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Low-density neutron matter is relevant to the study of neutron-rich nuclei and neutron star
crusts. Unpolarized neutron matter has been studied extensively over a number of decades, while
experimental guidance has recently started to emerge from the field of ultracold atomic gases. In
this work, we study population-imbalanced neutron matter (possibly relevant to magnetars and to
density functionals of nuclei) applying a Quantum Monte Carlo method that has proven successful
in the field of cold atoms. We report on the first ab initio simulations of superfluid low-density
polarized neutron matter. For systems with small imbalances, we find a linear dependence of the
energy on the polarization, the proportionality coefficient changing with the density. We also present
results for the momentum and pair distributions of the two fermionic components.

PACS numbers: 21.65.-f, 03.75.Ss, 05.30.Fk, 26.60.-c

I. INTRODUCTION

The inner crust of a neutron star is widely considered
to be composed of a lattice of neutron-rich nuclei along
with a gas of neutrons and electrons. The gas of neutrons
is expected to be superfluid at weak to intermediate cou-
pling. Thus, low-density neutron matter is intrinsically
connected to the strongly coupled fermion many-body
problem, necessitating accurate calculations (or simula-
tions). Low-density neutron matter is of relevance to the
static and dynamic properties of the neutron star crust,
which can lead to observable behavior. [1–3] Outside
the observational realm, neutron matter computations
also hold significance in the context of traditional nu-
clear physics: equation of state results at densities close
to the nuclear saturation density have been used for some
time to constrain Skyrme and other density functional
approaches to heavy nuclei, while the density-dependence
of the 1S0 gap in low-density neutron matter has also
been used to constrain Skyrme-Hartree-Fock-Bogoliubov
treatments in their description of neutron-rich nuclei [4].
The potential significance of such calculations has led to
a series of publications on the equation of state of low-
density neutron matter over the last few decades. [5–16]

Parallel developments in a separate field of physics
have recently provided new insight as well as the promise
of direct experimental constraints: experiments with ul-
tracold atomic gases of fermions are now being carried
out in a number of labs around the world. In some cases,
atomic gases in non-elongated traps contain sufficiently
many particles that the local-density approximation is
valid. As a result, such experiments can measure the
energy [17, 18] and pairing gap [19, 20] of homogeneous
strongly interacting matter. For cold fermionic atoms,
the two-particle interaction can be directly tuned using a
magnetic field through so-called Feshbach resonances to
produce a specific scattering length a, while the effective
range re between the atoms is considerably smaller than
the average interparticle distance, and thus essentially
zero. These conditions are analogous to low-density neu-
tron matter, where the particle-particle interaction has a

scattering length which is considerable, ≈ −18.5 fm, and
is therefore larger than the average interneutron spac-
ing. On the other hand, cold atoms and low-density neu-
tron matter are clearly distinct systems: first, for neutron
matter the effective range is much smaller than the scat-
tering length, re ≈ 2.7 fm, so |re/a| ≈ 0.15, but only at
very low densities is the effective range much smaller than
the interparticle spacing. Second, the neutron-neutron
(NN) interaction is not strictly limited to s-waves, imply-
ing a complicated spin dependence. Third, three-neutron
interactions (NNN) are in principle also present. The last
two points can be remedied if one studies relatively low-
densities, i.e. at most an order of magnitude smaller than
the nuclear saturation density. The first point might be
addressed in the framework of cold atomic experiments
in the future: it may be possible to use narrow and wide
resonances in cold atoms to study this experimentally.[21]

The above discussion is limited to unpolarized neutron
matter, i.e. to the case of two species of neutrons, conven-
tionally called spin-up (↑) and spin-down (↓), with equal
populations. However, the general case of imbalanced
systems has also been studied extensively: limiting our-
selves for the moment to neutron matter, calculations of
the magnetic susceptibility have been appearing consis-
tently since the discovery of pulsars. [22] Given that the
magnitude of the pairing gap is approximately 1 MeV,
a magnetic field in a neutron star crust would have to
be larger than 1016 − 1017 G to polarize neutron matter.
The question of spin-polarized neutron matter is thus in
principle relevant to objects known as magnetars, which
have surface magnetic fields of 1014 − 1015 G. Thus, the
promise of observational insight into these objects has led
a number of theoretical groups to study spin-polarized
neutron matter and the associated question of a possible
ferromagnetic instability at large density. [23–29]

