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Abstract

The nuclear mean-field potentials obtained in the Hartree-Fock method with different choices

of the in-medium nucleon-nucleon (NN) interaction have been used to study the equation of state

(EOS) of the neutron star (NS) matter. The EOS of the uniform NS core has been calculated for

the npeµ composition in the β-equilibrium at zero temperature, using version Sly4 of the Skyrme

interaction as well as two density-dependent versions of the finite-range M3Y interaction (CDM3Yn

and M3Y-Pn), and versions D1S and D1N of the Gogny interaction. Although the considered

effective NN interactions were proven to be quite realistic in numerous nuclear structure and/or

reaction studies, they give quite different behaviors of the symmetry energy of nuclear matter at

supranuclear densities that lead to the soft and stiff scenarios discussed recently in the literature.

Different EOS’s of the NS core and the EOS of the NS crust given by the compressible liquid drop

model have been used as input of the Tolman-Oppenheimer-Volkov equations to study how the

nuclear symmetry energy affects the model prediction of different NS properties, like the cooling

process as well as the gravitational mass, radius, and moment of inertia.
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I. INTRODUCTION

The determination of the equation of state (EOS) of asymmetric nuclear matter (NM) has

been the main object of numerous nuclear structure and reaction studies involving unstable

nuclei lying close to the neutron or proton driplines [1]. The knowledge about the EOS

of asymmetric NM is vital for any model of neutron star [2–7], and the nuclear mean-field

potential is the most important input for the determination of the nuclear EOS. Many

microscopic studies of the EOS have been done based on the nuclear mean field given by

both nonrelativistic and relativistic nuclear many-body approaches, using realistic two-body

and three-body nucleon-nucleon (NN) forces or interaction Lagrangians (see recent reviews

[1, 8]). These many-body studies have shown the important role played by the Pauli blocking

effects as well as higher-order NN correlations at different NM densities. These medium

effects are normally considered as the physics origin of the density dependence that has been

introduced into various versions of the effective NN interactions used in the modern mean-

field approaches. Among them, very popular is the so-called M3Y interaction which was

originally constructed to reproduce the G-matrix elements of the Reid [9] and Paris [10] NN

potentials in an oscillator basis. Several realistic density dependences have been added later

on to the M3Y interactions [11–16] to properly account for the NM saturation properties as

well as the ground-state structure of finite nuclei [17–19]. These density dependent versions

of the M3Y interaction have been used in the nonrelativistic Hartree-Fock (HF) studies of

symmetric and asymmetric NM. Some of them have been successfully used in the folding

model studies of the nucleon-nucleus and nucleus-nucleus scattering [13–15, 20–22].

In attempt to find a realistic version of the effective NN interaction for consistent use in the

mean-field studies of NM and finite nuclei as well as in the nuclear reaction calculations, we

have performed recently a systematic HF study of NM [23] using the CDM3Yn interactions,

which have been used mainly in the folding model studies of the nuclear scattering [14, 15,

21, 22], and the M3Y-Pn interactions carefully parametrized by Nakada [17–19] for use in

the HF studies of nuclear structure. For comparison, the same HF study has also been

done with the D1S and D1N versions of the Gogny interaction [24, 25] and Sly4 version

of the Skyrme interaction [26]. While these effective NN interactions give more or less the

same description of the saturation properties of the symmetric NM, the HF results for the

asymmetric NM [23] show that they are divided into two families, which are associated with
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two different (soft and stiff ) behaviors of the NM symmetry energy at high nucleon densities.

As a result, these two families predict very different behaviors of the proton-to-neutron ratio

in the β-equilibrium that can imply two drastically different mechanisms for the neutron

star cooling (with or without the direct Urca process) [27–29].

As a further step in this direction, we try to find out in the present work how such

a difference in the NM symmetry energy can affect the EOS of the β-stable neutron star

(NS) matter as well as the main NS properties like the maximum mass, radius, central

density and moment of inertia. For this purpose, the Tolman-Oppenheimer-Volkov (TOV)

equations have been solved using different EOS’s of the NS matter that are associated with

the nuclear mean-field potentials given by different in-medium NN interactions under study.

Given the complex, inhomogeneous structure of the NS crust, it is a tremendous task to

develop a consistent structure model for the inner and outer NS crusts using all versions

of the in-medium NN interaction considered here. Therefore, we have used the EOS of the

NS crust given by the Compressible Liquid Drop Model (CLDM) [5, 30] with the model

parameters determined by the SLy4 interaction [26]. Different EOS’s of the uniform NS

core are then calculated for the npeµ composition in the β-equilibrium at zero temperature

and extended to the supranuclear densities, using the mean-field potentials given by different

density-dependent NN interactions. In this way, any difference found in the solutions of the

TOV equations is entirely due to the choice of the EOS of the NS core, i.e., to the choice of

the in-medium NN interaction. The main NS properties obtained in each case are compared

with the empirical data given by the recent astronomical observation of neutron stars.

II. HARTREE-FOCK CALCULATION OF ASYMMETRIC NUCLEAR MATTER

We recall here the main features of our HF study [23] of the uniform (spin-saturated)

NM at zero temperature that is characterized by given values of the neutron and proton

densities, nn and np, or equivalently by the total density nb = nn +np (hereafter referred to

as the baryon density) and the neutron-proton asymmetry δ = (nn − np)/(nn + np). With

the direct (vD) and exchange (vEX) parts of the interaction determined from the singlet- and

triplet-even (and odd) components of the central NN force, the total energy density of the
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NM is determined as

ε = εkin +
1

2

∑

kστ

∑

k′σ′τ ′

[〈kστ,k′σ′τ ′|vD|kστ,k
′σ′τ ′〉+ 〈kστ,k′σ′τ ′|vEX|k

′στ,kσ′τ ′〉], (1)

where |kστ〉 are the ordinary plane waves. Dividing ε over the total baryon number density

nb, we obtain the total NM energy per particle E that can be expressed as

ε

nb

≡ E(nb, δ) = E(nb, δ = 0) + S(nb)δ
2 +O(δ4) + ... (2)

The NM pressure P and incompressibility K are then calculated as

P (nb, δ) = n2
b

∂E(nb, δ)

∂nb
; K(nb, δ) = 9n2

b

∂2E(nb, δ)

∂n2
b

. (3)

The contribution of O(δ4) and higher-order terms in Eq. (2) was proven to be quite small

[13, 31] and is often neglected in the so-called parabolic approximation, where the NM

symmetry energy S(nb) equals the energy required per particle to change the symmetric

NM into the pure neutron matter. The value of S(nb) at the symmetric NM saturation

density, n0 ≈ 0.17 fm−3, is known as the symmetry energy coefficient J = S(n0) that has

been predicted by numerous many-body calculations to be around 30 MeV [13, 31–33].

