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A new general expression is derived for nuclear electron capture rates within dense plasmas. Its
qualitative nature leads us to question some widely accepted assumptions about how to calculate
the effects of the plasma on the rates. A perturbative evaluation, though not directly applicable to
the strongly interacting case, appears to bear out these suspicions.

PACS numbers: 97.10.Cv, 26.50.+x

I. INTRODUCTION

Calculation of electron capture rates in plasmas is of
importance in many astrophysical systems. The influ-
ence of the surrounding plasma on the capture rates is
completely understood for the case of a weakly coupled
plasma in which the electrons are not degenerate, as long
as the energy release in the reaction, Q, is sufficiently
large. These conditions are well fulfilled in the solar
core, where the capture rate of electrons on 7Be has been
studied in detail. Here the weak-screening Salpeter fac-
tor [1], of a multiplicative factor of exp(−e2ZκD/T ) ≈
(1 − e2ZκD/T ) gives a 16% rate reduction [2], [3],[4]. 1

These calculations of reduction factors are all really just
calculations of a screening-induced reduction of the ex-
pectation of the electron density at the position of the
ion. The methods of the above references are not appli-
cable to cases with: a) strong plasma coupling Γ; or b),
small energy release Q in relation to other energies in the
problem (or negative Q). Indeed, as we explicitly show
below, the plasma-induced change of the electron density
at the position of the ion is no longer the determining fac-
tor in the rate when condition b) prevails. Also, of the
approaches in the above references, only that of ref. [4]
can incorporate high electron degeneracy2

In the parameter region relevant to explosions/collapse
of O-Ne-Mg stellar cores, for example, both conditions a)
and b) apply and the electrons are very degenerate. In-
deed Q is here negative for important capture reactions;
they become enabled when the Fermi energy increases
nearly to the value −Q. In ref. [5], addressing these
systems, we find a simple statement of a procedure that
appears to be widely followed [6], [7], [8], [9] ; namely,
to calculate the capture rate for an individual electron
as in vacuum, except replacing the vacuum Q value for
the decay by an effective value Q + E1 − E2 where E1

and E2 are the respective energies of interaction of the
initial and final ions in the plasma. There exist more or
less standard expressions for these energies derived from

1 The question of whether or not the exponentiation of the pertur-
bative result is justified is numerically irrelevant in this case.

2 although we know of no very interesting set of conditions that
are highly degenerate without also embodying condition a) or
condition b).

classical simulations. For the purpose of our present dis-
cussion we designate this correction, with energies calcu-
lated as for a classical plasma, as the “ionic energy correc-
tion.” In applications, it appears that this correction has
been applied sometimes with accompanying initial state
Coulomb effects involving the electrons, which we loosely
characterize as “screening”, and sometimes without.

The present work begins with the derivation of a new
expression for the rate of electron capture, one that we
think should be the basis of future calculation of rates
in the presence either of strong degeneracy, or of strong
plasma coupling. Just looking at the form of the result,
we believe, should be enough to make one profoundly
skeptical about assumptions being made in the literature.
We then carry out a systematic perturbative evaluation
in the weakly coupled case, for cases of arbitrary electron
degeneracy, retaining terms of relative order e2ZκD/T in
the rates (or of order “Salpeter” as we shall henceforth
designate them). The results appear to be in complete
disagreement with the assumptions that lead to the ionic
energy correction, had they been applied to a weakly
coupled problem.

We use the notation κD for the screening wave number
throughout. In the presence of some degree of degeneracy
its square is given by [10],

κ2
D = 4π

[

β
∑

s

e2sns + e2
∂

∂µe

∫

dp

(2π)3
f(Ep)

]

, (1)

where es = eZs is the charge of ionic species s, ns the
number density of that species, and f(Ep) the Fermi dis-
tribution. In the non-degenerate limit this gives the De-
bye wave number, and in the strongly degenerate limit,
the electronic part would give the square of the Thomas-
Fermi screening wave number.

II. GENERAL FORMULATION

Our general methods follow those introduced in ref.
[10]. We take the electron capture interaction Hamilto-
nian for the process of a non-relativistic electron plus ion,
Ia, going into neutrino plus ion Ib to be given by a zero
range Fermi type coupling (all the effects of Coulomb in-
teractions in what follows being the same for the Gamow-
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Teller case),

HW =

∫

dr[K(r, t) +K†(r, t)], (2)

where

K(r, t) = ge−iQtψ†
ν(r, t)ψe(r, t)ψ

†
b(r, t)ψa(r, t), (3)

and Q is the energy release in the reaction. There are
suppressed spin indices contracted with each other on the
electron and neutrino fields. Here the ψ{a,b} are nonrela-
tivistic quantum fields that describe creation or annihila-
tion of the respective ions. All fields are in a Heisenberg
picture with respect to the complete Hamiltonian. The
ionic fields could be Fermi or Bose, but we shall remain in
a domain of temperature and density in which deviation
from Boltzmann statistics of the ions is inconsequential.