In this work, we take a step back and address neutron
matter with a finite spin-polarization (population imbal-
ance) at low density. This system is relevant to neutron
star observations: in a realistic neutron-star crust polar-
ization may appear at lower densities than for infinite
matter. For example, the spin-orbit splitting around a
large nucleus might help favor polarization at a lower
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magnetic field than would be required for the bulk. Fur-
thermore, our results could also be used as an input to
or benchmark for phenomenological theories of terrestrial
nuclei. On a different note, as already mentioned, the re-
gion of low-density is close to the physics of cold atoms,
since there the NN interaction is simpler and the NNN
interaction is minimal. Thus, we can use approaches al-
ready verified in the laboratory with ultracold atomic
gases. Importantly, we use a Quantum Monte Carlo
(QMC) method which has been applied, in previous
works, to polarized cold atomic systems, [30, 31] as well
as to unpolarized cold atoms and neutron matter [32–
34]. Our earlier works were consistent both with exper-
imental measurements and with the analytically known
behavior of the energy and the gap at vanishingly small
coupling.[35, 36] We extend this QMC method appropri-
ately, allowing us to study spin-polarized superfluid neu-
tron matter and therefore provide the first benchmark
calculation of this system using an ab initio microscopic
simulation approach.

In such systems, it is conventional to use the following
measure of the population imbalance:

P =
N↑ −N↓

N↑ +N↓

(1)

where N↑ and N↓ are the numbers of spin-up and spin-
down particles, respectively, and P is called the polar-
ization. The regime of large polarization is related to a
question that has a long history in the framework of the
BCS theory. In the BCS approach, superfluidity arises
from the pairing of particles of different spin occupying
states of opposite momenta near the Fermi surface. In the
case of spin imbalance, the Fermi surfaces of the two com-
ponents no longer coincide, making pairs with zero total
momentum difficult to form. At some finite polarization,
the gap between the two Fermi surfaces becomes so large
that the system undergoes a quantum phase transition
to a normal state (this is known as the Chandrasekhar-
Clogston limit).

Our aim in this work is to provide quantitatively re-
liable results for superfluid low-density neutron matter.
We therefore limit our simulations to small polarizations,
P < 0.1, exploring the regime where pairing is energet-
ically stable. We calculate ground-state energies at dif-
ferent total number densities (ρ = (N↑ +N↓)/L

3), more
specifically at ρ1 = 6.65 × 10−4, ρ2 = 2.16 × 10−3, and
ρ3 = 5.32× 10−3 fm−3. To put these densities into per-
spective we can compare them to nuclear matter satu-
ration density: they are 0.41, 1.35, and 3.32 percent, re-
spectively, of ρ0 = 0.16 fm−3. At each total density, we
study the cases of 35+ 33, 37+ 33, and 39+ 33 particles
(see below). We also compute the momentum distribu-
tions and pair-distribution functions for the two different
components.

II. QUANTUM MONTE CARLO

A. Hamiltonian

As pointed out in the Introduction, we do not need
to include NNN interactions, since we are interested in a
density regime where these are quite small. Thus, we use
the following non-relativistic Hamiltonian:

H =

N
∑

k=1

(−
h̄2

2m
∇2

k) +
∑

i,j

v4(rij) , (2)

where N = N↑ + N↓ is the total number of particles.
The full neutron-neutron interaction is complicated, hav-
ing one-pion exchange at large distances, an intermediate
range spin-dependent attraction by two-pion exchange,
and a short-range repulsion. As already discussed, how-
ever, in dilute neutron matter the dominant contributions
come from the opposite-spin pairs, and specifically from
the scattering length and the effective range, along with
a short-range repulsive core which is important so as to
avoid a collapse to a higher-density state
In this work we are including an excess of neutrons of

one species. Thus, it is also significant to take into ac-
count the same-spin interactions in Eq. (2), which we do
by using the interaction introduced in Ref. [34]. This
interaction includes a propagator (see next subsection)
in which all opposite-spin pairs interact through the 1S0
channel of the Argonne v18 (AV18) [37] potential, which
fits s-wave nucleon-nucleon scattering very well at both
low- and high-energies. Thus, in what follows, for the
purposes of the evolution the spins are considered to be
“frozen”, with the majority species being called ↑ and
the minority species being called ↓. We explicitly in-
clude the p-wave interactions in the same-spin pairs, and
perturbatively correct the S = 1,MS = 0 pairs to the
correct p-wave interaction. We use the AV4′ potential to
determine the p-wave interactions.[38].
Since we’re studying neutrons, the AV4′ interaction

can be written as follows:

v4(r) = vc(r) + vσ(r)σ1 · σ2, (3)

which in the case of the S = 0 singlet pairs gives:

vS(r) = vc(r) − 3vσ(r) . (4)

In turn, the contribution from S = 1 (triplet) pairs has
the form:

vP (r) = vc(r) + vσ(r) . (5)