The knowledge about the density dependence of S(nb) is extremely important for the

construction of nuclear EOS and it has been, therefore, a longstanding goal of many nuclear

structure and reaction studies. The main method to probe S(nb) associated with a given

in-medium NN interaction is to test this interaction in the simulation of heavy-ion (HI)

collisions using transport and/or statistical models [1, 34–40] or in the structure studies

of nuclei with large neutron excess [19, 25, 26, 41–49]. Based on the physics constraints

implied by such studies, extrapolation is often made to draw conclusion on the low- and

high-density behavior of S(nb). However, such conclusions still remain quite divergent in

some cases [23]. One of the most intriguing issues discussed recently in the literature is

whether the “soft” or “stiff” density dependence of the NM symmetry energy is more realis-

tic. These two scenarios are well illustrated in Fig. 1 where the HF results obtained with the

two groups of the considered in-medium NN interactions are plotted. For comparison, we

have also plotted in Fig. 1 results of the ab-initio variational chain-summation calculation

using the A18+δv+UIX* version of the Argonne NN potential by Akmal, Pandharipande

and Ravenhall (APR) [50] and recent microscopic Monte Carlo calculation of neutron star
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FIG. 1. (Color online) HF results for the NM symmetry energies S(nb) given by the density-

dependent NN interactions under study. The shaded (magenta) region marks the empirical bound-

aries deduced from the analysis of the isospin diffusion data and double ratio of neutron and proton

spectra data of HI collisions [34, 36]. The square and triangle are the constraints deduced from the

consistent structure studies of the GDR [47] and neutron skin [49], respectively. The circles and

crosses are results of the ab-initio calculation by Akmal, Pandharipande and Ravenhall (APR) [50]

and microscopic Monte Carlo (MMC) calculation by Gandolfi et al. [51], respectively.

structure by Gandolfi et al. [51], using the Argonne AV6’ potential added by an empirical

density dependence.

Around the saturation density n0 of the symmetric NM all the models predict the symme-

try coefficient S(n0) = J ≈ 29±3 MeV, in a reasonable agreement with the empirical values

5



deduced recently from the structure studies of of neutron skin [48, 49]. In the low-density

region (nb ≈ 0.3 ∼ 0.6 n0) there exist empirical boundaries for the symmetry energy de-

duced from the analysis of the isospin diffusion data and double ratio of neutron and proton

spectra data of HI collisions [34, 36], which enclose the HF results given by both groups of

the in-medium NN interactions. At the baryon density nb ≈ 0.1 fm−3, all the HF results also

agree quite well with the empirical value deduced from a consistent structure study of the

isovector Giant Dipole Resonance (GDR) in heavy nuclei [47]. So far there are no firm em-

pirical constraints on the NM symmetry energy at supranuclear densities, and the behavior

of S(nb) at high densities remains uncertain. The two different behaviors of S(nb) shown in

Fig. 1 have been observed earlier [1, 38, 52, 53] and often discussed in the literature as the

Asy-stiff (with symmetry energy steadily increasing with density) and Asy-soft (with sym-

metry energy reaching saturation and then decreasing to negative values) behaviors. The

main characteristics of the EOS’s obtained with these two groups of density-dependent NN

interactions have been discussed in details in Ref. [23]. We note here that most of the micro-

scopic calculations of NM like the ab-initio APR results [50] or the Monte Carlo calculation

by Gandolfi et al. [51] do predict a stiff behavior of the nuclear symmetry energy, excepting

perhaps the microscopic study by Wiringa et al. [54] that predicted a soft behavior of S(nb)

using the Argonne or Urbana NN interaction plus a three-nucleon interaction term. The

stiff behavior is also predicted by the recent microscopic Brueckner-Hartree-Fock (BHF) or

Dirac-Brueckner-Hartree-Fock calculations of NM that include the higher-order many-body

correlations and/or three-body forces [7, 55, 56] as well as by the latest relativistic mean-field

studies [42–44]. Because the isovector density dependence of the CDM3Yn interactions has

been parametrized [15] to reproduce simultaneously the BHF results for the isospin- and

density dependent nucleon optical potential by the JLM group [57] and the charge exchange

(p, n) data for the isobaric analog excitation [15], the stiff behavior of S(nb) given by the

CDM3Yn interactions is quite close to that given by the BHF calculation. If we simply

assume the density dependence of the isovector part of CDM3Yn interactions to be the

same as that of the isoscalar part, then S(nb) has a soft behavior that has been discussed

in our earlier HF study [13]. On the other hand, the isovector density dependence of the

M3Y-Pn, D1S and D1N interactions were carefully fine tuned against the structure data

observed for a wide range of the neutron (and proton-) dripline nuclei and the low-density

tail of S(nb) predicted by these interactions should be quite realistic. However, there is no
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FIG. 2. (Color online) Energy of the symmetric NM and pure neutron matter calculated in the HF

approximation (1) - (2) using the in-medium NN interactions that give a stiff behavior of S(nb) as

shown in upper panel of Fig. 1. The circles and crosses are results of the ab-initio calculation by

Akmal, Pandharipande and Ravenhall (APR) [50] and microscopic Monte Carlo (MMC) calculation

by Gandolfi et al. [51], respectively.

physics ground to confirm the validity of the high-density behavior of S(nb) predicted by the

soft M3Y-Pn, D1S and D1N interactions. For the total NM energy (2) that is sometimes

referred to as the nuclear EOS, the HF results given by all considered interactions for the

symmetric NM agree well with the microscopic APR or Monte Carlo predictions. However,

the difference in the symmetry energy lead to very different behaviors of the energy of pure

neutron matter given by the stiff and soft groups of interactions (see lower panels of Figs. 2
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FIG. 3. (Color online) The same as Fig. 2 but obtained with the in-medium NN interactions that

give a soft behavior of S(nb) as shown in lower panel of Fig. 1.