We are interested in the time rate of change of the
electron density induced by (2). Since the medium is
translationally invariant we can choose to evaluate this
time derivative at at point r = 0 and choose time to be
zero as well. Directly from the Heisenberg equations we
obtain the rate of change, w, of the electron density at
the origin, ne(0, 0) = ψ†

e(0, 0)ψe(0, 0),

w =
〈

ṅe(0,0)
〉

β
= −i

∫

dr
〈

[ne(0, 0),K(r, 0)]
〉

β

= i
〈

[K(0, 0) −K†(0, 0)]
〉

β
. (4)

The notation 〈...〉β indicates the thermal average in
the medium, such that for an operator, O, we have
〈O〉β ≡ Z−1

P Tr[O exp(−β[H + HW − µeNe])] where ZP

the partition function, and where H + HW is the com-
plete Hamiltonian. We wish to calculate the rate to low-
est non-vanishing order; i.e. to second order in the weak
coupling parameter g. So it is it clear that one power of
g must come from the weak interaction HW within the
statistical factor. Thus we now must consider the lin-
ear response [11] of the medium average of the operator
[K(0) −K†(0)] to this perturbation,

w = −i
∫ 0

−∞ dt
∫

(dr)
〈

[ṅe(0, 0), HW (r]
〉

β
= −

∫ 0

−∞ dt

×
∫

dr
〈

[K(0, 0) −K†(0, 0)], [K(r, t) +K†(r, t)]
〉

β
,

(5)

where now the thermal average in the medium is to be
calculated using H alone. H conserves electron number,
whence,

〈

[K(0, 0),K(r, t)]
〉

β
=

〈

[K†(0, 0),K†(r, t)]
〉

β
= 0. (6)

Using in addition the space-time translational invariance
of the medium and the antisymmetry of the commutator,
〈

[K†(0, 0),K(r, t)]
〉

β
= −

〈

[K(0, 0),K†(−r,−t)]
〉

β
, (7)

we can write the rate as

w = −

∫ ∞

−∞

dt

∫

dr
〈

[K(0, 0),K†(r, t)]
〉

β
. (8)

When we take the medium to contain no ions of type b,
so that there is no reverse reaction, we can omit the first
term in the commutator in (8), which, after inserting (3),
gives,

w = g2

∫ ∞

−∞

dt

∫

dr e−iQt
〈

ψ†
e(r, t)ψ

†
a(r, t)

×ψν(r, t)ψb(r, t)ψ
†
b (0, 0)ψ†

ν(0, 0)ψa(0, 0)ψe(0, 0)
〉

β

= g2

∫ ∞

−∞

dt

∫

dr eiQt

∫

d3pν

(2π)6
eipν ·r+iEνt

×〈ψ†
e(r, t)ψ

†
a(r, t)ψb(r, t)ψ

†
b (0, 0)ψa(0, 0)ψe(0, 0)

〉

β
.

(9)

For almost any purposes the thermal motions and re-
coil of the reacting ions are ignorable. We distinguish the
ion Ia on which an electron is captured and the capture
product Ib from the other ions in the plasma, taking a
single Ia fixed at the origin, replacing r = 0 in all of
the explicit fields in (9) and adding an all-over factor of
density of ions of type a, na. The products of the field
operators ψa,b that occur in (9) now serve only to change
one ion into the other. We substitute

ψ†
a(0, t)ψb(0, t) = eiHt|a〉〈b| e−iHt, (10)

where the time dependence reflects the fact that the
plasma interactions of the two ions are different. We
obtain,

w =
g2na

2π2

∫ ∞

−∞

dt e−iQt

∫

dpν pνe
iEνtM(t), (11)

where

M(t) = Z−1
P ×

Tr
[

〈a|−βHeiHtψ†
e(0, 0)|a〉〈b|e−iHt|b〉〈a|ψe(0, 0)|a〉

]

.