The same-spin potential contribution is small, but as the
population imbalance increases it also increases accord-
ingly (see section IIIA). While still keeping the potential
of Eq. (4) in the propagator of our QMC method for the
opposite-spin pairs, we have introduced a perturbative
correction by writing Eq. (3) in terms of the Majorana
exchange operator, which exchanges the positions leaving
the spins unaffected:

v4(r) = vc(r) + vσ(r)(−2PM − 1) (6)
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B. Variational and Green’s Function Monte Carlo

The first step in our microscopic simulation is a Vari-
ational Monte Carlo (VMC) calculation. Variational
Monte Carlo is a relatively simple combination of clas-
sical Monte Carlo and the variational (Rayleigh-Ritz)
method; it was first used by McMillan in the 1960s. It is
based on a variational trial wave function ΨV that is a
reasonably good approximation of the true ground-state
wave function. It contains variational parameters that
in principle should allow one to approach the true wave
function (see the next subsection for more details). A
VMC calculation uses Monte Carlo integration to mini-
mize the expectation value of the Hamiltonian:

〈H〉V MC =

∫

dRΨV (R)HΨV (R)
∫

dR|ΨV (R)|2
≥ E0 , (7)

thus optimizing the variational wave function ΨV . The
fact that it is relatively easy to perform a VMC simula-
tion allows us to examine various possibilities in placing
the excess particles in different momentum states.
It is customary to use the output configurations of a

Variational Monte Carlo calculation as input to a more
extensive calculation using the method known as Green’s
Function Monte Carlo (GFMC). This method works by
projecting out the exact, lowest-energy eigenstate Ψ0

from a trial (variational) wave function ΨV by treating
the Schrödinger equation as a diffusion equation in imag-
inary time τ and stochastically evolving the variational
wave function for a “sufficiently” long time.
The evolution operator e−iHt becomes e−Hτ in imag-

inary time, commonly written as e−(H−ET )τ , where the
ET is called the trial energy. Applying this operator to
the variational wave function and expanding in terms of
the complete set of eigenstates gives:

Ψ(τ) = e−(H−ET )τΨV =
∑

i

αie
−(Ei−ET )τΨi

= α0e
−(E0−ET )τΨ0, lim τ → ∞ . (8)

The GFMC technique is implemented by discretizing τ
and expressing the imaginary-time propagator as

e−(H−ET )τ =
∏

n

e−(H−ET )△τ , (9)

where τ = n△τ . If we now define the short-time Green’s
function by:

G(R,R′) = 〈R|e−(H−ET )△τ |R′〉 , (10)

where R is the configuration vector R = (r1, r2 . . . rN )
of 3N dimensions, then we can use it to calculate the
evolved Ψ(τ) starting from a set of VMC configurations.
The short-time Green’s function can be conveniently ap-
proximated using the Trotter-Suzuki formula:

G(R,R′) ≈ e−V (R)△τ

2 〈R|e−T△τ |R′〉e−V (R′)△τ

2 eET△τ

= e−(V (R)+V (R′)−2ET )△τ

2 〈R|e−T△τ |R′〉 ,(11)

which is accurate to order (∆τ)2.
To avoid the fermion-sign problem, we impose what

is known as the “fixed-node approximation”. A fixed-
node simulation leads to a wave function Ψ0 that is the
lowest-energy state with the same nodes as the trial wave
function ΨV . The resulting energy E0 is an upper bound
to the true ground-state energy. Thus, if one chooses the
variational wave function so that it includes a number
of parameters, [32] these parameters can be optimized
to give the best approximation to the ground-state wave
function (see next subsection).

C. Trial wave function

In these VMC and GFMC calculations there is a need
to express the wave function of the system in terms of
specific coordinate-space states. To this effect, we use
a finite number N of particles with Born-von Karman
(periodic) boundary conditions in a cubic box of volume
L3, and N is chosen to be large enough so that the sys-
tem can be assumed to be in the thermodynamic limit.
For neutron matter, this was shown to be approximately
66 particles in Ref. [33]. Using a Cartesian coordinate
system, the quantized plane waves eikn·r will have mo-
mentum vectors of the following discrete form:

kn =
2π

L
(nx, ny, nz) , (12)

where the nx, ny, nz are integers. The shell number I is
defined such that I = n2

x+n
2
y+n

2
z. Thus, there is only 1

possible combination of the nx, ny, nz that gives I = 0, 6
combinations that produce I = 1, 12 combinations that
lead to I = 2 and so on. Neutrons are spin one-half
fermions, therefore if we address equal populations for the
two components the system has a closed-shell structure
when N = 2, 14, 38, 54, 66, . . ..
The simplest possible approximation (which, strictly

speaking, is applicable only to the case of closed shells)
that can be used for the input variational wave function
is to describe the particles as being in a free Fermi gas.
This approach assumes no correlations in the wave func-
tion and is equivalent to having a product of two Slater
determinants, one for spin-up and one for spin-down:

ΦS(R) = D↑D↓. (13)

The single-particle states in the Slater determinants are
φn(rk) = eikn·rk/L3/2.
Another choice for Φ(R), one which can also describe

pairing, is the well-known BCS wave function ΦBCS(R)
in its form for fixed particle number (which reduces to
the Slater case under specific conditions). This choice is
agreeable for both physical reasons (it reflects the fact
that fermions with an attractive interaction can form
Cooper pairs in the ground state) and mathematical rea-
sons (unlike the Slater wave function, it has nodal sur-
faces which can be varied so as to minimize the fixed-node
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GFMC energy). Furthermore, a computationally appeal-
ing aspect of this wave function is the fact that it can be
written down as a determinant. [39]

In this formalism, a general wave function with n pairs,
u spin-up and d spin-down unpaired particles can be writ-
ten as:

ΦBCS(R) = A
{

[φ(r11′ )...φ(rnn′ )] [ψ1↑(rn+1)...ψu↑(rn+u)]
[

ψ1↓(r(n+1)′)...ψd↓(r(n+d)′)
]}

. (14)

The unpaired particles are placed in ψi↑ and ψj↓ single-particle states. We can write this wave function as the
determinant of an M ×M matrix where M = n + u + d. In this work, we are interested in the case of a “gapless
superfluid” which for polarized neutrons translates to 33 opposite-spin pairs along with an excess of unpaired particles
of one species. When we have 2 extra spin-up particles, the corresponding matrix is written as follows:











φ(r1,1′) φ(r1,2′) ... φ(r1,33′) ψ1↑(r1) ψ2↑(r1)
φ(r2,1′) φ(r2,2′) ... φ(r2,33′) ψ1↑(r2) ψ2↑(r2)

...
...

...
...
...

...
...

...
φ(r35,1′ ) φ(r35,2′ ) ... φ(r35,33′ ) ψ1↑(r35) ψ2↑(r35)











(15)

The pairing function φ(r) is a sum over the momenta
compatible with the periodic boundary conditions. In
the BCS theory the pairing function is:

φ(r) =
∑

n

vkn

ukn

eikn·r =
∑

n

αne
ikn·r , (16)

and here it is parametrized with a short- and long-range
part as in Ref. [32]:

φ(r) = β̃(r) +
∑

n, I≤IC

αIe
ikn·r , (17)

We choose the single-particle states, ψi↑, to be plane
waves so as to ensure momentum conservation. We pick
their momentum by checking values near the minimum
(at each density) of the quasiparticle dispersion. The
latter is calculated using the odd-even energy staggering:

∆ = E(N + 1)−
1

2
[E(N) + E(N + 2)] , (18)

where N is an even number of particles. At each den-
sity, the minimum of the dispersion lies at a different
momentum.[34] As already mentioned, we used VMC to
place the particles at different momentum states. For
very small polarizations, the minimum system energy is
expected to be identical to the minimum of the disper-
sion, which follows from adding only one extra particle.
This is indeed the result we find, the only exceptions ap-
pearing at density ρ3 and particle numbers of 39+33 and
higher (see below).
In practice, we also include Jastrow (correlation) terms

in the variational wave function:

ΨV =
∏

i6=j

fP (rij)
∏

i′ 6=j′

fP (ri′j′ )
∏

i,j′

f(rij′ )ΦBCS(R) (19)

where the unprimed (primed) indices refer to spin-up
(spin-down) particles. The Jastrow parts are taken from

a lowest-order-constrained-variational method [40] calcu-
lation described by a Schrödinger-like equation:

−
h̄2

m
∇2f(r) + v(r)f(r) = λf(r) (20)

for the opposite-spin f(r) and

−
h̄2

m
∇2f(r) + v(r)f(r) +

2h̄2

mr2
f(r) = λf(r) (21)

for the same-spin fP (r). Since the f(r) and fP (r) we
use are nodeless, they do not affect the final result apart
from reducing the statistical error. Since we are using
the fixed-node approximation, we know that the result
we obtain for one set of pairing function parameters in
Eq. (17) will be an upper bound to the true ground-state
energy of the system. The parameters are optimized in
the full GFMC calculation as in previous works [32, 33],
providing the best possible nodal surface, in the sense of
lowest fixed-node energy, for that form of trial function.
As mentioned in section II B, this upper-bound property
allows us to get as close as possible to the true ground-
state energy of the spin-polarized superfluid system.

