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We present theoretical results for the 25Al(p,γ)26Si resonance-capture rate. The isobaric mass
multiplet equation is used to determined the energies and Jπ values for of states in 26Si based
upon those observed in 26Mg and 26Al together with sd-shell calculations for the c-coefficients.
Three Hamiltonians for the sd-shell, USD, USDA and USDB, are used to estimate the theoretical
uncertainties in the gamma-decay and proton-decay widths that go into the resonance-capture rate.

PACS numbers: 26.30.-k, 21.60.Cs, 21.10.Sf, 21.10.Tg

I. INTRODUCTION

The production mechanism and production site for
the long-lived radioactive isotope 26Al has been of in-
terest since the first indications of 26Al enrichment in
meteoritic inclusions was observed [1]. Understanding
its origin would serve as a unique signature for nucle-
osynthesis in novae and supernovae. The main reac-
tion sequence leading to 26Al is 24Mg(p,γ)25Al(β+ +
ν)25Mg(p,γ)26Al. At the high-temperature conditions
expected for shell carbon burning and explosive neon
burning the 25Al(p,γ)26Si reaction becomes faster than
the 25Al β decay. Since 26Si β decays to the short-lived
0+ state of 26Al, the production of the long-lived (5+)
state is by-passed.
In a recent paper [2] energies of levels in 26Si were mea-

sured and used together with previous data and theoret-
ical input to obtain a cross section for the 25Al(p,γ)26Si
reaction. In previous work stellar rates were obtained
using shell-model calculations and analog state informa-
tion [3]. The current paper focuses on the theoretical
aspects of the input and its uncertainties. The isobaric-
mass-multiplet equation (IMME) is used to obtain the
expected position of the levels in 26Si based upon the
observed energies of levels of the analogue states in 26Al
and 26Mg, together with a calculation of the c-coefficient.
The gamma and proton decay widths are calculated with
several Hamiltonians to find their values and to estimate
their theoretical uncertainties.
This paper follows from recent theoretical work on the

properties of (0d5/2, 0d3/2, 1s1/2) sd-shell nuclei that in-
clude new Hamiltonians [4], a comprehensive study of
electromagnetic and beta-decay observables [5] and a
comprehensive study of the properties of states in 26Mg
[6]. For 26Mg assignments between theory and experi-
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ment for about 50 levels in 26Mg levels up to 10 MeV
in excitation have been made, based on a comparison
of the experimental and theoretical level energies, elec-
tromagnetic transition strengths and electron scattering
data [6].
In Sec. II we discuss the determination of the energies

and Jπ values for states in 26Si based upon use of the
IMME and related levels in 26Mg and 26Al. In Sec. III we
show results for the resonance-capture rates based upon
the USD, USDA and USDB Hamiltonians for the spec-
troscopic factors and gamma decay widths. In Sec. IV
we discuss the results for various regions of temperature
and the uncertainties for each region coming from the
sd-shell Hamiltonians, the decay energies and the com-
parison with other related experimental data. Sec. V.
we give a summary of our results and make comparisons
to other recent results for this reaction rate.

II. PROCEDURE FOR DETERMINING 26SI
ENERGY LEVELS.

In the present work we make use of the IMME to cal-
culate the expected energy of levels in 26Si by using the
measured binding energies of the T = 1 partners and a
theoretical value of the c-coefficient of the IMME [7].
According to the IMME

B = a+ bTz + cT 2
z , (1)

where B is the binding energy of a state. For the three
T = 1 isobaric states in A=26 one can then write, with
Tz = (N − Z)/2,

Bn = a+ b+ c, (2)

where Bn applies to the neutron-rich member (26Mg),

Bo = a, (3)

for 26Al and

Bp = a− b+ c, (4)
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for the proton-rich member (26Si). Then

c = (Bn +Bp − 2Bo)/2. (5)

It also follows that

Bp = 2Bo −Bn + 2c. (6)