and 3). In terms of the NM pressure (3) the soft-type interactions have been shown [23]

unable to reproduce the empirical pressure P (nb) of the pure neutron matter deduced from

the HI flow data [35]. In the present work we make such a comparison more accurately,

based on the mean-field prediction for the EOS of the NS matter of the npeµ composition in

the β-equilibrium and the recent empirical data deduced from astrophysical measurements

of neutron stars by Özel et al. [58] and Steiner et al. [59].
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III. EOS OF THE β-STABLE NEUTRON STAR MATTER

Nuclei in the NS crust are described by the Compressible Liquid Drop Model by Douchin

et al. (see Ref. [30] and references therein), using the model parameters determined with

the version SLy4 of the Skyrme interaction [26]. Within the CLDM, electrons inside the

inhomogeneous NS crust are assumed to form a relativistic Fermi gas. The structure of

the NS crust has been given by the CLDM for the baryon densities up to the edge density

nedge ≈ 0.076 fm−3, where a weak first-order phase transition between the NS crust and

liquid (uniform) core takes place [5].

At baryon densities nb > nedge the NS core is described as a homogeneous matter of neu-

trons, protons, electrons and negative muons (µ− appear at nb above the muon threshold

density, where electron chemical potential µe > mµc
2 ≈ 105.6 MeV). Such a npeµ composi-

tion of the NS core is a realistic assumption up to the high densities of nb ≃ 3n0. Although

the appearance of hyperons can be expected at higher densities, Douchin and Haensel have

extrapolated their npeµ model for the EOS of the NS matter up to the maximum central

density (approach used earlier in the ab-initio study by Akmal et al. [50]). Thus, the total

energy density ε of the npeµ matter (including the rest energy of baryons and leptons) is

determined in the present study as

ε(nn, np, ne, nµ) = εHF(nn, np) + nnmnc
2 + npmpc

2 + εe(ne) + εµ(nµ), (4)

where εHF(nn, np) is the Hartree-Fock energy density of nucleons (1); εe and εµ are the energy

densities of electrons and muons, respectively, which are evaluated in the relativistic Fermi

gas model, neglecting electrostatic interaction [5, 60]. The number densities of leptons, ne

and nµ, are determined from the charge neutrality condition (np = ne+nµ) and the relation

for the chemical potentials, implied by the β-equilibrium of the (neutrino-free) NS matter

µn = µp + µe and µµ = µe, where µj =
∂ε

∂nj
, j = n, p, e, µ. (5)

As a result, we can determine uniquely all fractions of the constituent particles xj = nj/nb

at the given baryon density nb = nn + np. Below the muon threshold density (µe < mµc
2 ≈

105.6 MeV) the charge neutrality condition leads to the following relation [60]

3π2(~c)3nbxp − µ̂3 = 0, where µ̂ = µn − µp = 2
∂E

∂δ

∣

∣

∣

nb

. (6)
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Using the total NM energy E given by the HF calculation (2), the density dependence of the

proton fraction at the β-equilibrium, xp(nb), is readily obtained from the solution of Eq. (6).

If we assume the parabolic approximation and neglect the contribution from higher-order

terms in (2), then xp(nb) is given by the solution of the well-known equation [6]

3π2(~c)3nbxp − [4S(nb)(1− 2xp)]
3 = 0, (7)

which shows the crucial role of the NM symmetry energy in the determination of the proton

abundance in the NS matter.

As the baryon density exceeds the muon threshold density, where µe > mµc
2 ≈ 105.6

MeV, it is energetically favorable for electrons to convert to negative muons and the charge

neutrality condition leads now to the relation [60]

3π2(~c)3nbxp − µ̂3 − [µ̂2 − (mµc
2)2]3/2θ(µ̂−mµc

2) = 0, (8)

where θ(x) is the Heaviside step function. Based on the solutions of Eqs. (6) and (8), the

EOS of the npeµ matter is fully determined by the mass density ρ(nb) and total pressure

P (nb) inside the neutron star

ρ(nb) = ε(nb)/c
2, P (nb) = n2

b

∂

∂nb

[

εHF(nb)

nb

]

+ Pe + Pµ. (9)

In the present study, we have first solved Eqs. (6) and (8) to determine all fractions

xj = nj/nb and the EOS of the npeµ matter using the total baryon energy E(nb) given by

the Sly4 interaction. The accuracy of the numerical procedure was double checked against

the published results for xj(nb) and P (nb), obtained with the Sly4 interaction by Douchin

and Haensel (tabulated in Refs. [5, 61]). Different EOS’s of the NS core have been then

calculated for the npeµ matter, using the HF mean-field energies given by different in-

medium NN interactions considered in our study.

Our results for the fractions xj = nj/nb obtained with different interactions are plotted in

Figs. 4 and 5. For the typical soft-type interactions (like the results obtained for the M3Y-P5

and D1N interactions shown here), the proton and lepton fractions are quite small and reach

their maxima of around 4% at nb ≈ 0.2 fm−3 (see lower panels of Fig. 4), at exactly the

same baryon density where the symmetry energy S(nb) goes through its maximum value.

The fast decrease of S(nb) to zero at nb ≈ 0.6 − 0.7 fm−3 leads also to a drastic decrease

of the proton and lepton components in the NS matter that then becomes β-unstable, pure

neutron matter at nb > 0.6 fm−3 (see upper panels of Fig. 4).
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FIG. 4. (Color online) The fractions xj = nj/nb of constituent particles of the NS matter obtained

from the solutions of Eqs. (6) and (8) using the mean-field potentials given by the M3Y-P5 and

D1N interactions.

The fractions xj = nj/nb obtained with the stiff-type interactions (see the results obtained

for the CDM3Y4 and Sly4 interactions shown in Fig. 5) are substantially different from those

given by the soft-type interactions. Namely, the proton and lepton fractions increase steadily

with the baryon density like the corresponding symmetry energy S(nb). For the CDM3Yn

interactions, the proton fraction xp is above 30% at the maximum central density nc ≈ 1.3

fm−3, and the matter at the NS center becomes less neutron rich (with xn < 70%). In this

case, the β-equilibrium of the charge neutral NS matter is kept throughout the NS core,

with the lepton fractions reaching more than 30% at nc (see left-lower panel of Fig. 5). It

is interesting to note that about the same behavior of xp is also predicted by the recent

complete EOS of nuclear matter by Shen et al. [62], constructed for use in astrophysical
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FIG. 5. (Color online) The same as Fig. 4 but using the mean-field potentials given by the CDM3Y4

and Sly4 interactions. The circles are nj values calculated at the maximum central densities nc

given by the solution of the TOV equations.

simulations. For the Sly4 interaction, with a less stiff increase of S(nb) at large densities

(see upper panel of Fig. 1), the maximum proton fraction at nc ≈ 1.2 fm−3 is only about

12% and the NS matter is, therefore, more neutron rich compared to the case of CDM3Yn

interactions. Nevertheless, in the case of Sly4 interaction the NS matter remains always in

the β-equilibrium [5].