(12)

The ionic states |a〉,|b〉, in (12) serve to determine the
coupling to the fixed ion in the interaction Hamiltonian.
The trace in (12) is over all of the other coordinates. We
write

M(t) = Z−1
P Tr

[

e−(β−it)Haψ†
e(0, 0)e−iHbtψe(0, 0)

]

,

(13)

where

ZP = Tr
[

e−βHa+βµeNe

]

. (14)

Here Ha is the Hamiltonian for the initial system (with
HW turned off, since our expressions are already of order
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g2) and Hb that for the final system, not counting the
constant Q. The space of states in which the trace in
(13) is to be evaluated is just what we have defined as
the “plasma”; all electrons, and all ions except the ions a
and b. To restate the definitions of Ha and Hb, they are
the Hamiltonians for the complete plasma in the presence
of the respective fixed Coulomb fields of the nuclei, a, b.

The result (13) for the function M(t), in conjunction
with the rate expression (11) is our fundamental result.
We show the details of the perturbation evaluation in the
appendices, retaining terms of order Salpeter (e2ZκD).
This calculation appears to be very inefficient, given the
simplicity of the result, but we have found no other path
to the answer. We state the results in terms of two sub-
sidiary functions, M0(t) and MA(t),

M0(t) =

∫

dp1 dp

(2π)3

〈

a†p1
ape

iEpt
〉

=

∫

d3p

(2π)3
f(Ep)e

iEpt,

(15)

and

MA(t) =

∫

d3p

(2π)3
[f(Ep)]

2eiEpt, (16)

where f(p) is the Fermi distribution,

f(Ep) = [1 + eβ(Ep−µe)]−1. (17)

The kernel of the rate expression (11) is now given by,

M(t) = M0(t) − e eaκDβ
(

M0(t) −MA(t)
)

, (18)

and the rate by,

w = 23/2πg2m3/2

∫ ∞

min(0,−Q)

dE E1/2 (Q+ E)

×
[

f(E) − eeaκDβ[f(E) − f2(E)]
]

. (19)

We note that to the order that we are working, the re-
sult (19) agrees exactly with eq. 1.21 of ref. [4] except
for the additional term, E in the factor Q + E in our
result, and the inclusion of all vacuum Coulomb effects
in ref. [4]. ( In the present work we just stated that
vacuum Coulomb effects could be treated additively.) In
the vacuum case the extra E term just puts in corrected
kinematics. But, as we see more explicitly in the next
section, once we make this trivial modification, the rate
is no longer determined by the electron density at the
location of the ion. Refs. [3] and [4] calculate only the
perturbation of the density. Thus it is of some interest
that this modification is screened by the same factor (un-
der the E integral) as the Q term, but it is perhaps not
unexpected. What is more of note is not what our result
contains, but what it does not contain. We discuss this
at some length in the next section.

.

III. DISCUSSION

We return to the basic result for the kernel of the cap-
ture rate formula,

M(t) = Z−1
P Tr

[

eβµeNee(−β+it)Haψ†
e(0, 0)e−iHbtψe(0, 0)

]

.

(20)

If we were to replace both factors exp(iHat) and
exp(−iHbt) by unity, i. e. evaluate at t = 0, then M
would be precisely the electron density at the position of
the ion. Then, in accord with the remarks at the end of
the last section, we get the standard screening results,
where Q+E in (19) is replaced by Q. In our mechanics
this replacement comes from the fact that Hamiltonians,
Ha and Hb both contain electron kinetic energy terms,
and that there is an electron creation operator standing
between the factors containing them; thence producing
an exp[−iEt]. But Ha and Hb also contain pieces in
which the initial and final ions interact with the plasma.
So in parallel fashion, why do we not see another addition
to Q in the results, namely ∆Q = ∆Ea−∆Eb, due to the
ionic interaction shifts in the plasma? After all, one can
infer energy shifts for the ions at the Salpeter level. For
an ion with charge ea we have ∆Ea = e2aκD/2 so that
the difference between the energy shifts of the initial and
final ions in our case would be eeaκD. But there is no
such term in the result (19).

This is our first criticism of the “ionic energy shift”
ansatz. It should have manifested itself at our level of
approximation and it did not. A reader might comment,
“I look at (19), say in the non-degenerate limit, and I see
just Salpeter screening, an effect that pertains only to
physics in the initial state. But we know that the ener-
gies of these ions are shifted differently by the plasma in-
teractions, and when these shifts are of the order Q, they
must matter a lot. So the author cannot have put in all
of the physics.” But if one wades through the calculations
in the appendix, one finds that such terms come and go;
they all cancel in the end. What is left out of the ansatz,
[initial state effects + final state effects], is the fact that
many of the individual terms in the development, even
to this order, involve one Coulomb interaction with the
initial ion and one with the final one. These terms can-
cel almost all of what comes from the ansatz. We see no
valid reason to believe that the ionic energy shift correc-
tion by itself, as it is applied in refs. [6], [7], [8], [9] will
serve us any better in the strongly coupled case than in
our case in which we can really calculate.

