for the s-wave resonances. The shapes of these
spectra were compared with simulations based on the use of the dicebox statistical model code.
Simulations showed that the scissors mode is required not only for the ground-state transitions but
also for transitions between excited states.

PACS numbers: 28.20.Np, 27.60.+j, 25.40.Lw, 25.40.Ny, 24.60.Dr, 24.10.Pa

I. INTRODUCTION

In medium and heavy mass nuclei detailed spectro-
scopic information exists only for levels at low excitation
energy near the ground state or for resonances above the
neutron separation energy Bn. Due to the rapid increase
of the level density with excitation energy, it is extremely
difficult to resolve the populating or depopulating tran-
sitions in order to obtain reliable spectroscopic informa-
tion in this intermediate energy region below Bn. The
set of these levels is often called a level quasicontinuum.
It is believed that γ decay of the nucleus in the quasi-
continuum is described by the extreme statistical model
in terms of the nuclear level density and a set of pho-
ton strength functions (PSFs) for different multipolar-
ities. Probably the most direct way to examine these
quantities is via study of the properties of γ-ray spectra
originating from the radiative neutron capture reaction
at isolated resonances.
The combination of the pulsed neutron beam at LAN-

SCE (Los Alamos Neutron Science CEnter) and the
highly segmented, highly efficient γ calorimeter DANCE
(Detector for Advanced Neutron Capture Experiments)
provides an ideal opportunity to study the γ-ray cas-
cades.
In the present paper we describe a measurement of the

157Gd(n,γ)158Gd reaction using the DANCE calorimeter.
This experiment is part of a series of experiments that
measure neutron capture in all of the stable gadolinium
isotopes. A major goal is to use γ-ray spectra for var-
ious multiplicities to determine the appropriate photon
strength functions with special interest in the behavior of
the scissors mode. In turn this information should shed
light on the relevant nuclear structure. In addition we
wished to use the high segmentation of the DANCE array
to determine the spins of the capturing resonance states
from the measured multiplicity distribution of their γ de-

cay.
In Sec. II the experimental technique to measure the

γ spectra is described. The modeling of the statistical γ
cascades is discussed in Sec. III. Determining the reso-
nance spins is considered in Sec. IV. Information about
the photon strength functions that can be obtained from
the measured γ-ray spectra is presented in Sec. V and
briefly compared with other available data in Sec. VI. A
summary is given in Sec. VII.

II. EXPERIMENTAL SETUP AND

MEASUREMENTS

A. Experimental setup

The experiment was performed at the neutron source
LANSCE [1]. The 800-MeV H− beam from the LAN-
SCE linac is injected into the proton storage ring where
it is immediately converted to H+ by stripping through
a thin foil. The proton bunches are stacked for the entire
linac macropulse. This pulsed beam is then extracted
with a repetition rate of 20 Hz and strikes a tungsten
spallation target. The resulting fast neutrons are moder-
ated and sent to flight path 14 at the Manuel Lujan Jr.
Neutron Scattering Center. The DANCE detector array
is installed at 20 m on this flight path.
The DANCE spectrometer [2, 3] is designed for study-

ing neutron capture cross sections on small samples.
DANCE consists of 160 BaF2 scintillation crystals sur-
rounding a sample and subtending a solid angle of ≃ 4π.
A 6LiH shell about 6-cm thick is placed between the sam-
ple and the BaF2 crystals in order to reduce the scattered
neutron flux striking the crystals. The remaining back-
ground due to scattered neutrons that penetrate the 6LiH
shell and interact with the BaF2 crystals is subtracted
in the off-line analysis. Besides the BaF2 crystals, the
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TABLE I: Isotopic composition of the Gd target used in the
measurements.

Target Isotope abundance (%)
152Gd 154Gd 155Gd 156Gd 157Gd 158Gd 160Gd

157Gd <0.01 <0.01 0.08 0.09 99.7 0.12 <0.01

DANCE setup includes three additional detectors that
are used to monitor the neutron flux, and one detector
for monitoring the external background.
The target was gadolinium deposited via electroplat-

ing on a beryllium foil glued to an aluminum ring. The
isotopic composition of the target is listed in Table I.
The average thickness of the gadolinium, as determined
by the α-backscattering technique, is approximately 0.8
mg/cm2, but is highly nonuniform: the difference in
thickness between the edges and the center of the tar-
get varies by as much as a factor of four.

B. Data processing

1. On-line data processing

The DANCE acquisition system [4] is based on wave-
form digitization of signals from all 160 detectors using
four-channel Acqiris DC265 digitizers with a sampling
rate of 500 MS/s (mega samples/second). The intensity
of the signal from a specific crystal is collected in using
a digitizer channel with suitably adjusted gains. The ra-
tio of the fast and slow components of the signal is used
for discrimination against the α-background from nat-
ural radioactivity of Ra in the BaF2 crystals [3]. The
digitizers are arranged in 14 compact PCI crates with
six DC265 modules per crate. Thus one crate can han-
dle 12 BaF2 detectors with two channels per detector.
Each crate contains an embedded computer running un-
der the Linux operating system, and a front-end acqui-
sition program using the framework known as Maximum
Integrated Data Acquisition System (MIDAS) [5].