As already discussed in Ref. [23], the behavior of the density dependence of the proton

fraction xp(nb) plays a very important role in the determination of the NS cooling rate.

In particular, the powerful direct Urca (DU) process of neutrino emission is allowed only

if the Fermi momenta of the constituent particles in the npeµ matter satisfy the triangle
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conditions [27] that lead to the existence of a DU threshold xDU for the proton fraction that

can be estimated [7] as

xDU =
1

1 +
(

1 + r
1/3
e

)3 , (10)

where re = ne/(ne + nµ) is the leptonic electron fraction. xDU has its lowest value of 11.1%

at re = 1 that corresponds to the muon-free threshold for DU process [28]. It can be

concluded immediately from lower panel Fig. 4 that the DU process is not possible for the

NS matter generated with the soft-type interactions when xp can reach at most 4% and then

decreases quickly to zero at nb > 0.6 fm−3. Such a (mean-field) challenge to the soft-type

in-medium NN interactions has been pointed out and discussed in Ref. [23]. Fig. 6 shows

that for the stiff-type CDM3Yn interactions, the proton fraction becomes larger than the

DU threshold at a rather modest threshold density of nb ≈ 0.45 fm−3 that is far below

the corresponding maximum central densities of 1.2− 1.3 fm−3. Therefore, the DU process
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should be a realistic scenario for the NS cooling if the mean-field potential is generated with

the CDM3Yn interactions. For the Sly4 interaction, the xp value remains well below the

DU threshold up to the maximum central density determined by the TOV equations and

the DU process is thus not likely for the NS matter generated with the Sly4 interaction [5].

We discuss now our results obtained for the total pressure P (nb) inside the neutron star

determined by relation (9), which defines the EOS of the NS matter to be used in the

TOV equations. The NS pressure obtained with the HF mean-field energies E(nb) given by

different in-medium NN interactions are plotted in Fig. 7. Since the lepton pressure (Pe+Pµ)

inside the NS is about one order of magnitude weaker than the baryon pressure Pb, the results

shown is Fig. 7 are determined predominantly by Pb. One of the main constraints for the

NS matter is that the pressure must satisfy relation dP/dn & 0 to ensure the NS matter

stability [63]. This (microscopic) stability condition also is known as le Chatelier’s principle

[60]. One can see in lower panel of Fig. 7 that P obtained with the D1S version of Gogny

interaction does not comply with such a constraint and this interaction should not be used

to generate the EOS of the NS matter at densities nb & 2n0. This results stresses again that

there could be a plethora of systematic uncertainties in different models of in-medium NN

interaction that are not visible at low nuclear densities, and the success of any interaction

in the nuclear structure study is not sufficient to ensure its extrapolation to supranuclear

densities.

With the advance in both the astrophysical techniques and modeling of the NS structure,

it became recently feasible to empirically deduce the pressure of the NS matter at supranu-

clear densities [58]. The empirical pressure determined from the masses and radii observed

for the binaries 4U 1608-248, EXO 1745 -248, and 4U 1820-30 are plotted in Fig. 7 as the

three data points spanned by a shadow region of the uncertainties associated with the data

determination [58]. From Fig. 7 one can see that both groups of in-medium NN interaction

agree more or less with the data for NS pressure, while a similar comparison [23] of the

pressure calculated for pure neutron matter with the empirical value deduced from the HI

flow data [35] seemed to favor the stiff-type interactions. In order to distinguish more clearly

the EOS’s given by these two groups of interaction, we have further used them in the input

of the Tolman-Oppenheimer-Volkov equations to study the main NS properties.
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FIG. 7. (Color online) The pressure inside the NS matter obtained with the in-medium NN

interactions that give stiff (upper panel) and soft (lower panel) behavior of S(nb), in comparison

with the empirical data points deduced from the astronomical observation of neutron stars [58].

The shaded band shows the uncertainties associated with the data determination. The circles are

P values calculated at the corresponding maximum central densities given by the TOV equations,

and the vertical arrows indicate the baryon densities above which the NS matter predicted by the

M3Y-P3 and M3Y-P4 interactions becomes superluminal (see Fig. 13 below).
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IV. NEUTRON STAR PROPERTIES

Different sets of predicted mass density ρ and total pressure P inside the neutron star

(9) have been further used to solve the well-known Tolman-Oppenheimer-Volkov equations

dP

dr
= −G

mρ

r2

(

1 +
P

ρc2

)(

1 +
4πPr3

mc2

)(

1−
2Gm

rc2

)−1

,

dm

dr
= 4πr2ρ, (11)

whereG is the universal gravitational constant, r is the radial coordinate in the Schwarzschild

metric, and m is the gravitational mass enclosed within the sphere of radius r. The TOV

equations (11) are supplemented with the following equation determining the number of

baryons a inside this sphere [5]

da

dr
= 4πr2nb

(

1−
2Gm

rc2

)−1/2

. (12)

Eqs. (11), (12) have been integrated from the NS center, with the boundary conditions at

r = 0 : P (0) = Pc, m(0) = 0, ρ(0) = ρc, and a(0) = 0. The stellar surface at r = R is

determined from the boundary condition P (R) = 0. The total gravitational mass and total

number of baryons are then determined as M = m(R), A = a(R), respectively. As a result,

with different inputs for the NM pressure, the corresponding solutions of the TOV equations

give different NS models in terms of one-parameter families [5] that can be labeled by the

central pressure Pc or equivalently by the central density ρc of the neutron star.