For the calculation of the b- and c-coefficients of
the IMME we use the USDB Hamiltonian [4] for the
charge-independent part and add the Coulomb, charge-
dependent and charge-asymmetric nuclear Hamiltonian
obtained by Ormand and Brown for the sd shell [7]. For
the nuclei considered in [7], A=18-22 and A=34-39, the
42 b-coefficients were reproduced with an rms deviation
of 27 keV and the 26 c-coefficients were reproduced with
an rms deviation of 9 keV. There is considerable state-
dependence in the c-coefficients (ranging in values from
130 keV to 350 keV) that is nicely reproduced by the cal-
culations (see Fig. 9 in [7]). In Fig. (1) values of c from
experiment and theory are compared for T = 1 states
A = 26 ordered according to increasing experimental en-
ergy. The experimental values are obtained for states
where all three members of the multiplet are known. In
general a good correspondence can be seen, the largest
deviations being less than 30 keV. There is considerable
state dependence with c values ranging from 300 keV
(for the 0+ ground state) down to 180 keV. This IMME
method was used in [8] for the T = 1 states of the odd-
odd nuclei with mass 28, 32 and 36. The agreement with
experiment [Fig. (1)] for our even-even case appears to
be better than obtained in [8] for the odd-odd cases.
Where data is not available in 26Si to determine the

c-coefficient from experiment, a value can be obtained
from a theoretical calculation using Eq. (5). The binding
energies for states in 26Si can be then be obtained from
Eq. (6), with experimental values of binding energy for
corresponding states in 26Al and 26Mg (when they are
known in both). Specifically

Bth(
26Si) = 2Bexp(

26Al)−Bexp(
26Mg) + 2cth. (7)

Figure (2) shows the typical assignment of states in
26Si on the basis of known states in the mirror nucleus
26Mg. Such assignments are indicated by dashed lines.
The data are from Ref. [2]. There are shifts on the order
of 300 keV. To improve on this procedure we determine
26Si energies from Eq. (7). Fig. (3) shows the excitation
energies for 26Si obtained from Eq. (7) on the right com-
pared to experiment on the left. The calculated values
can then be used as a guide to the correct spin/parity as-
signments for measured levels in 26Si. Where no levels in
26Si are known, levels can be predicted. Two such levels
(the 2+ and 4+) are indicated on the right-hand side of
Fig. (3). The energy of the 3+ state shown in the right-
hand side of Fig. (3) was obtained from the average shift
(250 keV) of the five highest states in Fig. (2). Above
eight MeV where the property of states in 26Mg 26Al be-
come uncertain we use the energies obtained from the

150


200


250


300


0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22
 24


c 
(k

eV
)

state number (n)

0+

2+

2+

0+

3+

2+

3+

4+

4+

(2+)
0+

2+

4+

4+

1+

3+

0+

2+

(4+)
(5+)

2+

(5+)
4+

2+

FIG. 1: c-coefficients from the isobaric mass multiplet equa-
tion (IMME: E = a+bTz+cT 2

z ) versus state number (in order
of increasing energy) in 26Si based on experimental energies
(closed circles) and energies calculated from USDB (open cir-
cles).

USDB Hamiltonian. This includes the addition of about
170 states with Jπ ≤ 5+ up to 14 MeV in excitation
energy.
The 0+ state at 6.461 MeV [2] is much lower than the

predicted energy of the fifth 0+ state with USDB (at
8.040 MeV). It could be an intruder state. But, theory
predicts the second 1+ state (at 6.620 MeV) which has no
experimental counterpart. For the purpose of the present
calculations, we associate the theoretical second 1+ state
with the state observed at 6.461 MeV (see Table I). Our
conclusions are insensitive to this choice.
The three levels that are just above the proton-decay

separation energy of 5.51 MeV and of potential impor-
tance for the capture reaction at low temperatures are
indicated by the arrows in Fig. (3). The Jπ of levels 16
and 17 are from the recent analysis of Wrede [9] where
arguments for the Jπ are based on all available data for
these states. This included the analysis of Bardayan et
al. [10] for the 28Si(p,t) data where an assignment Jπ =
2+ or 3+ was made for state 16. From the associations
made in Fig. (3) we can rule out 2+.

III. RESULTS FOR THE REACTION RATE

The resonant reaction rate for capture on a nucleus in
an initial state i, NA < σv >res i for isolated narrow reso-
nances is calculated as a sum over all relevant compound
nucleus states f above the proton threshold [11]

NA < σv >res i= 1.540× 1011(µT9)
−3/2
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FIG. 2: Experimental excitation energies in 26Si and 26Mg
[2]. Solid lines are for the states in 26Si with firm Jπ values.
Dashed lines are for states in 26Si with uncertain Jπ values
with the most likely mirror associations in 26Mg with known
Jπ values. The three states indicated by lines to the right do
not have known counterparts in 26Si.