2. Off-line data processing

The energy calibration of the DANCE crystals was per-
formed with a combination of γ-ray sources: 662 keV
from 137Cs, 898 keV from 98Y, and 1275 keV from 22Na
and the intrinsic radioactivity of the detector material
(226Ra). The latter calibration was conducted on a run-
by-run basis to provide the energy alignment of all crys-
tals in the off-line analysis.
Typical spectra of sums of deposited γ-ray energies in

crystals that fire are shown in Fig. 1. As only s-wave
neutron capture plays a role at low neutron energies in
this mass region, in this experiment we observe only res-
onances with Jπ = 1− and 2−. Each spectrum consists
of (i) the “total” peak at the full energy available from
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FIG. 1: (Color online) Examples of sum-energy spectra for
resonances at energies of 100.2 and 48.8 eV with Jπ assign-
ments 1− and 2−, respectively. The cluster multiplicities of
the γ cascades, M , are indicated. The spectra are normalized
to the intensity in the Etotal peak for multiplicities M = 2−7.

the neutron capture reaction

Etotal = Bn + En, (1)

where Bn = 7.937 MeV and En is the energy of the
incoming neutron in the center of mass, and (ii) a low
energy tail that corresponds to cascades for which a part
of the emitted energy escaped the detector array. The
shape of the spectrum at low sum energies (below about
3 MeV), is strongly influenced by the background from
natural β activity in the BaF2 crystals, especially for low
multiplicities.
Often an emitted capture γ ray does not deposit its

full energy in one crystal. Thus the number of crystals
that fire is usually higher than the true multiplicity of
a capture event. Therefore all contiguous crystals that
have fired during an event are combined and considered
as the response of the detector array to one single γ-
ray. The number of clusters observed in a capture event
is called the “cluster” multiplicity. This multiplicity is
much closer to the true multiplicity of the γ cascade than
is the “crystal” multiplicity (the total number of crystals
that fire). The capture events in the off-line analysis were
sorted using gates on neutron energy and on the cluster
multiplicity.
Only events within a certain range of detected sum

energies EΣ (around the Etotal peak) were taken into ac-
count. Namely, for the spin assignments a sum-energy
range EΣ = 5.0 − 8.1 MeV, while for analysis related
to the PSFs a narrower interval EΣ = 7.0 − 8.1 MeV
was chosen for construction of multistep cascade spectra.
In the latter case the use of a wider interval improves
statistics but leads to significant smearing of the struc-
tures seen in the spectra. Additional narrowing of the
interval has no impact on the spectral shape.
There is a background contribution in the spectra that

mainly originates from γ rays following the capture of
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scattered neutrons in the barium detectors. The size
of the background was estimated using the number of
counts for EΣ above the Etotal region in the sum-energy
spectra. The background contribution from other Gd
isotopes is negligible due to the purity of the target. For
the strong resonances used for determining the PSFs, the
background contribution can be neglected.

III. SIMULATIONS OF THE γ-DECAY OF 158GD

A. Simulations of Spectra

Under various assumptions about the level density and
photon strength functions the γ cascades following reso-
nant neutron capture were generated using the dicebox

algorithm [6]. The response of the DANCE detector to
each generated cascade was subsequently obtained from
a simulation based on the use of a code based on the
geant4 package. All materials in the detector system
were included in the geant4 simulations [7]. The result-
ing quantities can be compared with their experimental
counterparts. We used the simulations primarily to ob-
tain information on the PSFs, but they were also used to
test the possibility of resonance spin determination.
The dicebox algorithm generates a complete decay

scheme of an artificial nucleus. Below some critical en-
ergy, Ecrit, all of the characteristics of the decay scheme,
i.e., energies, spins and parities of levels, as well as their
decay properties, are taken from existing experimental
data. The choice of the critical energy should be made
with care to guarantee that all of the information for
energies below Ecrit is complete. We took the required
data from [8] and adopted Ecrit = 2.1 MeV. Above Ecrit

the level system of the nucleus and its complete decay
scheme are generated using an a priori chosen level den-
sity function ρ(E, J, π) and PSFs for multipolarities E1,
M1, and E2. All higher multipolarities are neglected.
Partial radiation widths Γaγb for a transition between an
initial level a and a final level b are given by

Γaγb =
∑

XL

ξ2XLf
(XL)E2L+1

γ

ρ(Ea, Ja, πa)
, (2)

where f (XL) stands for photon strength function for tran-
sitions of type X (electric or magnetic) and multipolar-
ity L, and ξXL is a random number generated from a
normal distribution with zero mean and unit variance.
This random number ensures that the individual widths
Γaγb fluctuate according to the Porter-Thomas distribu-
tion [9]. The sum in Eq. (2) is over all allowed types
and multipolarities of transitions. Internal electron con-
version, which is important in transitions between the
lowest excited states in 158Gd, is correctly treated in the
DICEBOX code [6].
Hereafter the simulated system of all levels and their

decay scheme is called a nuclear realization. Due to the
Porter-Thomas fluctuations there is an infinite number

of nuclear realizations that differ from each other even
for fixed models of PSFs and level density.
Various models of PSFs and level density can be tested

with the dicebox code. The fluctuations involved in
generating the γ decay allow us to determine all of the
uncertainties that arise when simulations are performed
with the same models. Cascades starting from resonances
with a given spin and parity were simulated. Typically
20 nuclear realizations, each with 100,000 cascades, were
simulated for initial s-wave resonances, i.e., those with
spins Jπ = 1− and 2−.
Among the various kinds of information that can be

obtained from the combined dicebox+geant4 simula-
tions, of special interest are the average multiplicities,
the multiplicity distributions, and the so-called multistep
cascade (MSC) spectra, see Sec. V.
In our trial-and-error approach, by assuming various

models for the PSFs and the level density we can assess
the degree of agreement of the simulated observables with
the experimental data and draw conclusions about which
of these models is most likely to be valid.