In addition to this ionic energy shift, there exists a sec-
ond plausible correction recommended in some papers
dealing with extremely dense and degenerate systems
[7],[9], namely an electron energy shift resulting from the
screening of the potential seen by the electron. The qual-
itative description of how this screening should affect the
rates is now nothing like the description in weak screen-
ing theory; in the latter case the effects are entirely due
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to the change in electron density at the ionic position
and are not directly connected to the energy spectrum of
the electrons. But when we address a degenerate case in
which Q < 0 and we get captures only as the Fermi en-
ergy approaches −Q, it is the energy distribution rather
than the electron density that would seem to be the crit-
ical feature.

To discuss this suggested effect, we first note that in
the derivation of our perturbative results, given in the ap-
pendix, we did need to calculate a change in the electron
chemical potential, δµe, Our primary calculation was for
fixed chemical potential and we thereafter made a cor-
rection to get the results for fixed electron density. The
outcome is that we obtain the Salpeter correction with
no explicit δµ appearance, with the stipulation that the
chemical potential to be used is obtained from the num-
ber density by doing the integral ne =

∫

dp(2π)−3f(Ep)
and then solving for µe as a function of ne. It appears
to us that this gives the statement of results in the best
form for applications, and there is no explicit chemical
potential shift in the result.

Thus we find reasons to question both of the above
corrections; they do not contribute in the weakly coupled
case, and we see no reason for them to be the dominant
correction in the strongly coupled case. That is not to
say that the physical reasoning behind them is incorrect;
other corrections are equally important.

Turning to specific applications we first focus our at-
tention on ref. [9], which is a comprehensive treatment
of electron capture in the infall phase of a type II su-
pernova event, with a full range of nuclear species, tem-
peratures and densities. Here the screening corrections
are a relatively minor feature of the work; still they give
effects ranging from a 25% decrease in rates for a density
of 1010gc−3, temperature .75MeV (with plasma param-
eter Γ ≈ 1 ) to a factor of two at a density of 1012,
T = 1.5MeV, Γ ≈ 3 . Our suggestion here is that these
corrections be taken as an estimate of the magnitude of
the unknown error in either direction due to plasma ef-
fects. If this turns out to create important uncertainties
in the outcome of the collapse, then it will be time to
worry.

In another venue, the accretion of matter onto the sur-
face of a neutron star, the problems could be much more
serious. Here, at a depth where nuclear reactions stimu-
lating transient explosive phenomena can occur, it may
be that electron capture on a particular nuclear species
is the stimulator and the rates will be extremely density
and temperature dependent [12], [13]. In this environ-
ment, the plasma couplng Γ will be much stronger than
those cited in the previous example, and we can expect
the effects on rates to be larger, and harder to estimate,
even in magnitude. Furthermore, it is the temperature
dependence more than the absolute rate that rules in
most explosion calculations. Since the plasma correc-
tions, whatever else, will be strongly temperature depen-
dent, we could say that, knowing nothing about them,
we equally know nothing about the effective exponent in

the temperature dependence of the rate.
There is a body of literature that presents unorthodox

results on the effects of the plasma on reaction rates, even
in the case of the weakly coupled solar plasma. These re-
sults, if correct, would have significant impact on solar
models. We wish it to be clear that the work of the
present paper does not support any of these claims. One
can find a critique in ref. [14] as well as a list of some
of the articles in this category, though there are a more
recent examples that go down the same path [15]. There
are, in addition, a few papers of the same genre address-
ing electron capture [16], [17], [18]. The last of these
engendered a response in ref. [19], one with which we
completely agree. But, that said, the reply in [19] was
more in the vein of “We did a correct calculation and
had no such terms; therefore your calculation is wrong.”,
rather than tracking down specific mistakes. The same
could be said of the arguments given in ref. [14]. Thus it
may be worth adding my own conclusion about one thing
that has gone wrong in at least some contributions of this
genre. Let me characterize as an “S-matrix approach”
one in which one starts the correction of a two body
reaction rate by putting in some more bodies from the
plasma in the calculation, working out the multi-body re-
action rate in some perturbative way and then doing the
thermal average (typically) over the momentum states of
the plasma particles. Looking at the actual mechanics in
these papers, it appears to me that the assumptions are
tantamount to entirely leaving out Coulomb forces in the
factor exp[−βHa] in (13). It is a mistake to do this. We
could put the conclusion qualitatively as: A treatment
strictly from a multi-particle S-matrix, followed by aver-
aging over thermal distributions, misses essential physics
coming from the fact that the initial particles sit in an
interacting medium

IV. THINKING ABOUT THE STRONGLY

COUPLED AND VERY DEGENERATE CASE.