×
∑

f

ωγif e−Eres/(kT ) cm3 s−1mole−1. (8)

Here T9 is the temperature in GigaK, Eres = Ef − Ei

is the resonance energy in the center of mass system, the
resonance strengths in MeV for proton capture are

ωγif =
(2Jf + 1)

(2Jp + 1)(2Ji + 1)

Γp ifΓγf

Γtotal f
. (9)

Γtotal f = Γp if + Γγf is a total width of the resonance
level and Ji, Jp and Jf are target (25Al), the proton
projectile (Jp = 1/2), and states in the final nucleus
(26Si), respectively. The proton decay width depends on
the resonance energy via the single-particle proton width
and can be calculated from the proton spectroscopic fac-
tor C2Sif and the single-particle proton width Γsp if as
Γp if = C2SifΓsp if . The single-particle proton widths
were calculated from [12]

Γsp = 2γ2P (ℓ, Rc), (10)
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FIG. 3: Experimental excitation energies in 26Si [2] versus
predicted energies Eth based on Eq. (7). Dashed lines are for
states in 26Si with uncertain Jπ values with the most likely
mirror associations in 26Mg with known Jπ values. The three
states indicated by lines to the right do not have known coun-
terparts in 26Mg. The energies of two of these (2+ and 4+)
are based on the Eq. (7). The energy of the 3+ is shifted
down by 250 keV from its position in 26Mg. Level number 20
in Table I is not shown in this figure (see the discussion in the
text).

with γ2 = h̄2c2

2µR2
c

and where the ℓ-dependent channel ra-

dius Rc was chosen to match the widths obtained from
an exact evaluation of the proton scattering cross sec-
tion from a Woods-Saxon potential well for 25Al for
Q = 0.1 − 0.4 MeV. The simpler model of Eq. (10)
matches the results obtained from the scattering cross
sections as well as those used in [2] to within about 10%.
We use a Coulomb penetration code from Barker [13].
The total resonance-capture reaction rates have been

calculated for each of the interactions USD, USDA and
USDB. We use the Q value of 5.5123(10) MeV from [14].
The energies for states in 26Si are based on the results of
Sec. II. The energies for the states up to eight MeV are
given in the column labeled Ex(exp) in Table I.
Fig. (4) shows the results for the resonance-capture

rate obtained using the properties of 26Si given in Table
I. The Γp and Γγ in this case are all based on the USDB
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TABLE I: Properties of states up to eight MeV in 26Si obtained with the USDB Hamiltonian. k is the number ordering for a
given Jπ value. The experimental energies are from Tables II and III of [2] except those as indicated by the footnotes.

n Jπ k Ex(USDB) Ex(exp) Eres C2S C2S Γγ Γp ωγ

(MeV) (MeV) (MeV) ℓ = 0 ℓ = 2 (eV) (eV) (eV)