B. Photon Strength Functions

1. Electric-dipole transitions

Decay of the neutron resonances is dominated by
dipole transitions. It is well known that for γ-ray ener-
gies above neutron separation energies the electric-dipole
(E1) transitions play a major role. The PSF at these en-
ergies in axially deformed nuclei seems to be consistent
with the sum of two Lorentzian terms

f
(E1)
SLO (Eγ) =

1

3(πh̄c)2

2
∑

i=1

σGi
EγΓ

2
Gi

(E2
γ − E2

Gi
)2 + E2

γΓ
2
Gi

. (3)

Here EGi
, ΓGi

, and σGi
are the parameters of the Giant

Electric Dipole Resonance (GEDR) which is split into
two components (i = 1 and 2) in well-deformed nuclei.
The parameters EG = 12.23 and 15.96 MeV, ΓG = 2.77
and 5.28 MeV and σG = 215 and 233 mb were adopted –
they come from a fit of photonuclear data on the ground
state of the nearby nucleus 160Gd [10]. This PSF shape
combined with the Brink hypothesis [11] – which says
that the PSF shapes are independent of excitation energy
– is known as the Brink-Axel or Standard Lorentzian
(SLO) model.
Since the shape of the E1 PSF below the neutron sep-

aration energy is not well known, additional models are
employed. Usually one of two models is used. The first
one was proposed by Kadmenskij, Markushev and Fur-
man (KMF) [12] for spherical or weakly deformed nuclei,
but is often also used for deformed nuclei

f
(E1)
KMF(Eγ , T ) =

FK

3(πh̄c)2

2
∑

i=1

σGi
EGi

ΓGi
Γ(Eγ , T )

(E2
γ − E2

Gi
)2

, (4)
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where the factor FK = 0.7 [12, 13] and the γ-ray- and
temperature-dependent width Γ(Eγ , T ) is given by

Γ(Eγ , T ) = ΓGi

E2
γ + 4π2T 2

E2
Gi

, (5)

with temperature T = T (E) ≡
√

(E −∆)/a, E is the
excitation energy of a final level, ∆ the pairing energy,
and a the shell-model level-density parameter. The val-
ues ∆ = 1.77 MeV and a = 17.91 MeV−1 were adopted
from [14].
A second model was proposed for spherical nuclei

by Chrien [15] in order to match the behavior of the
SLO model at energies near the GEDR maximum and
the KMF model at very low Eγ . This phenomenologi-
cal model was later generalized for deformed nuclei by
Kopecky et al. [16] by introducing an empirical enhance-
ment factor k0. This model is known as the EGLO (En-
hanced Generalized Lorentzian) model. In this case the
expression for the PSF is

f
(E1)
EGLO(Eγ , T ) =

2
∑

i=1

σGi
ΓGi

3(πh̄c)2

[

4π2 FK ΓGi
T 2

E5
Gi

+
Eγ Γ(Eγ , T )

(E2
γ − E2

Gi
)2 + E2

γ Γ(Eγ , T )2

]

. (6)

Here the γ-ray- and temperature-dependent width is
given by

Γ(Eγ , T ) =

[

k0 +
Eγ − Eγ0

EG − Eγ0
(1− k0)

]

ΓGi

E2
γ + 4π2T 2

E2
Gi

.

(7)
The recommended value of Eγ0 is 4.5 MeV [13, 16]; in
Ref. [13] the systematics of the parameter k0 was ad-
justed to reproduce the total radiation width of neutron
resonances. As the total radiation width depends on the
number of levels below neutron separation energy the
suggested systematics of k0 depends on the proposed level
density model. We left the parameter k0 free to vary in
our simulations. The energy dependence of the EGLO
model is very similar to the KMF model for k0 ≈ 1.5.
Many other models of E1 PSF can be found in the

literature. RIPL-3 database [17], probably the most
widely used database by experimentalists, suggests that
the MLO family of models be used. As the description of
these models is rather complicated, the reader is referred
to their detailed description in Ref. [17].
As seen from Eqs. (4) and (6) the shapes of both

the KMF and EGLO models depend on temperature (or
excitation energy) of the decaying nucleus and violate the
strict form of the Brink hypothesis. Similar temperature
dependence of E1 PSF is also a feature of the MLO family
of models. The energy dependence of the PSFs predicted
by these models is shown in Fig. 2. To keep the figure
reasonably clear we show only the shape of one of the
MLO models (MLO2) here.

0 2 4 6
0

1x10-7

2x10-7
E1 Models:

 SLO
 KMF
 EGLO (k

0
=3.0)

 MLO2
M1 Models:

 SM + SF + SP

Experimental data:
 f  (E1) from Ref. [13]f (

M
eV

-3
)

E
γ
 (MeV)

158Gd

FIG. 2: PSF models used in simulations. There are two curves
for the KMF, EGLO, and MLO2 models shown. They indi-
cate how these two models change as a function of tempera-
ture - the lower curve corresponds to T = 0 while the upper

one to T =
√

(Bn − Ef )/a. Experimental data for fE1 are

for 155,157,159Gd at energies 5.9, 6.0 and 5.3 MeV, respectively
[13].

2. Magnetic-dipole transitions

Magnetic dipole (M1) transitions also play an impor-
tant role in the decay of highly excited nuclear states.
Usually, two models are used for M1 transitions. In the

spin-flip (SF) resonance model f
(M1)
SF (Eγ) is usually as-

sumed to have a Lorentzian shape with energy about 7
MeV and width of 4 MeV [13], while in the single-particle

model f
(M1)
SP is a constant independent of γ-ray energy.