A. Ionic energy shift

Returning to the basic equation (20) that determines
the kernel of the capture rate formula, we go back and
think qualitatively about the ionic energy shift. We first
state the case for the shift assumption, and then the
counter-argument. We take only electron kinetic energies
and ionic potential energies inHa,b, the electron potential
energies not being relevent in the extremely degenerate
system, at least not to the effect that we are consider-
ing. Now we look first at the Hb where there is a term
ebφI(0), the energy of ion b in the fields of all of the other
ions. If we forget about where b came from, and when
it came into being, and consider a problem in which it
has been at r = 0 all along, we can in principle calculate
the potential of the plasma ions at the position of b; it is
of course a function of the charge eb = eZb. In classical
simulations the energy shift is given by ∆Eb = T g(Γb)
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where g(x) is of order x and Γb = Z
5/3
b e23−1/3(4πne)

1/3.
We can calculate the corresponding energy shift for ini-
tial ion a. From the time dependent exponentials in (20)
we would infer that these corrections change the effective
Q value by an amount ∆Ea − ∆Eb.

But the actual term in the interaction, say, Ha, that
induces an energy shift for ion a is eaφ(0). First, through
this term, the plasma redistributes itself around the ion,
creating a potential, which then shifts the energy of the
ion through another action of Ha. In a perturbative cal-
culation the plasma is thereupon returned to its original
state. If we let Ha act only once, it will transfer a bit of
momentum from ion a to the plasma. Of course the whole
expression is a trace, so everything has to be returned to
its initial value. But that bit of momentum can be re-
turned to the plasma particles after the electron capture,
through the interaction Hb. In the weakly coupled case
there is substantial cancellation between these categories
of effects. We cannot argue that in the strongly coupled
case they would cancel in any particular way. But we
would not trust a result that takes one part and discards
the other

B. Ab initio numerical calculations?

We take a box containing NI ions, not including a
or b, and Ne electrons. The initial and final ions a, b
that participate in the capture process are at the point
r = 0, and manifest themselves only in the potentials Ha

and Hb. In one respect we are at an advantage here,
in comparison with a parallel treatment of the nuclear
fusion problem, because we probably do not care about
regions in the space of the ions, Ri, that are classically
inaccessible, or nearly unaccessible at the temperature of
the medium. Thus we can plausibly take the ions to be
absolutely classical, and entirely omit the ionic kinetic
energy terms from Ha and Hb. We take a basis set of
Ne electrons at positions r1, r2....rNe

, and NI ions at
positions R1,R2....RNI

. Using the cyclic invariance of
the trace in (20) to move ψ(0, 0) from the last position
to the first, and putting in the position basis we have,

M(t) = Z−1
P

∫

dR1, ..dRNI
, ..dr2, ..drNe

∫

dr′2, ..dr
′
Ne

×

〈{0, r2, .rNe
},R1, .RNI

|e−(β−it)Ha |{0, r′2, .r
′
Ne

}R1, .RNI
〉

×〈{r′2, ..r
′
Ne

},R1, ..RNI
|e−itHb |{r2, ..rNe

},R1, ..RNI
〉.

(21)

We have here shifted from the grand canonical ensemble
to the canonical ensemble, with a definite number of elec-
trons. The { } around the electron basis states signify
a total anti-symmetrization. The ionic part requires no
symmetrization. Note that the intermediate integration
is over electronic positions only. We have taken the clas-
sical limit for the ions, in which the ionic kinetic energy
term is omitted and the ionic coordinates within Ha and
Hb remain at their external values.

Could we in principle use he trick of ref. [20],
exp(−βH) = [exp(−βH/NS)]NS takingNS is sufficiently
large so that we can make a lowest order perturbative ex-
pansion in the Coulomb potentials in each individual fac-
tor? Each factor would then be at a sufficiently high tem-
perature, NST , to validate this lowest order expansion.
This would be at best an expensive calculation because
N1, Ne and NI all have to be fairly large, and between
each of the N1 factors in the product one must integrate
over the full manifold of some r′1...r

′
Ne

, not to mention
the enormous anti-symmetrizations required. And the
final kiss of death would be: because of the real time ex-
ponentials, we would have rapidly oscillating integrands.