Thus, at each central density we can uniquely determine the corresponding gravitational

mass M and radius R, and the behavior of M versus R is often used to compare with the

measured masses and radii of neutron stars. Our results obtained with different EOS’s are

plotted in Fig. 8. The recently measured masses and radii for the binaries 4U 1608-248,

EXO 1745 -248, and 4U 1820-30 [58] are plotted in Fig. 8 as the shaded contours. One can

see that all mass-radius curves lie well below the limit allowed by the General Relativity

[63] and go through or very closely nearby the empirical contours spanned by the data,

excepting the curve given by D1N version of the Gogny interaction that lies well below the

data. We note that the same EOS for the NS crust (generated in the CLDM using model

parameters determined by the SLy4 interaction [5, 30]) has been used in the input of the

TOV equations (11). Therefore, the difference found between the mass-radius curves shown

in Fig. 8 is entirely due to the different choices of the in-medium NN interaction used to
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FIG. 8. (Color online) The NS gravitational mass versus its radius obtained with the EOS’s given by

the stiff-type (upper panel) and soft-type (lower panel) in-medium NN interactions, in comparison

with the empirical data (shaded contours) deduced by Özel et al [58] from recent astronomical

observations of neutron stars. The circles are values calculated at the maximum central densities.

The thick solid (red) line is the limit allowed by the General Relativity [63].

generate the EOS of the NS core. The maximum gravitational masses MG given by the

EOS’s under study are plotted in Fig. 8 as solid circles and they agree more or less with the

recent data. While all the stiff-type interactions give the corresponding NS radius RG quite

close to the empirical range around 10 km, the MG values given by the Sly4 and CDM3Y6

interactions are slightly higher than the observed masses, close to about twice the solar

mass (M⊙). We note, however, that the NS matter in the present study has been assumed
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FIG. 9. (Color online) The same as Fig. 8, but in comparison with the empirical data (shaded

contours) deduced by Steiner et al. [59] from the observation of the X-ray burster 4U 1608-52.

to consist only of baryons, electrons and muons. At high baryon densities (nb & 3n0) the

hyperons are expected to appear, and the maximum NS mass becomes then smaller [6, 63].

In this case, the nucleon matter generated with the Sly4 or CDM3Y6 interactions seems well

suitable for the description of the baryon component of the NS matter, while the inclusion

of hyperons might pull the MG values given by the soft-type M3Y-Pn interaction to values

lying below the empirical boundaries shown in Fig. 8 for the maximum NS mass. Moreover,

the MG values around 2M⊙ are still allowed by a broad systematics of the measured NS

masses [6, 59]. For the D1N interaction, the MG value is still within the broad range of the

measured NS masses [6] but the radius RG is rather small, almost 1 km smaller than the
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minimum limit for R versus M : R & 3.6 + 3.9(M/M⊙) km [6].

We stress again that the existing data for the NS mass still allow a wide range for the

realistic MG value, from the lowest value of 1.25 M⊙ [68] up to around 2 M⊙ [6, 59], and the

comparison of the predicted results for both mass and radius is, therefore, vital in testing

different EOS’s of the NS matter. As another example, we have also compared in Fig. 9

the results predicted by different EOS’s with the mass-radius data deduced by Steiner et al.

[59] from the observation of the Type-I X-ray burster 4U 1608-52. One can see that results

given by the EOS’s obtained with the stiff-type interactions agree nicely with the empirical

data, while those given by the soft-type interactions clearly disagree with the considered

mass-radius data. Because the TOV equations are deduced from the Einstein’s general

relativistic equations for a gravitationally bound star in the hydrostatic equilibrium, the

results shown in Fig. 8 indicate that the EOS’s given by both groups of the in-medium NN

interactions (excepting perhaps the D1N interaction) can describe reasonably the empirical

mass-radius data deduced by Özel et al [58], despite drastically different proton fractions

predicted for the NS matter at supranuclear densities that lead to very different scenarios

for the NS cooling as discussed in the previous section. Nonetheless, the comparison of our

results with the mass-radius data deduced by Steiner et al. [59] seems to prefer the stiff-type

interactions.

The moment of inertia I of slowly rotating neutron star has been shown [64] as a good

constraint for the EOS of neutron stars and the physics of their interiors. In general, I can

be determined from the Einstein field equations for a compact star [65]. It has been shown

[64, 65] that for slowly rotating neutron stars the expression for I determined from the

Einstein field equations can be approximated quite well by the following empirical relation

of the NS mass and radius

I ≈ (0.237± 0.008)MR2

[

1 + 4.2
M

M⊙

km

R
+ 90

(

M

M⊙

km

R

)4
]

. (13)

Assuming the validity of relation (13), we have transformed the recent mass-radius data by

Özel et al [58] and Steiner et al [59] into the empirical boundaries for realistic values of the

moment of inertia. These new empirical “data” for the NS moment of inertia I are plotted

in Figs. 10 and 11 by similar shaded contours as in Figs. 8 and 9 , and compared with the

results obtained with different EOS’s using relation (13). In this way, it is natural to see that

the EOS giving the best agreement with the mass-radius data also give the corresponding I
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FIG. 10. (Color online) The NS moment of inertia versus its gravitational mass obtained with the

EOS’s given by the stiff-type (upper panel) and soft-type (lower panel) in-medium NN interactions,

in comparison with the empirical data (shaded contours) deduced from the mass-radius data by

Özel et al [58] using Eq. (13). The circles are values calculated at the maximum central densities.

curves agreeing well with the empirical data for the moment of inertia. We conclude from

the results shown in Figs. 8-11 that the stiff-type NN interactions give consistently good

description to both sets of the empirical data for the NS masses, radii and moments of

inertia.

The main characteristics of the NS configuration determined from the TOV equations

(11), using different EOS’s, are given in Table I. As noted above, the EOS determined by

D1S version of the Gogny interaction gives negative pressure at high baryon densities and
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FIG. 11. (Color online) The same as Fig. 10, but in comparison with the empirical data (shaded

contours) deduced from the mass-radius data by Steiner et al [59] for the X-ray burster 4U 1608-52

using Eq. (13).

violates, therefore, the main constraint for a gravitationally bound star [63] in the hydrostatic

equilibrium. As a result, the EOS given by the D1S interaction cannot be used in the TOV

equation (11). From Table I one can see that the stiff-type CDM3Yn and Sly4 interactions

give the maximum gravitational mass 1.6 M⊙ . MG . 2M⊙ and radius RG ≈ 10 km

that are well within the established empirical boundaries as shown in Figs. 8 and 9. We

note that both the ab-initio APR calculation [50] and microscopic Monte Carlo study [51]

have obtained MG & 2M⊙ and the corresponding moment of inertia IG is, therefore, also

somewhat larger than IG values given by the stiff-type interactions considered here. The
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TABLE I. Configuration of static neutron star given by different NS equations of state: maximum

gravitational mass MG, radius RG, and moment of inertia IG; maximum central baryon density

nc, mass density ρc, and total pressure Pc; total baryon number A; surface redshift zsurf ; binding

energy Ebind.