TheM1 strength corresponding to the spin-flip mode was
measured for several rare-earth nuclei (including 158Gd)
from inelastic proton scattering [18]. A double-humped
structure was observed between 5 and 10 MeV and we
adopted this form of SF resonance in our simulations.
Sometimes a sum of the strengths from the two models,

f
(M1)
SP and f

(M1)
SF , is used. In our simulations we usually

adjusted the absolute value of the PSFs to obtain the ra-
tio of f (E1)/f (M1) ≈ 7 at about 7 MeV. This value seems
to be reasonably well determined from average resonance
capture experiments [19].

3. Scissors mode

In 1976, Hilton [20] and later Lo Iudice and Palumbo
[21], using the geometrical two rigid rotors model, and
Iachello [22], using the proton-neutron interacting bo-
son model, predicted an isovector M1 collective vibra-
tional mode in deformed nuclei. This mode, known as
the scissors mode (SM), was experimentally observed for
ground-state transitions by Bohle et al. [23] from high-
resolution electron inelastic scattering at low momentum
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FIG. 3: (Color online) Experimental data on the PSF deter-
mined from 3He-induced reactions [30]. The curve shows a
model of the PSFs which reproduces these experimental data
reasonably well and which was tested in our simulations (see
Sec. V).

transfer. The parameters of the mode for transitions to
the ground state were intensively investigated using the
(γ,γ′) reaction in rare-earth nuclei; this revealed substan-
tial fragmentation of the mode. These experiments con-
cluded that the strength of the mode (or more precisely
the total M1 strength in the energy range Eγ ≈ 2.5−4.0
MeV) for the ground-state transitions in even-even rare-
earth nuclei is proportional to the square of the deforma-
tion [24]; for well deformed nuclei this strength reaches
B(M1) ≈ 3µ2

N . The published experimental value for
158Gd is B(M1) = 3.71(59)µ2

N [25] or 3.39(17)µ2
N [26].

The centroid of the scissors mode strength is located near
3 MeV and is almost constant in rare-earth nuclei; the
experimental value for 158Gd is ESM = 3.10 MeV [25, 27].
In our simulations the scissors mode was represented by
a single or double Lorentzian resonance term.

The analysis of data on two-step γ cascades (TSC) [28,
29] revealed that the scissors mode is not only built on the
ground state, but also plays a role in transitions between
excited states. In other words, the scissors mode follows,
at least approximately, the Brink hypothesis. This find-
ing has been later supported by data from 3He-induced
γ emission [30].

Data on the photon strength function inferred from
the (3He,αγ) reaction for neighboring even-even nuclei
160Dy and 162Dy [30] are shown in Fig. 3. They seem
to be in very good agreement and one can also expect
similar results for 158Gd. The position of the resonance
structure at low excitation energies (which is likely the
scissors mode) is clearly shifted down to energies lower
than 3 MeV in this case.

4. Electric-quadrupole transitions

In addition to dipole transitions, electric quadrupole
(E2) transitions might also play a role in the decay
of neutron resonances. We found that E2 transitions
are not important in the interpretation of our data; we
simply assumed the validity of the single-particle model
(f (E2) = const.) in our simulations. The strength of
f (E2) = const. was taken to reproduce the ratio with re-
spect to dipole strengths at about 7 MeV from average
resonance capture data [19].

C. Nuclear Level density

We mainly used the back-shifted Fermi Gas (BSFG)
model [14]

ρ(E, J, π) = f(J) f(π)
e2
√

a(E−E1)

12 · 21/2 σc a1/4(E − E1)5/4
, (8)

where a and E1 are adjustable parameters, while

f(J) = exp

(−J2

2σ2
c

)

− exp

(−(J + 1)2

2σ2
c

)

(9)

is the spin probability distribution function. We adopted
two different expressions for the spin cut-off parameter σc

together with the adjustable parameters a and E1 from
the latest works of von Egidy and Bucurescu [14, 31].
Both of these parametrizations led to virtually the same
results in our analysis. No parity dependence was as-
sumed in the BSFG model.
In addition to the closed-form BSFG model, we tested

the level density calculated within the Hartree-Fock-
Bogoljubov (HFB) approach. Here, the level density is
available in tabulated form as a function of energy for
levels with each spin and parity [17, 32]. The calculated
level densities usually suffer from difficulties in reproduc-
ing the average neutron resonance spacing. In order to
bring the calculations into agreement with experimental
data, the HFB level density was renormalized to repro-
duce the resonance spacing at the neutron separation en-
ergy. After such a renormalization there is very good
agreement between the HFB level density and the BSFG
model at energies above about 2.5 MeV, see Fig. 4.
All known levels below Ecrit = 2.1 MeV are taken into

account in the simulations. The level density formula
is thus applied only above this energy. It is interest-
ing to note that the adopted level density models are
in excellent agreement with level densities obtained from
3He-induced measurements in neighboring even-even Dy
isotopes [33], see Fig. 4.

IV. RESONANCE SPINS

As the resonance spin is expected to have an impact
on the γ-ray multiplicity distribution, the γ-ray multi-
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FIG. 4: (Color online) Level density models used in simula-
tions. The different absolute values predicted by the various
level density models originate from the different spin distri-
butions for the different models. The resonance spacing of
s-wave resonances is the same in all cases. Models of level
density are compared with experimental data for even-even
Dy isotopes [33].

plicity of the cascade decay of neutron resonances has
been used in a variety of ways to determine the reso-
nance spin. If the distributions from different resonance
spins are very different, then the average multiplicity –
the simplest quantity characterizing the multiplicity dis-
tribution – is sufficient to determine the spin. This was,
for instance, true for the s-wave resonances on 95Mo mea-
sured with DANCE [34]. On the other hand, for some
nuclei the distributions from different spins are indistin-
guishable. In DANCE measurements this was the case
for 151,153Eu [35]. The main quantity that influences the
difference among the multiplicity distributions from res-
onances of different spins is the spin difference between
the resonance and the ground state of the nucleus – the
higher the difference the larger the effect. In practice
the Porter-Thomas fluctuations of the primary transi-
tions from different resonances affect the multiplicity dis-
tribution from individual resonances and thus also affect
the spin determination.
The average multiplicity 〈M〉 was calculated as