But perhaps instead, we could start by taking a very
degenerate plasma. The electron sea is so stiff that it
does nothing, except that one gets captured, creating an
electron hole in the final state. Should we be worried
about the effects of the (ionically) irregular plasma on
what that hole does? Perhaps somewhat symbolically,
we can write a much simpler equation,

M(t) = Z−1
P

∫

dR1, ..dRNI
〈R1, ..RNI

|e−(β−it)Ha |R1, .RNI
〉

×〈r̄ = 0,R1, ..RNI
|e−itHb |̄r = 0,R1, ..RNI

〉.

(22)

Is it possible to calculate the matrix elements for the hole
to go from the origin back to the origin in time t under
the action of Hb, for a big set of irregular distributions of
ions ? If one had to know the answer; the eikonal method
might serve.

This work was supported in part by NSF grant PHY-
0455918.

V. APPENDIX. PERTURBATION

CALCULATIONS

To demonstrate the methods we divide the respec-
tive Hamiltonians, as Ha,b = H0 + HI

a,b , in which
the interaction term contains all Coulomb interactions
of the electrons in the plasma and the interactions of
the distinguished ions Ia and Ib with both electrons and
plasma ions. Coulomb interactions among the ions in the
plasma are retained in H0.

3 We denote the charges of
the electron and two ions respectively as e, ea, eb, where
eb = ea − 1 obtaining,

HI
a =

∫

dr
[

− e[φI(r) + 1
2φe(r)]ne(r) + eInI(r)φ(r)

]

+eaφ(0), (23)

3 In our terminology, the distinguished ions Ia and Ib are not part
of the “plasma”. Since Fermi statistics prevents us from distin-
guishing an electron; we include all electrons in the “plasma”.
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and

HI
b =

∫

dr
[

− e[φI(r) + 1
2φe(r)]ne(r) + eInI(r)φ(r)

]

+ebφ(0). (24)

Here φe, φI are the respective electric potentials pro-
duced by the electrons and φ = φI + φe is the total
potential of the plasma. We have not included the ba-
sic Coulomb interactions between electrons and Ia and
Ib. But if we repeated the calculations to come using
Coulomb wave-functions instead of plane waves we would
not find any medium-dependent terms that are of leading
order, e2κD. There is of course a conventional Coulomb
correction in the absence of the plasma; perturbatively
it begins at order e2, and for solar core capture in 7Be is
larger than the order e2κD screening corrections. At the
level of the present paper this vacuum contribution can
just be added to the answer; Coulomb wave-functions are
not needed for calculating the rest of the corrections.

We introduce the interaction picture through the iden-
tities,

e−Ha(β−it) = e−H0(β−it)Ω+(−iβ, t) , (25)

and,

e−iHbt = Ω−(0, t)e−iH0t, (26)

where,

Ω(+)
a (−iβ, t) = exp

[

i

∫ t

−iβ

dt′ĤI
a(t′)

]

+
, (27)

and

ĤI
a(t) = eiH0(t+iβ)HI

ae
−iH0(t+iβ). (28)

In (27) the subscript, +, stands for time ordering of the
integrals. Similarly we have,

Ω
(−)
b (0, t) = exp

[

− i

∫ t

0

dt′ĤI
b (t′)

]

−
(29)

where

ĤI
b (t) = eiH0tHI

b e
−iH0t, (30)

and now the integral is anti-time-ordered. Substituting
in (13) we obtain

M(t) = Z−1
P Tr

[

e−Ha(β−it)ψ†
e(0, 0)e−iHbtψe(0, 0)

]

=

Z−1
P Tr

[

e−H0(β−it)Ω
(+)
a (−iβ, t)ψ†

e(0, 0)Ω
(−)
b (0, t)e−iH0t

×ψe(0, 0)
]

= Z−1
P Tr

[

e−H0βΩ
(+)
a (−iβ, t)ψ†

e(0, 0)

×Ω
(−)
b (0, t)e−iH0tψe(0, 0)eiH0t

]

.

(31)

We expand the Ω factors in powers of the coupling,
retaining only terms of order e2, (or e2a, eea, e

2
a, etc).

Schematically, each will have powers of e coming from
the thermal expectation of a product of two ion-electric-
potential φ(r) operators; these are determined by the
Hamiltonian H0. If this potential-potential correlator is
itself expanded in powers of e, the expansion begins with
terms of order e2, so that the rate corrections would be of
order e4 but the terms have an infrared singularity from
the long range Coulomb force, and when that is properly
regulated the entire correction to the rate will be of order
e3. In the present paper we pursue only these e3 terms,
the neglected terms will go as power e4 or higher. For
this purpose we shall need the part of the field correl-
lation function that is the most singular as κD goes to
zero,

〈

φ(k, t′)φ(−k′, t′′)
〉

IR
≈ 4πδ(k − k′)β−1κ2

D

1

(k2 + κ2
D)k2

,

(32)

which is time independent.