EOS MG RG nc ρc Pc A zsurf Ebind IG

(M⊙) (km) (fm−3) (1015 g/cm3) (MeV fm−3) (1057) (1059 MeV) ( M⊙ km2)

CDM3Y3 1.61 10.01 1.37 2.97 444.0 2.19 0.381 2.35 66.33

CDM3Y4 1.73 10.13 1.30 2.87 495.4 2.38 0.423 2.77 75.81

CDM3Y6 1.97 10.42 1.17 2.66 596.0 2.76 0.506 3.65 96.78

M3Y-P3 1.73 8.36 1.71 4.10 1297.0 2.46 0.606 3.52 58.33

M3Y-P4 1.64 7.72 1.96 4.72 1588.0 2.35 0.640 3.55 48.10

M3Y-P5 1.58 7.81 2.00 4.78 1420.0 2.22 0.576 3.01 45.55

D1N 1.23 7.75 2.36 5.24 819.9 1.65 0.373 1.59 30.28

Sly4 2.05 9.96 1.21 2.86 860.4 2.91 0.590 4.23 97.52

CDM3Y3s 1.13 9.36 1.61 3.26 261.1 1.47 0.246 1.12 35.62

CDM3Y4s 1.21 9.51 1.54 3.15 275.7 1.60 0.267 1.32 40.56

CDM3Y6s 1.42 9.74 1.46 3.06 340.4 1.90 0.326 1.86 52.78

soft-type M3Y-Pn and, especially, D1N interactions give the MG and RG values significantly

lower than those given by the stiff-type interactions. Therefore, if hyperons are included at

high baryon densities, the MG and RG values given by the soft-type interactions could be

well below all the existing empirical estimates.

From solutions of the TOV equations at a given radius R, the total baryon mass enclosed

within the sphere of radius R can be determined as Mb(R) = mNa(R), where mN is the

nucleon mass and the total baryon number a(R) is given by Eq. (12). As a result, the

Mb(R) values are closely correlated with the corresponding gravitational mass M(R), and

difference between these two masses depends upon the compactness of the neutron star.

Furthermore, the low-mass part of the dependence of gravitational mass on the total baryon

mass, M(Mb), can be directly compared with the constraint suggested by Podsiadlowski

et al. [68]. Namely, in a likely scenario that the massive component of the double pulsar

PSR J0737-3059 (the lightest NS observed to date) has been formed by an electron-capture
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FIG. 12. (Color online) The gravitational mass M given by different EOS’s of the NS matter

plotted versus the corresponding total baryon mass Mb. The shaded rectangle is the empirical

value inferred from observations of the double pulsar PSR J0737-3059 by Podsiadlowski et al. [68].

supernova, the total pre-collapse baryon number of the stellar core (rather precisely known

from the model calculations) has a very small loss of material in the subsequent collapse.

Therefore, the accurate gravitational mass M = 1.249±0.001 M⊙ estimated from the pulsar

timing can be used to extract a stringent constraint on the low-mass part of M(Mb), which

is plotted as the shaded rectangle in Fig. 12. As discussed also in Ref. [51], a realistic EOS

of the NS matter should give M(Mb) curve going through or nearby the shaded box in

Fig. 12 in order to be consistent with the observation of the double pulsar PSR J0737-3059.

One can see that the stiff-type NN interactions give M(Mb) curves passing very close to

the left corner of the shaded box, while those given by the soft-type interactions clearly

underestimate the empirical data. At M ≈ 1.25M⊙, the baryon density (nb > 3n0) is

well above the hyperon threshold and the gravitational mass should become smaller if the

hyperons are included [6, 63]. This would probably push the M(Mb) curves given by the

stiff-type interactions right into the shaded box in Fig. 12. In contrast, there is no physics

mechanism that can push the M(Mb) curves given by the soft-type interactions higher up,
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to be close to the empirical shaded region.

Another important NS observable is the surface redshift of photons emitted from the NS

photosphere that is determined as [5]

zsurf =
(

1−
rg
R

)−1/2

− 1, where rg =
2GM

c2
≈ 2.95

M

M⊙

. (14)

It is obvious from Eq. (14) that the measurement of zsurf is vital for the determination of

the mass/radius ratio. At the typical masses around M ≈ 1.5M⊙, the stiff-type CDM3Yn

interactions give zsurf ≈ 0.30 − 0.35 while the soft-type M3Y-Pn interactions give zsurf ≈

0.35− 0.40, which agree reasonably with the empirical value zsurf ≈ 0.35 deduced from the

X-ray spectra of the burster EXO 0748-676 [66]. Although the maximum zsurf value given by

the D1N interaction is close to that empirical data, the maximum NS mass is only around

1.2M⊙, and this effect is also showing up in a poor agreement of the D1N results with the

mass-radius data as illustrated in Figs. 8 and 10.

For the NS binding energy, we have used the standard definition of Ebind as the mass

defect with respect to an unbound configuration consisting of the same baryon number [5].

Namely, the mass defect with respect to a dispersed configuration of a pressureless cloud of

56Fe dust, with mass per nucleon mFe = mass of 56Fe atom divided by 56

Ebind = (AmFe −M)c2. (15)

At the typical masses around 1.5M⊙, all considered interactions give Ebind values within the

range of (2÷3)×1059 MeV. Exception again is the D1N interaction that give a weaker binding

energy of Ebind ≈ 1.6× 1059 MeV with the maximum gravitational mass MG ≈ 1.2M⊙.

Concerning the maximum central pressure, the TOV equations using the EOS’s based on

the soft-type M3Y-Pn interactions give much too high Pc values (see Table I). The behavior

of the central pressure is directly correlated with the central density. In this context, it is

of interest to consider the causality condition [60] that implies the adiabatic sound velocity

in the stellar medium to be subluminal, i.e.,

vs =

√

dP (ρ)

dρ
6 c, (16)

where P (ρ) is the total pressure of the NS matter as function of the total mass density

ρ. We have estimated the sound velocity vs using the EOS’s given by the two groups of

the in-medium NN interactions and the results are plotted in Fig. 13. While the soft-type
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FIG. 13. (Color online) The adiabatic sound velocity versus baryon density obtained with the EOS’s

given by the stiff-type (upper panel) and soft-type (lower panel) in-medium NN interactions. The

thick solid (red) lines are the subluminal limit (vs 6 c), and the vertical arrows indicate the baryon

densities above which the NS matter predicted by the M3Y-P3 and M3Y-P4 interactions becomes

superluminal (see details in the text).