〈M〉 =
∑7

M=3 MCM
∑7

M=3 CM

, (10)

where CM is the number of counts corresponding to mul-
tiplicity M after subtracting the background contribu-
tion.
The background contribution for M ≥ 3, originating

from γ rays following the capture of scattered neutrons
in Ba nuclei, is small. For the M = 1 and 2 spectra
the background is much more important for weak reso-
nances, where the background subtraction leads to large
uncertainties. We thus decided to omit these multiplici-
ties when determining the average multiplicity. Since the
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FIG. 5: Average multiplicities of resonances.

counting rate for M > 7 was very low, the highest multi-
plicity considered in any analysis was M = 7. Although
data were processed up to En = 700 eV, detailed analysis
could only be performed to 300 eV.
The spin and parity of the ground state of 157Gd is

3/2−, and the s-wave resonances have Jπ = 1− or 2−.
Simulations with realistic models of the PSFs and the

level density (see discussion below) indicate that the dif-
ference in the average multiplicity for resonances with
the same spin due to Porter-Thomas fluctuations is very
small (rms less than 0.01) compared to the expected dif-
ference between the two possible spins of about 0.07.
This is in agreement with the experimental data. As
Fig. 5 illustrates, the average multiplicities tend to sepa-
rate into two groups, but the uncertainties in the average
multiplicities are significant and become more important
with increasing neutron energy, especially for weaker res-
onances. The summation over the whole resonance region
also makes it difficult to say anything about resonance
doublets. Therefore we apply analysis methods that rely
on more detailed properties of the multiplicity distribu-
tions.
A method that takes into account the distribution

and not just the average multiplicity was developed by
Koehler et al. [36]. They combined several multiplicity
yields and generated the functions Z(J)

Z(1) =
b
∑

M=a

Y 1
M (E)−N1

d
∑

M=c

Y 1
M (E) = 0 (11)

Z(2) =
b
∑

M=a

Y 2
M (E)−N2

d
∑

M=c

Y 2
M (E) = 0 (12)

where the multiplicities a, b, c, and d follow the condi-
tions a ≤ b < c ≤ d, Ni is a normalization constant and
Y J
M (E) is the yield for a resonance with spin J and mul-

tiplicity M . Using isolated resonances for which the spin
J is known, the constants Ni are determined such that
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FIG. 6: (Color online) Spin decomposition of the yield for a
typical energy region.

the residual yield Z(J) of the resonances with spin J is
zero.
Assuming that the multiplicity distribution is the same

for resonances with the same spin (approximately true),
then applying these equations to an arbitrary neutron
energy will give zero or non-zero residuals, depending on
the spin composition for the given neutron energy.
Koehler et al. took a = 2, b = 4, c = 5, d = 7 in 147Sm,

but we found that this method also works in 157Gd for
a = b and c = d, i.e., if only the ratio of two multi-
plicities is checked. This method would work perfectly
if there were no Porter-Thomas fluctuations and experi-
mental errors. dicebox simulations with realistic models
of the PSFs and the level density show that the Porter-
Thomas fluctuations lead to small differences in predicted
ratios, which are not large enough to make the method
unusable. In practice this approach works well. There
are a number of possible combinations of multiplicities,
and the results are consistent for the different combina-
tions.
A more formal method was developed by Bečvář et al.

[37]. In this approach one adopts multiplicity distribu-
tion from two resonances of known spin as prototypes and
decomposes the actual yield into separate yields for the
two spins using the multiplicity distribution as a whole.
The results obtained with this method are illustrated in
Fig. 6.
The results of applying all above-described methods

were very consistent in the region below En = 300 eV
where detailed analysis could be performed. These re-
sults were also consistent (with a few exceptions noted
below) with the spin values quoted by Mughaghab [38].
There are only three disagreements where we have a
definite assignment – resonances at 96.59, 281.02, and
293.70 eV. In each case we assigned J = 2 instead of the
value of J = 1 in Mughabghab. It is interesting that for
these three resonances we agree with the assignments of
Belyaev et al. [39]. Above about 300 eV the combination
of poor statistics and worsening energy resolution make
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FIG. 7: (Color online) Experimental MSC spectra.

reliable spin assignments impossible.
For 157Gd determining the resonance spins has pro-

vided relatively little new information. However, the
internal agreement between the various approaches de-
scribed above, as well as the agreement with the values
quoted by Mughabghab and/or Belyaev does establish
that the DANCE multiplicity distributions provide a use-
ful tool to determine resonance spins.

V. PROPERTIES OF γ DECAY

A. MSC spectra

In order to obtain information on the properties of the
γ decay of 158Gd we compared experimental multistep
cascade spectra with predictions based on model simula-
tions described in Sec. III. The MSC spectra were con-
structed from capture on well-resolved strong resonances.
Only γ cascades that deposit virtually all of their energy
in the DANCE detector, specifically 7.0− 8.1 MeV, were
taken into account and sorted according to detected clus-
ter multiplicity. Multiplicities M = 2 − 7 were used in
the following analysis. In order to minimize statistical
uncertainties as well as uncertainties from simulations,
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the spectra were binned into coarse bins with a width of
150 keV. As already noted, the background contribution
to the MSC spectra is very small for strong resonances.
A large number (several hundreds) of model combina-