We now expand Ω
(+)
a

Ω(+)
a (−iβ, t) = 1 − i

∫ t

−iβ

dt1Ĥ
I
a(t1)

−

∫ t

−iβ

dt1Ĥ
I
a(t1)

∫ t1

−iβ

dt2Ĥ
I
a(t2),

(33)

and Ω
(−)
b ,

Ω
(−)
b (0, t) = 1 + i

∫ t

0

dt1Ĥ
I
b (t1)

−

∫ t

0

dt1Ĥ
I
b (t1)

∫ t1

0

dt2Ĥ
I
b (t2).

(34)

Before getting bogged down in the evaluation of a mul-
tiplicity of terms we think for a moment about the gen-
eral form of the expressions generated by the expansion.
Leaving out most of the arguments of the functions and
not concerning ourselves with orders of factors, we note
that the form is the expectation value,

〈[

− e

∫

ne[φI +
1

2
φe] + e{a,b}φ(0)

]

[

− e

∫

ne[φI +
1

2
φe] + e{a,b}φ(0)

]

ψ†
eψe

〉

. (35)

Now we state some results of peering into the term by
term outcome:

1.) The electron operators within ψe, ψ
†
e each get

paired with an electron operator in an ne or φe term ear-
lier in the expression. The terms in which they eat each
other are “disconnected”, i.e. their contribution gets can-
celed by a perturbation in the partition function in the
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denominator of (31), in conjunction with an unperturbed
numerator.

2.) Terms where both ψ and ψ† pair with the operators
from the same big square bracket in (35) are not infrared
divergent in the absence of screening and will therefore
not contribute in leading order.

3.) Bearing in mind 2.) above, when a single ψ or ψ†

is to be paired with an operator from the product,

1

2

∫

drφe(r)ne(r) =

∫

dr

∫

dr′|r − r′|−1ne(r)ne(r
′),

(36)

then the pairing will be, in effect, the same when it is with
an operator in ne or when it is with one in φe. Thus if
we add a stipulation to the calculation of (35) that the
explicit ψe and ψ† are never to be paired with φe in this
kind of term, we can compensate by multiplying the φe’s
in (35) by 2. To put it more simply, we can replace Ha,b

of (23) and (24) by,

HI
a =

∫

dr[−eφ(r)ne(r)] + eaφ(0),

HI
b =

∫

dr[−eφ(r)ne(r)] + ebφ(0), (37)

with the above stipulation on computation. These oper-
ators ĤI

a,b(t) in the interaction picture are now given in
terms of the electron creation and annihilation operators
a†(p), a(p) by,

ĤI
a,b(t) =

∫

d3k

(2π)3
φ(k, τ)

×
[

ea,b − e

∫

d3p

(2π)3
a†p+kape

i(Ep+k−Ep)τ
]

, (38)

where τ = t+ iβ for the incoming system a and τ = t for
the final system. In the the small k limit we can set τ = 0
in the final bracket in (38). We do keep an infinitesimal
k in the indices of the operators ap+k, as we shall see
below. Since the infrared part of the correlator is also
time independent, there is in effect no time dependence.
Putting (38) into (33) and (34), and then putting the
results into (31) and using (32) we obtain,

M(t) = M0(t) − 4π

∫

dk

(2π)3
β−1κ2

D

k2(k2 + κ2
D)

×
[

(
t2

2
+ iβt−

β2

2
)M1(t) − (t+ iβ)tM2(t) +

t2

2
M3(t)

]

,

(39)

where

M1(t) = Limk→0

〈[

ea − e

∫

dp3 a
†
p3+kap3

]

×
[

ea − e

∫

dp4 a
†
p4−kap4

]

∫

dp1dpe
iEpta†p1

ap

〉

, (40)

M2(t) = Limk→0

〈[

ea − e

∫

dp3 a
†
p3+kap3

]

×

∫

dp1a
†
p1

[

eb − e

∫

dp4 a
†
p4−kap4

]

∫

dpeiEptap

〉

, (41)

M3(t) = Limk→0

〈

∫

dp1a
†
p1

[

eb − e
∫

dp3 a
†
p3+kap3

]

×
[

eb − e
∫

dp4 a
†
p4−kap4

]

∫

dpeiEptap

〉

, (42)

and M0 is the unperturbed part,

M0(t) =

∫

dp1 dp
〈

a†p1
ape

iEpt
〉

=

∫

d3pf(p)eiEpt.