1 0+ 1 0 0 0 0 2.5

2 2+ 1 1.897 1.797 3.4×10−2 3.6×10−1 9.3×10−4

3 2+ 2 3.007 2.785 4.6×10−1 8.0×10−2 6.6×10−3

4 0+ 2 3.635 3.334 0 2.3×10−1 1.2×10−4

5 3+ 1 3.883 3.757 2.7×10−1 3.1×10−1 3.7×10−4

6 2+ 3 4.450 4.139 2.4×10−2 5.2×10−2 1.1×10−2

7 3+ 2 4.317 4.187 7.0×10−2 6.7×10−2 7.7×10−3

8 4+ 1 4.365 4.446 0 8.5×10−2 9.2×10−4

9 4+ 2 4.939 4.799 0 1.3×10−1 1.3×10−2

10 2+ 4 4.883 4.809 6.3×10−2 4.5×10−2 1.0×10−2

11 0+ 3 5.033 4.830 0 4.0×10−2 1.5×10−3

12 2+ 5 5.386 5.146 1.2×10−2 4.6×10−1 6.5×10−2

13 4+ 3 5.523 5.289 0 2.0×10−1 2.0×10−2

14 4+ 4 5.893 5.517 0.005 0 3.6×10−2 5.7×10−3

15 1+ 1 5.716 5.675 0.163 0 3.5×10−3 1.2×10−1 6.3×10−9 1.6×10−9

16 3+ 3 6.180 5.915 0.403 1.4×10−1 3.3×10−1 1.2×10−1 3.5 6.8×10−2

17 0+ 4 6.133 5.946 0.434 0 3.9×10−2 8.8×10−3 1.6×10−2 4.7×10−4

18 2+ 6 6.677 6.300 0.788 8.7×10−3 1.0×10−1 9.6×10−2 5.3×101 4.0×10−2

19 4+ 5 6.730 6.382 0.870 0 1.5×10−2 2.4×10−2 2.2 1.7×10−2

20 1+ 2 6.620 6.461a 0.949 0 4.6×10−2 1.1×10−1 1.2×101 2.8×10−2

21 5+ 1 7.068 6.880 1.368 0 1.4×10−2 2.3×10−2 4.0×101 2.1×10−2

22 2+ 7 6.910 6.890b 1.378 5.7×10−4 4.4×10−4 1.2×10−1 6.3×101 4.8×10−2

23 3+ 4 7.296 7.019 1.507 3.9×10−3 5.5×10−2 2.1×10−1 8.7×102 1.2×10−1

24 2+ 8 7.149 7.152 1.640 4.5×10−2 4.3×10−2 7.3×10−2 1.0×104 3.0×10−2

25 5+ 2 7.388 7.197 1.685 0 1.0×10−2 3.4×10−2 9.0×101 3.1×10−2

26 4+ 6 7.434 7.418 1.906 0 2.4×10−1 2.2×10−1 4.1×103 1.6×10−1

27 3+ 5 7.699 7.442c 1.930 1.1×10−3 4.7×10−2 1.4×10−1 1.3×103 8.4×10−2

28 4+ 7 7.856 7.489b 1.977 0 5.7×10−2 1.9×10−1 1.1×103 1.4×10−1

29 2+ 9 7.573 7.494 1.982 5.7×10−2 1.0×10−1 5.0×10−1 2.8×104 2.1×10−1

a) For this level which is assigned Jπ=0+ [2] we use the calculated values Γp and Γγ of the Jπ=1+2 state.
b) The energies of these states observed in 26Mg and not yet in 26Si are taken from the present IMME calculations based on

Eq. (7).
c) The energy of this state is based on its energy in 26Mg with a downward shift of 250 keV that is the average of the upper

five level shifts shown in Fig. (2).

Hamiltonian. In Fig. (5) we show some sensitivity stud-
ies. The upper two panels (a) and (b) show the results
based on Γp and Γγ from the USDA and USD Hamiltoni-
ans relative to USDB. In panel (c) we compare the rate
obtained when the theoretical Γγ(

26Si) are replaced by
Γγ(

26Mg) with the excitation energies the same in both
cases. These Γγ differ because the electromagnetic ma-
trix elements have a small mirror asymmetry. This com-
parison shows that at the level of 10% it is adequate to
take the Γγ information from the mirror nucleus when it
is known. One could also correct for gamma-decay phase-
space change due to the difference in excitation energies
between the mirror nuclei [Fig. (2)]. This correction is

typically less than 10% and will not be included here.

IV. UNCERTAINTIES IN THE RESONANT
CAPTURE REACTION RATES

In this section we discuss the uncertainties for the var-
ious regions of temperature and the resulting recommen-
dations for the rate and error. In addition to the uncer-
tainties coming from Γγ and the spectroscopic factors,
there are uncertainties related to the reaction Q values
for Γp and the Eres dependence in Eq. (8). We use Qnew

0

= 5.5123 MeV from [14]. As discussed in [14] it differs
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by 5 keV from the older results Qold
0 = 5.5177 MeV. The

excitation energy error for the two levels just above the
proton-decay threshold are [2] 2.2 keV for the 5.675 MeV
1+ state and 1.8 keV for the 5.916 MeV 3+ state. In
order to estimate the energy uncertainty in the capture
rate we redo the rate calculation with a 5 keV higher Q
value. The results for the ratio are shown in Fig. (6).

A. Region of Log(T9) < −0.8

For these lowest T9 values the resonance-capture rate
comes entirely from the 5.675 MeV 1+ state (number
15 in Table I). Since Γγ >> Γp for this case the rate
is determined by Γp. The large change shown on the
left-hand side of panels (a) and (b) in Fig. (5) is due
to the change in the relatively small spectroscopic fac-
tors; 0.0048 (USDB), 0.0027 (USDA) and 0.0035 (USD).
For this region of T9 we recommend the USD rate with
an uncertainty of 40% coming from the spread of the
theoretical spectroscopic factors. From Fig. (6) the un-
certainty in the rate from the Q value uncertainties are
on the order of 50%.
The direct-capture rate become important below

log(T9) of about −1.5 [below the scale of Fig. (4).] For
comparison to other results discussed in the next section
we use the direct-capture rate taken from Table VII of [2].
This is based on the USDB spectroscopic factors for the
bound states in Table I. The uncertainty in the direct-
capture rate is about 20% since the USD Hamiltonians
give spectroscopic factors for these bound states that are
the same within about 20%.