M3Y-Pn interactions give more or less the same vs values at low densities as those given by

the stiff-type CDM3Yn interactions, EOS given by the M3Y-P3 and M3Y-P4 interactions

begins to violate the causality condition at nb ≈ 1.60 and 1.64 fm−3, respectively. For

further use in the TOV equations, we have assumed in these two cases a causal EOS [67]

given by P (ρ) = c2ρ−ǫC at the nb larger than 1.6 and 1.64 fm−3, respectively, with constant

ǫC chosen to ensure the continuity of the energy density across the critical densities. The
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M3Y-P5 interaction is doing better and gives vs ≈ 0.992 c at the maximum central density.

For the stiff-type Sly4 interaction, we obtained vs ≈ 0.987 c at the maximum nb, and this

value indicate a sound velocity closely comparable to velocity of light in the dense NS core,

as discussed earlier in Ref. [5].

In conclusion, we have tested two sets of the in-medium NN interactions in the description

of the main properties of neutron star based on the TOV equations. We found that all

stiff-type interactions are quite realistic in describing the latest empirical constraints for

the EOS of the NS matter, pressure and mass-radius data. In particular, the CDM3Y6

and Sly4 interactions should be the appropriate choice for the future NS studies, when

hyperon presence is taken into account at supranuclear densities. Concerning the soft-type

interactions, the EOS’s given the M3Y-P3 and M3Y-P4 interactions have been modified

at high densities to avoid the violation of the causality condition. Moreover, the overall

agreement of the results given by the soft-type interactions with the same empirical data is

not as good as that obtained with the stiff-type interactions. It is clear that such effects are

caused not only by a drastic difference in the nuclear symmetry energy alone, but also by

quite different functional structures of the considered interactions, like, e.g., the zero-range

density-dependent form of the M3Y-Pn and Gogny interactions versus the finite-range form

of the CDM3Yn interactions.

To explore explicitly the effects caused by the nuclear symmetry energy to the NS proper-

ties in this kind of study, one needs to make a similar analysis with the HF energy densities

(1) obtained essentially with the same in-medium NN interaction but using different ansatzs

for its isospin dependence so that different behaviors of the symmetry energy S(nb) can be

tested. We present here the results of such a test using the CDM3Yn interactions that have

the isoscalar (IS) and isovector (IV) parts determined as

vIS(IV)(nb, s) = FIS(IV)(nb)vIS(IV)(s), (17)

where s is the internucleon distance. The radial strengths of the IS and IV interactions

vIS(IV)(s) were kept unchanged, as derived from the M3Y-Paris interaction [10], in terms of

three Yukawas (see detailed formulas in Ref. [13]). The isoscalar density dependence FIS(nb)

has been parametrized [14, 21] to reproduce the saturation properties of symmetric NM in

the HF calculation, while the isovector density dependence FIV(nb) has been parametrized

[15] to reproduce the BHF results for the isospin- and density dependent nucleon optical
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potential in the nuclear matter limit [57]. Thus, the stiff behavior of S(nb) given by the

CDM3Yn interactions is actually associated with that given by the BHF calculation. In our

earlier HF study [13] we have simply assumed the IV density dependence to be the same as

that of the IS part, and S(nb) has then a typical soft behavior that is illustrated in Fig. 14.

The same assumption has also been used in the NM studies by Basu et al. [16] using the

density dependent version DDM3Y of the M3Y-Reid interaction [9].
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FIG. 14. (Color online) The same as in Fig. 1 but S(nb) curves in the lower panel were obtained

with the soft CDM3Yns interactions.
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To study the effects caused by the stiffness of the symmetry energy, we have used in the

present work also a soft version of the CDM3Yn interactions with the IV density dependence

taken as FIV(nb) = 1.1FIS(nb). The factor of 1.1 has been found [20] to give the best fit of

the charge exchange 6He(p, n)6Li data as well as realistic value of the symmetry coefficient

J = S(n0) ≈ 30 MeV. These soft CDM3Yn interactions (denoted hereafter as the CDM3Yns

interactions) give a more moderate soft behavior of the symmetry energy compared to the

M3Y-Pn interactions (compare Figs. 1 and 14). The soft CDM3Yns interactions have been

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

CDM3Y6

 

 

 

 
CDM3Y6s

 x
n

 

 

x j =
 n

j / 
n b

n
b
 (fm-3)

 

 

 x
p

 x
e

 x
µ

 

 

FIG. 15. (Color online) The same as Fig. 4 but using the mean-field potentials given by the

CDM3Y6 and CDM3Y6s interactions.

further used to determine the composition of the β-stable NS matter by solving Eqs. (6) and

(8), and the fractions xj = nj/nb obtained with the soft CDM3Y6s interaction are compared

with those given by the stiff CDM3Y6 version in Fig. 15. As expected, the proton and lepton
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fractions obtained with the CDM3Y6s interaction are much smaller than those obtained with

the stiff CDM3Y6 interaction. The fast decrease of S(nb) to zero at nb ≈ 0.8 − 0.9 fm−3

leads also to the disappearance of protons and leptons in the NS matter that soon becomes

the β-unstable, pure neutron matter at nb & 0.9 fm−3. Like the results obtained with the

soft-type M3Y-Pn interactions, the DU scenario of the NS cooling should also be excluded

for the NS matter generated with the soft CDM3Yns interactions, because xp can reach only

around 5 - 6% and then decreases quickly to zero at nb > 0.8 fm−3.
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FIG. 16. (Color online) The same as in Fig. 7 but P (nb) curves in the lower panel were obtained

with the soft CDM3Yns interactions.
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The pressures of the NS matter (9) obtained with the two sets of the CDM3Yn interaction

are compared with the empirical data in Fig. 16, and one can see that the soft CDM3Yns

interactions fail to account for the empirical NS pressure at high densities. This effect is well

expected because P (nb) is determined from the first derivative of the NM energy and the

decrease of the NM symmetry energy S(nb) at high densities leads to a negative contribution

of the symmetry term of the NM pressure to the total P (nb) value. In other words, the

EOS’s given by the two sets of the CDM3Yn interaction are substantially different at high

baryon densities, and this effect is entirely due to the different behaviors of the symmetry

energy at high baryon densities.