(43)

Here f(p) the Fermi distribution, f(Ep) = (1 +

eβ(Ep−µe))−1 and the electron chemical potential is de-
termined from the electron density to zeroth order in e
by ne =

∫

dp(2π)−3f(p). When we calculate perturba-
tive corrections we must explicitly include a correction
that readjusts the relation between chemical potential
and density, which we shall do below.

The thermal averages in (40)-(42) are readily calcu-
lated. A number of terms are disconnected and canceled
by perturbative corrections to the partition function: a)
all terms of order e2 in which p = p1, i.e. in which op-
erators in ψ(0) are paired with those in ψ†(0); b) some
more that are discussed below. The rest of the terms can
be expressed in terms of M0 of (43), the function MA,

MA(t) =

∫

d3p

(2π)3
[f(p)]2eiEpt, (44)

and a time independent constant, R,

M1(t) = M2(t) = M3(t) =

(ea − e)2M0(t) + (2eae− e2)MA(t) + e2RM0(t) , (45)

where R is a time independent constant that is propor-
tional to the system volume and that will be canceled by
a corresponding perturbation of the partition function.

We reconstitute the complete time dependent function
M(t) which when inserted in (11) gives the rate.

M(t) =
[

1 +
1

2
(ea − e)2κDβ

]

M0(t)

+
1

2
(2eea − e2)κDβMA(t) −

1

2
κDβe

2RM0(t)]. (46)

Now we calculate the changes of the same order to the
partition function, where the system is governed by Ha,

ZP =
〈

e−βH0Ω+
a (−iβ, 0)

〉

β
=

〈

e−βH0

[

1 +

∫ 0

−iβ dt1
∫ t2
−iβ dt2 × [eaφ(0, t1) + e

∫

drφ(r, t1)ne(r, t1)]

×[eaφ(0, t2) + e
∫

dr′φ(r′, t2)ne(r
′, t2)]

]〉

β
.

(47)
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The calculation follows the lines outlined above, but
it is simpler. We obtain a contribution of order e2a that
is the same as the order e2a term in (46), but without
the factor of M0(t). Therefore in conjunction with the
1×M0(t) term in (31), we see that the partition function
perturbation removes the e2aκDβM0(t) term from (46).
The other non-vanishing term coming from (47) is of or-
der e2 and it exactly removes the final term, proportional
to R, from (46).

Next we must recognize that in our calculation the
chemical potentials were held fixed while we calculated
perturbations to the rates. But the relation between
number density and chemical potential has corrections of
exactly the same order as the rates. In the next section
of the appendix we calculate the changes in this relation,
and we find that the re-expression of the results in terms
of the corrected densities removes the remaining terms
of order e2 from (46)4, leaving the final result for the
corrections of leading order as simply,

M(t) = M0(t) − e eaκDβ
(

M0(t) −MA(t)
)

. (48)

A. Keeping ne fixed

In sec. 4 we used a relation between the change in the
electron number density, δne, when we turn on Coulomb
interactions in the medium keeping the chemical poten-
tial fixed, and the chemical potential change δµe that
is then required to restore the original electron density.
Then this δµe, inserted as a correction into the Fermi

distribution in the unperturbed rate function F0(t) gen-
erates a change that must be added to the terms shown
in (46), in order that the complete result give the change
in rate induced by the Coulomb forces while keeping the
number density, rather than the chemical potential, con-
stant. We have

ne = Z−1Tr[eβHψ†(0)ψ(0)]

= Z−1Tr[eβH0Ω+
e (0,−iβ)ψ†(0)ψ(0)], (49)

where the operator Ω+
e (0,−iβ) is expanded in exactly the

form shown in (33), except that we omit the interaction
of the ion with the plasma in the calculation; that is we
take ea = eb = 0. Only the second order in the expansion
contributes, and we see that the answer is given in terms
functions that we have already exhibited, now evaluated
at t = 0,

ne = n(0)
e +

1

2
e2κDβ[M0(0) −MA(0)], (50)

This gives a density shift that is compensated by a chem-
ical potential shift,

δµe =
1

2
e2κD, (51)

We must compensate with a shift δµe in the function
M0(t). Expanding, this gives a shift in the function that
determines the rate,

δeM(t) = −
1

2
e2βκD[M0(t) −MA(t)]. (52)

4 This mirrors the situation in the case of a perturbative calcu-
lation of plasma corrections ot fusion rates, as discussed in ref.
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