B. Region of −0.7 < Log(T9) < 0.5

The resonance capture rate in this region is dominated
by the properties of the 3+ state at 5.915 MeV (number
16 in Table I). Since Γγ < Γp the rate is determined by
Γγ .
The gamma-decay half-life of the analogue 3+ level in

the mirror nucleus 26Mg has been measured [15]. Exper-
iment and theory are compared in Table II which also
includes some results for other states above 5.8 MeV.
Experiment and theory are compared for lower energy
states of 26Mg in Table I and Fig. (2) of [6].
The experimental half-life of this 3+ level in 26Mg of

14(6) ps [15] is larger than the USDB result of 4.0 ps. The
USDA and USD values for the half-life are 4.5 and 5.0 fs,
respectively. Based on the comparisons shown in Fig. (2)
of [6] for the lifetimes of other levels in 26Mg above five
MeV (levels 10-22), this deviation is larger than expected.
However, the experimental uncertainty is relatively large
for this lifetime. It has only been measured once by the
doppler shirt attenuation method [15]. Thus, we choose
to use the USDB value. It would be important to improve
the experimental uncertainty in this lifetime. In addition,
one could measure the gamma-decay decay branching for
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FIG. 4: The total resonance-capture reaction rate versus tem-
perature T9 (GigaK) (top panel) and the contribution of each
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the dominant contribution below log(T9) = −0.8 is from state
number 15, the 1+ state at 5.675 MeV. Between log(T9) =
−0.7 and 0.5 the dominant contribution is from state number
16, the 3+ state at 5.915 MeV.

the 403 keV resonance in 26Si which is predicted to be
3% relative to proton decay.

The theoretical uncertainty for this energy range com-
ing from Γγ is about 20%. But as discussed above, one
should confirm the experimental result for 26Mg which
deviates from the theory outside of this error. In the
lower end of this temperature range there is an uncer-
tainty of about 40% coming from a possible Q value error
of 5 keV.

C. Region of 0.7 < Log(T9)

For log(T9) > 0.7 the rate comes from the contribu-
tion of many states with Γγ << Γp. The ωγ depends
on the (2Jf + 1) level density and the associated Γγ . In
Fig. (7) we show the result for log(T9)=1. ωγ increases
exponentially due to increasing level density, but with
the exponential factor exp(−Eres/kT) about 80% of the
total contribution comes from states below 10 MeV in
excitation energy (Eres = 4.5 MeV). The sd-shell pro-
vides a fairly realistic model for the positive-parity level
density up to 10 MeV, but there will be contributions
from pf shell intruder states starting with the possible
state at 7.2 MeV in 26Mg [6]. Starting with the known
3− state in 26Mg at 6.8 MeV there will be contributions
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TABLE II: Properties of some states in 26Mg.

Jπ k Ex(USDB) Ex(exp) T1/2(USDB) T1/2(exp) [16] Γγ(USDB) Γγ(exp)

(MeV) (MeV) (fs) (fs) (eV) (ev)

1+ 1 5.716 5.691 3.1 <8 0.147 <0.06

3+ 3 6.180 6.124 4.0 14(6) 0.114 0.033+0.024
−0.10

0+ 4 6.133 6.256 58 52(24) 0.0078 0.009+0.007
−0.003

2+ 6 6.677 6.745 5.3 16(8) 0.086 0.028+0.028
−0.009

4+ 5 6.730 6.622 20 19(5) 0.023 0.024+0.009
−0.005

(0−4)+ 2 6.620(1+)a 6.634 4.4 <7 0.104 <0.06

2+ 7 6.910 6.746 3.2 16(8) 0.143 0.028+0.028
−0.009

a) For this level which is assigned Jπ=(0−4)+ [16] we use the calculated value for the Jπ=1+ state at 6.620 MeV.
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FIG. 5: Rates calculated with different assumptions divided
by the USDB results given in Fig. (4).

from negative-parity states. At log(T9)=1 we estimate
that the effective level density and the effective rate is
about a factor of two higher than that given by the sd-
shell model. Above log(T9) = 1 one should base the rate
on a Hauser-Feshbach formulation with level densities ad-
justed to match the known level density in the region of
6−9 MeV excitation energy.