tions of PSFs and level densities was tested in simulations
and compared with the experimental MSC spectra. It is
very difficult to quantify the agreement between simula-
tions and experimental spectra as individual bins in the
MSC spectra are mutually correlated in a complicated
way, especially due to the decay scheme. As a conse-
quence, the degree of agreement was only checked visu-
ally.
For all multiplicities, only one normalization parame-

ter is needed for comparison of experimental and simu-
lated MSC spectra. We normalized spectra to the same
number of counts in the Etotal peak, which includes al-
most all multiplicities. As already noted, in practice we
consider multiplicitiesM = 2−7. The experimental MSC
spectra from resonances with the same spin are similar
but not identical, due to Porter-Thomas fluctuations of
the primary transitions. This is illustrated in Fig. 7.
For the same reason the simulated MSC spectra for dif-

ferent nuclear realizations obtained with the same model
of PSFs and level density are not identical. To character-
ize uncertainties due to Porter-Thomas fluctuations the
predicted MSC spectra are plotted as a gray band. Each
such band has a width of two sigma (the average ± one
sigma) and was obtained from analysis of 20 independent
nuclear realizations. The size of fluctuations among the
MSC spectra for different resonances seems to be well re-
produced by the simulations. The spectra from different
nuclear realizations are almost identical for higher mul-
tiplicities (M ≥ 4), while some differences are predicted
for lower multiplicities, especially for M = 2.

B. Comparison with experiment

Models that do not include a resonance structure near
3 MeV in a PSF are unable to reproduce the humps at
this energy observed in the M = 2 − 4 MSC spectra. A
typical example of simulated MSC spectra with no such
resonance structure is shown in Fig. 8. This finding is
independent of the model adopted for the “non-resonant”
part of the PSF.
Simulations also showed that the resonance structure

cannot be of E1 character. This is because the M = 2
spectrum consists mainly of events where neutron reso-
nances with negative parity decay via two γ rays to the
ground state which has positive parity. If E1 strength
dominated the PSF near 3 MeV (which would be the
case if the resonance-like structure were in the E1 PSF)
such decays would not be possible. On the other hand,
a resonance structure near 3 MeV in the M1 or E2 PSF
is able to describe the M = 2 spectra. We assume in the
following that such a resonance structure is in the M1
PSF, i.e., it is the scissors mode.
Assuming that the scissors mode consists of a single-
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FIG. 8: (Color online) Comparison of experimental MSC
spectra with simulations (gray band) in which the scissors

mode was completely absent. The combination of f
(E1)
KMF,

f
(M1)
SF + f

(M1)
SP is used.

Lorentzian term, we found that the MSC spectra are
rather sensitive to the energy of the scissors mode, ESM.
The dependence of the MSC spectra on the resonance
damping width, ΓSM, and on the total strength of the
scissors mode – which is given by the product σSM.ΓSM

– is much weaker.
The position of the mode must be very close to 3 MeV

– we estimate that it cannot be lower than about 2.8 MeV
or higher than about 3.1 MeV. If the resonance energy is
outside this range the shapes of the bumps in the MSC
spectra for M = 2− 4 are not reproduced.
This restriction on the ESM leads, for example, to a

disagreement between the present experimental data and
simulations with the PSF deduced from (3He,α) in neigh-
boring Dy nuclei, see Fig. 9. The PSF used in these
simulations has a resonance structure at about 2.7 MeV,
see Fig. 3.
Rather surprisingly, predictions based on very differ-

ent damping widths yielded similar results. The spectra
allow any value between ΓSM = 0.6 and 1.6 MeV.
We were unable to reach a reasonable agreement be-

tween the simulated and experimental spectra for any
model combination incorporating the SLO or MLO mod-
els for the E1 PSF. On the other hand, a reasonably good
agreement is achieved with the KMF model, as well as
with the EGLO model (with the dimensionless constant
k0 adjusted at values 1.5-3.5), in combination with a

“composite” model of the M1 PSF: f (M1) = f
(M1)
SM +

f
(M1)
SF + f

(M1)
SP . The simulated MSC spectra are virtually

insensitive to σSM within the range of 0.07−0.25 mb and

to f
(M1)
SP within the range (1− 2.5)× 10−9 MeV−3. The

most pronounced sensitivity to σSM is observed in the
M = 3 spectrum – the larger σSM the more pronounced
the bump near 3 MeV.
Examples of predicted MSC spectra for two of these

model combinations, one incorporating the KMF model
and the other the EGLO model for the E1 PSF, are
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FIG. 9: (Color online) Comparison of experimental MSC
spectra with simulations (gray band) for the model deter-
mined from 3He-induced reactions. The PSF used is shown
in Fig. 3.

shown in Fig. 10, with the set of parameters for the
f (M1) PSF specified in the figure caption. The PSFs
used in these simulations are shown in Fig. 2. Omitting

the f
(M1)
SP part of M1 PSF worsens the agreement in all

tested cases. There is only a very slight sensitivity of the

shapes of simulated spectra to the parameters of f
(M1)
SF

and to the E2 strength. Also, there is virtually no differ-
ence among predictions made with BSFG models of level
density and the level density based on HFB calculations.
The agreement between simulations and experiment is
also worse if the scissors mode is not postulated at all
levels, i.e., if it violates the Brink hypothesis.

The values inferred for the energy of the scissors mode,
ESM, and its damping width, ΓSM, are independent of the
absolute size of the non-resonant part of PSF strength
underlying the scissors mode. On the other hand, the res-
onance cross section, σSM, is expected to depend on the
strength of this non-resonant part of the PSF, since the γ
decay is governed only by the ratios of PSFs for different
multipolarities and their energy dependence. However,
we found that very similar values of σSM are consistent
with both the KMF and EGLO models of the E1 PSF.