The mass density ρ and total pressure P of the NS matter (9) obtained with the soft

CDM3Yns interactions have been further used as input of the TOV equations (11), and

the obtained NS properties are given in Table I and illustrated in Figs. 17 and 18. The

most obvious effect caused by changing slope of the symmetry energy from stiff to soft

is the reduction of the maximum gravitational mass MG and radius RG as illustrated in

Fig. 17. The MG value is changing from 1.6 ∼ 2 M⊙ to a significantly lower range of

1.1 ∼ 1.4 M⊙, with a much worse description of the empirical mass-radius data [58, 59]

as shown in Figs. 17 and 18. Then, if the hyperons are included at high baryon densities,

the MG values given by the soft CDM3Yns interactions can be driven to values lying well

below the mass of the lightest NS observed so far (M = 1.25 M⊙) [68]. Together with the

maximum central pressure Pc, the total baryon number, surface redshift, binding energy

and moment of inertia also become smaller when the EOS of the NS core is obtained in

the HF calculation using the soft CDM3Yns interactions. It is interesting to note that the

EOS’s obtained with the soft CDM3Y3s and CDM3Y4s interactions not only give the NS

mass and radius values lying outside the empirical boundaries but also the surface redshifts

zsurf clearly in disagreement with the data (zsurf ≈ 0.35) deduced from the X-ray burst

spectra of neutron stars [66]. These results together with those obtained with the soft-type

M3Y-Pn and D1N interactions discussed above indicate that a soft density dependence of

the NM symmetry energy could cause strong deviation of the calculated NS properties from

the empirical estimates. Although one still cannot completely rule out the EOS of the NS

matter with a soft behavior of the symmetry energy based on this discussion, the results

shown in Figs. 16- 18 clearly favor the stiff behavior and confirm again the vital role of the

nuclear symmetry energy in the theoretical modeling of neutron star.
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FIG. 17. (Color online) The same as Fig. 8 but mass-radius curves in the lower panel were obtained

with the soft CDM3Yns interactions.

V. SUMMARY

The EOS of the npeµ matter of neutron star in β-equilibrium has been studied in details

using the nuclear mean-field potentials obtained in the HF method with different choices

of the effective (in-medium) NN interactions that give two different behaviors of the NM

symmetry energy at supranuclear densities (the soft and stiff scenarios). The fast decrease

of the soft NM symmetry energy to zero at nb ≈ 0.6−0.7 fm−3 results on a drastic decrease of
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FIG. 18. (Color online) The same as Fig. 9 but mass-radius curves in the lower panel were obtained

with the soft CDM3Yns interactions.

the proton and lepton components in the uniform NS core that then becomes the β-unstable,

pure neutron matter at nb > 0.6 fm−3. Very small proton fraction in the NS matter given

by the soft-type interactions excludes the direct Urca process in the NS cooling, whereas

the DU process is well possible for the β-equilibrated NS matter predicted by the stiff-type

CDM3Yn interactions.

The NS pressure obtained with different in-medium NN interactions are compared with
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the empirical NS pressure deduced from the recent astronomical observation. In general,

the EOS given by the soft-type interactions tend to give pressure lower the empirical values

at high densities. In particular, the D1S version of the Gogny interaction gives negative

pressure at baryon densities nb & 2n0 and violates, therefore, le Chatelier’s principle that

ensures the NS stability. The adiabatic sound velocity estimated from the NS pressure given

by two versions of the soft-type M3Y-Pn interaction becomes superluminal at high baryon

densities and violates, therefore, the causality condition, and the EOS has been corrected by

hand in this case for further use in the TOV equations. It seems, therefore, likely that there

could be uncertainties in a well parametrized effective (density dependent) NN interaction

that are not visible at low nuclear densities, and its success in the nuclear structure study

is not sufficient to validate its extrapolation to supranuclear densities.

Different EOS’s of the NS core supplemented by the Sly4 EOS of the NS crust given by the

compressible liquid drop model have been used for the input of the Tolman-Oppenheimer-

Volkov equations to study how different behaviors of the symmetry energy affect the model

prediction of the NS properties. The EOS’s obtained with the stiff-type interactions were

found to give consistently reasonable description of the empirical data for the NS mass

and radius, and to comply well with the causality condition. In comparison with the same

empirical NS data, the soft-type interactions were found less successful, especially, the two

versions of the famous Gogny interaction certainly need an appropriate modification before

they can be used in the TOV equations to study structure of neutron star.

The vital role of the NM symmetry energy has been demonstrated in our specific test of

the CDM3Yn interactions, where we found a significant reduction of the maximum gravita-

tional mass MG and radius RG away from the empirical boundaries when the slope of the

NM symmetry energy is changed from the stiff behavior to the soft one. It is natural to

expect that if hyperons (and other hypothetical constituents like kaons or quark matter) are

included at high baryon densities, the MG and RGvalues given by the soft-type interactions

could be driven to region lying well below all existing empirical estimates.

ACKNOWLEDGMENTS

The present research has been supported by the National Foundation for Scientific and

Technological Development (NAFOSTED) under Project Nr. 103.04.07.09. The first two

33



authors gratefully acknowledge the financial support from IPN Orsay and the LIA FVPPL

Programme for their short research stays at IPN Orsay in 2010. DTK thanks Betty Tsang

for her helpful comments and discussions.

[1] B.A. Li, L.W. Chen, and C.M. Ko, Phys. Rep. 464, 113 (2008).

[2] H.A. Bethe, Rev. Mod. Phys. 62, 801 (1990).

[3] K. Summiyoshi and H. Toki, Astrophys. J. 422, 700 (1994).

[4] K. Summiyoshi, K. Oyamatsu, and H. Toki, Nucl. Phys. A595, 327 (1995).

[5] F. Douchin and P. Haensel, Astronomy & Astrophys., 380, 151 (2001).

[6] J.M. Lattimer and M. Prakash, Science 304, 536 (2004); J.M. Lattimer and M. Prakash, Phys.

Rep. 442, 109 (2007).
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