V. DISCUSSION AND CONCLUSION

The calculation the reaction rate for 25Al(p,γ)26Si re-
quires a knowledge of the levels in 26Si. The experimental
properties of levels in 26Si are uncertain and incomplete
compared to those in the mirror nucleus 26Mg. In cases
where the analogue T = 1 levels are known in both 26Mg
and 26Al we use the IMME with the c-coefficient calcu-
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FIG. 6: The ratio given by the rate calculated with Q =
5.5123 MeV divided by the rate obtained with Q = 5.5173
MeV.

lated from theory in order to predict the level proper-
ties of 26Si. For levels where all three member of the
isobaric triplet are known we find good agreement be-
tween the calculated and theoretical c coefficients. For
the higher states we can affirm some of the spin assign-
ments for known levels in 26Si, and predict the location
of several levels not yet observed up to 7.6 MeV. We ob-
tained the spectroscopic factors and gamma decay life-
times for rate calculations from shell-model calculations
using the USD sd-shell Hamiltonian as well as the newer
USDA and USDB Hamiltonians. Reaction rates as well
as contributions from individual states in 26Si were then
obtained for the different interactions. The variation in
the rates calculated give an indication of the theoretical
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uncertainty. It was shown that using theoretical gamma
widths from the mirror nucleus 26Mg instead of 26Si is
an adequate approximation.
We have discussed the problem that the experimental

gamma-decay lifetime of the 6.124 MeV 3+ level in 26Mg
of 14(6) fs is larger than the theoretical USDB value of
4.0 fs. For the resonant-capture rate we use the gamma-
decay width in 26Si from the USDB calculation. The
lifetime in 26Mg has only been measured once [15]. It
would be important to improve the experimental uncer-
tainty in this lifetime. In addition, one should try to
measure the gamma-decay decay branching for the 403
keV resonance in 26Si which is predicted to be 3% relative
to proton decay.
Our final 25Al(p,γ)26Si rate is compared to that of

Matic et al. [2] and to the rate recommended in the 2010
Evaluation of Monte Carlo based Thermonuclear Reac-
tion Rates [17] in Fig. (8). In the region of log(T9) =
−0.7 to 0.7 our rate is a factor of about three higher than
Matic et al. due to the fact that they use the experimen-
tal value of the 3+ lifetime in 26Mg. We have discussed
in Sec. IV.B the reason for our preference for using the
theoretical value.
Above log(T9) of 0.5 our cross section increases relative
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FIG. 8: (a) The present rate divided by the rate given in
Table VII of [2]. (b) The present rate divided by the rate
given in the 2010 evaluation (Table B.37 of [17]); solid line
for the Median rate and the dashed lines for the low and high
rates.

to [2] and [17] since we include more positive-parity sd-
shell levels. But above log(T9) of about 0.8 our cross
section is still a lower limit since negative-parity states
have not been included.
Below log(T9) of 0.8 our results are consistent with the

Monte Carlo based Thermonuclear Reaction Rates [17].
We note that these rates use the spectroscopic factors
and Γγ obtained from the USD Hamiltonian. As we have
shown, the values obtained with USDB are within 20% of
those obtained with USD, with the exception of the spec-
troscopic factor for the 1+ state just above threshold for
which we use the USD value with a 40% error accounting
for the spread between USD, USDA and USDB.
The astrophysical implications for novae and x-

ray bursts in terms of the competition between the
25Al(p,γ)26Si and the 25Al β decay rates is shown in Fig.
(9) of [2]. Our factor of three higher rate for 25Al(p,γ)26Si
compared to that of [2] in the temperature range of in-
terest, log(T9)=0.1-0.3, will relatively reduce the pop-
ulation of the long-lived 5+ state of 26Al by bypassing
its production. It would be interesting to apply these
new rates to various astrophysical scenarios to find the
quantitative consequences.
For the next generation of rp capture cross section cal-

culations it will be important to consider theoretical er-
rors coming from uncertainties within the model-space
assumptions as well as those that come from the limita-
tions of the model-space truncations.
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