Based on a large number of simulations with differ-
ent assumptions about the shape and structure of the
resonance near 3 MeV, we believe that the description
of the scissors mode with a single-resonance term is not
unique. Similar agreement to that in Fig. 10 can be ob-
tained with “more complex” models of the resonance, if
the total width and strength of the resonance structure
are similar to those of the single-Lorentzian term. Specif-
ically, very good agreement was reached for a double-
Lorentzian structure of the resonance term with energies
at about 2.5 and 3.1 MeV, see Fig. 11. The strict valid-
ity of the Brink hypothesis for the M1 scissors mode was
assumed in all of these cases.

We should stress that within an enormous functional
space the trial-and-error method adopted in our analysis

does not guarantee that we find the models (or combina-
tions of parameters) that lead to the best possible agree-
ment between simulated and experimental MSC spectra.
None of the tested models was able to correctly de-

scribe the strength of the peak at Eγ ∼ 1 MeV in the
MSC spectra forM ≥ 3, while the position and the width
were well reproduced in all cases. The peak is a con-
sequence of transitions connecting the lowest negative-
parity states, occurring at excitation energies ∼ 1 − 1.3
MeV, with the ground-state band levels. Reasonable re-
production of the strength (or height) of the peak in
the M = 2 spectrum indicates that the direct feeding
of negative-parity levels near 1 MeV from resonances is
simulated correctly.
The underestimation of the predicted strength of the

peak in the spectra for higher multiplicities indicates that
the population of these lowest negative-parity levels is
too low in our simulations. The most likely explanation
is that the decay of some of the levels above Ecrit is not
completely controlled by statistical considerations. This
is probably not that surprising for levels just above 2
MeV. However, the overall agreement between the simu-
lated and experimental spectra indicates that this possi-
ble “non-statistical” contribution influences only a small
part of the decays and does not change our conclusions
about the scissors mode.
With the exception of the SLO model and the model

based on data from 3He induced reactions, we did not test
models where the E1 PSF does not depend on tempera-
ture (or in other words models that fully obey the Brink
hypothesis). As a consequence, we are unable to decide
whether we need a temperature-dependent E1 PSF in or-
der to reproduce the MSC spectra. We can only conclude
that the MSC spectra are consistent with predictions of
“temperature-dependent” KMF or EGLO models.

VI. COMPARISON WITH OTHER DATA

There are several other relevant measurements that
provide information on the PSFs below the neutron sep-
aration energy both for this nuclide and for other nuclei
in the A ∼ 160 mass region.
Data on ground-state transitions from (γ,γ′) measure-

ments [25, 26], that are available for many even-even nu-
clei, and data from 3He-induced reactions [30] were men-
tioned previously.
In addition, there also exist data from the (n,γ) reac-

tion. Specifically, (i) values of the PSFs were obtained
from the intensities of primary transitions from resonance
neutron capture in neighboring odd nuclei [13], (ii) two-
step γ cascades following thermal neutron capture in
162Dy were measured [29], and (iii) information on the
total radiation widths of neutron resonances is available
for all stable isotopes [38].
Simulations with a PSF model that described well data

from the (3He,α) reaction on neighboring even-even nu-
clei were compared with our experimental data in Fig.
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FIG. 10: (Color online) Comparison of experimental MSC spectra with simulations (gray band) made with the model combi-

nation of f
(E1)
KMF, f

(M1)
SM + f

(M1)
SP + f

(M1)
SF (left) and the combination f

(E1)
EGLO(k0 = 3.0), f

(M1)
SM + f

(M1)
SP + f

(M1)
SF (right). Parameters

of the scissors mode were ESM = 3.0 MeV, ΓSM = 1.0 MeV, and σSM = 0.2 mb, and f
(M1)
SP = 1× 10−9 MeV−3.

TABLE II: Total reduced strength of the scissors mode corre-
sponding to various parametrizations. The last two columns
give the total strength of the scissors mode, Btot, and the
strength within the range 2.7-3.7 MeV, BNRF, which is re-
ported in the nuclear resonance fluorescence (γ,γ′) experi-
ments. The strength scales linearly with σSM. Published
experimental values for 158Gd are B(M1) = 3.71(59)µ2

N [25]
or 3.39(17)µ2

N [26].

ESM ΓSM σSM Btot(M1) BNRF(M1)
(MeV) (MeV) (mb) µ2

N µ2
N

3.0 0.6 0.2 1.33 0.88
3.0 1.0 0.2 2.13 1.11
3.0 1.6 0.2 3.23 1.26
2.5 0.4 0.1
3.1 0.8 0.2 2.23a 1.14a

a Double-humped scissors mode.

9. From the comparison it is evident that the position of
the resonance-like structure observed in this reaction at
about 2.7 MeV is too low to agree with our MSC spectra.
The difference between the PSFs deduced from (n,γ) and
(3He,α) reactions remains unexplained.

As already mentioned in Sec III.B.3., the data from

(γ,γ′) yield the total reduced M1 strength for transitions
to the ground state of B(M1) ≈ 3.5µ2

N for Eγ between
2.7 and 3.7 MeV in 158Gd. As it is evident from Tab. II,
where the strength of the mode used in our simulations
is listed, our data require significantly smaller B(M1).
In fact, we should not compare only the strength of the
scissors mode, but rather the sum of all M1 contribu-

tions, f (M1) = f
(M1)
SM +f

(M1)
SP +f

(M1)
SF , with experimental

data. The f
(M1)
SF contribution to the given energy in-

terval is very weak, about 0.15µ2
N . The contribution of

f
(M1)
SP is slightly higher – the f

(M1)
SP = 1 × 10−9 MeV

corresponds to B(M1) = 0.26µ2
N – and B(M1) scales

linearly with the value of f
(M1)
SP . In any case, the B(M1)

needed for reproduction of our data is at most about
2µ2

N . The observed difference in the strengths suggests
that the parameters of the scissors mode for ground-
state transitions differ from the corresponding parame-
ters for excited levels. Such a situation would not be at
variance with our data as simulations with the SM that
gives B(M1) ∼ 3µ2

N for the ground state transitions but
B(M1) ∼ 1.1µ2

N for transitions between all excited states
showed negligible difference with respect to simulations
with the SM giving B(M1) ∼ 1.1µ2

N independently of
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FIG. 11: (Color online) Comparison of experimental MSC

spectra with simulations (gray band) for a model f
(E1)
KMF,

f
(M1)
SM + f

(M1)
SP + f

(M1)
SF . The “double-humped” scissors mode

was used. The parameters of the scissors mode were ESM =
2.5 and 3.1 MeV, ΓSM = 0.5 and 0.8 MeV, and σSM = 0.1
and 0.2 mb, respectively.

the final level. In this connection it is interesting to note
that the strength determined for the scissors mode reso-
nance in 158Gd is significantly smaller than the strength
obtained from the (n,γ) reaction in 163Dy [28, 29]. This
implies that the strength of the mode may also signifi-
cantly differ in odd and even nuclei.

Intensities of primary transitions from (n,γ) reactions
on neighbor odd nuclei, see Fig. 2, indicate that an ac-
ceptable description of fE1 at Eγ ≈ 6 MeV is given by
EGLO model. The KMF model significantly underpre-
dicts the experimental data (while the SLO model over-
predicts them). Unfortunately, there are no available
data on even-even nuclei. Since there is no odd-even A
effect observed in the fE1 PSF above neutron separation
energy, it seems to be reasonable to expect similar values
in odd and even-even nuclei at about 6 MeV.

The average total radiation widths, Γγ , predicted with
the KMF and EGLO(k0 = 3.0) models of the E1 PSF
are about 70-80 meV and 95-105 meV (depending on the
exact parameters used for the M1 PSF), respectively.
From simulations we expect that fluctuation of Γγ from

different resonances is small – at a maximum about 5
meV (independent of the models used).

Comparison with the experimental value, Γ
(exp)
γ =

97(22) meV, indicates that the PSF models reproduc-
ing the MSC spectra give reasonable agreement with the
experimental Γγ . It should be stressed that the total ra-
diation width is the only one of the simulated quantities
that depends on the absolute value of the PSFs. All other
observables depend only on the ratios of PSFs for differ-
ent types of transitions and their energy dependence, but
not on the absolute values of the PSFs. Unfortunately,
Γγ also depends strongly on the energy and spin depen-
dence of the level density which prevents the use of the
radiation width for absolute normalization of the PSFs.
Assuming that the level density used in the simulations
is correct, the KMF model for E1 will reproduce the to-
tal radiation width if it is multiplied by a factor of about
1.2-1.3. Under these assumptions the M1 strength should
be multiplied by the same factor.

VII. SUMMARY

Measurement of γ-ray spectra from resonances in the
157Gd(n,γ) reaction was performed with an isotopically
enriched target at the DANCE detector array at LAN-
SCE. The total angular momentum of the s-wave reso-
nances was determined for neutron energies up to En =
300 eV with the aid of the multiplicity distributions of
the γ-ray decay from the resonances. There was excellent
overall agreement with the previous spin assignments.
The MSC γ-ray spectra for different multiplicities from

resonances with different spins were used to test the va-
lidity of various PSF models. For the E1 PSF we found
that, at least at low γ-ray energies, a reasonable descrip-
tion was obtained with the model of Kadmenskij, Marku-
shev and Furman [12] or with models that are derived
from the KMF approach. On the other hand, data on
the PSF obtained from intensities of primary transitions
from (n,γ) reactions indicate that much higher strength
than that predicted by the KMF model is required for
energies only slightly below the neutron binding energy
[13, 40, 41]. This indicates that the EGLO model (or
model similar to it) appears to be a reasonable model for
the E1 PSF in deformed rare-earth nuclei.
Our analysis indicates that a resonance-like structure

at Eγ ≈ 3 MeV in 158Gd is required in a PSF. The struc-
ture is not only a property of the ground-state transitions
but must also be present in the decay between excited
levels. We identify this structure with the scissors mode
as it cannot be in the E1 PSF. Our data are unable
to distinguish whether the structure consists of a simple
single-resonance term or if it is more complicated (two
resonances). However, we can conclude that it is rela-
tively wide – we estimate its width to be 0.6-1.6 MeV. In
addition to the scissors mode additional “smooth” M1
strength is needed to reproduce our data.
The strength of the mode from our data is signifi-
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cantly smaller than that of the ground-state transitions
from (γ, γ′) in even-even rare-earth nuclei, which suggest
that the properties of the mode might be different for
the ground-state transitions and for transitions between
excited levels. However, one cannot exclude a systematic
decrease of the scissors mode strength with the excitation
energy of the levels on which this mode is based. The
strength determined is also much smaller than that ob-
served in the (n,γ) reaction in 163Dy [28, 29]. This points
out that the strength of the scissors mode may differ in
odd and even nuclei. It is also difficult to understand the
difference between the properties of the mode determined
from the (3He,α) Oslo data and from the (n,γ) reaction.
All of these problems indicate that the properties of the
scissors mode and of the PSF at energies below neutron
separation energies in general are not fully understood.
Further study is needed.
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[29] M. Krtička, F. Bečvář, J. Honzátko, I. Tomandl, M. Heil,
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