III. RESULTS

A. Equation of state

We first address the energy of spin-polarized low-
density neutron matter versus polarization. We have
studied three total densities ρ1 = 6.65 × 10−4, ρ2 =
2.16×10−3, and ρ3 = 5.32×10−3 fm−3. A smaller density
would correspond to neutron matter that is closer to the
neutron star surface, which in turn implies a smaller mag-
netic field, and is thus less likely to be polarized. Also,
lower density is more difficult to propagate in imaginary
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TABLE I: Results for the ground-state energy divided with
the total number of particles for two species of neutrons in-
teracting via an AV4′ potential at ρ3 = 5.32× 10−3 fm−3.

N↑ +N↓ Efull [MeV] E↑↑ [keV] E↓↓ [keV]

33+33 2.133(1) 11.4(1) 11.3(1)

35+33 2.178(2) 12.2(1) 10.7(1)

37+33 2.230(2) 12.7(1) 10.0(1)

39+33 2.286(2) 13.8(2) 9.6(1)

time to a satisfactory accuracy level, given that lower
density leads to larger inverse energy and therefore longer
propagation. Reversely, we do not study even larger den-
sities because then we would have to include 3-body in-
teractions in our approach. For pure neutron matter this
would imply, first, going away from firm experimentally
constrained interactions (threee-neutron interactions are
commonly fit to N = Z nuclei) and, second, the ne-
cessity of using spin-isospin dependent wave functions,
therefore disallowing the use of approximately 70 parti-
cles and thus the simulation of the thermodynamic limit
in the framework of a variational ab initio approach. Fur-
thermore, larger densities would imply that the afore-
mentioned perturbative correction in the propagator (see
section IIA) would break down. This latter point pro-
vides yet another reason why only small polarizations are
studied: for these calculations to be quantitatively reli-
able, the number of opposite-spin pairs should not stray
too much from the “canonical” 33 + 33 case. Thus, for
each of the three densities, we address the cases of 35+33,
37+33, and 39+33 particles. For the case of the largest
density we have also examined 41 + 33 and 43 + 33 par-
ticles (i.e. up to nearly double the polarization), finding
the same overall trend.
In most works on polarized neutron matter, the de-

pendence of energy on polarization is taken to be
quadratic.[23–29] However, these works address dense
neutron matter, in which the 1S0 pairing has already
reached gap closure, in the presence of a strong mag-
netic field. In other words, most works in the literature
study normal matter, in which an isolated spin-flip only
impacts particles near their respective Fermi surfaces. In
this work we study low-density polarized neutron mat-
ter, implying that superfluidity plays an important role:
flipping a spin is equivalent to breaking a pair. Thus, the
pairing gap plays a decisive role in producing the polar-
ized state. Our results for the energy versus polarization
exhibit a linear trend:

E

N
(ρ, P ) =

E

N
(ρ, 0) + α(ρ)P (22)

similarly to the case of ultracold atomic gases at unitarity
[30], where Quantum Monte Carlo calculations found a
linear dependence of the energy on polarization at small
population imbalances.
In this connection, it is relevant to examine the in-
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FIG. 1: (color online) Ground-state energy per particle (in
units of the free Fermi gas energy) for spin-polarized neutron
matter. Shown are QMC results at three different total den-
sities. The overall trend is linear, the slope depending on the
density.

teraction between (polarized) quasiparticles. Summing
single-particle excitation energies (taken from Ref. [34])
for particles that are placed at the appropriate minimum
momentum in Eq. (12) we find that the full Quantum
Monte Carlo results are thus approximately reproduced.
This implies that the quasiparticles are weakly interact-
ing.
The α(ρ) coefficients we have extracted from these

results for the three densities are 0.37(5), 1.01(5), and
1.84(9) MeV, respectively. In Fig. 1 we show the energy
per particle at different densities versus polarization. To
facilitate comparison between results at different densi-
ties we have divided the energy per particle with the en-
ergy of a free Fermi gas at the same total density:

EFG =
3

10

h̄2

m
(3π2ρ)2/3 . (23)

We notice that, just like in the case of unpolarized neu-
tron matter [34], when the density increases the energy
in units of EFG drops, but the rate of the drop is also de-
creasing. The slight deviation from linear behavior at ρ1
stems from the afore-mentioned necessity to propagate
up to longer imaginary times (at least by a factor of 3)
in comparison to the other cases. This is also the reason
why the results for the bigger systems at that density
have larger error bars.
Further results for the energy of polarized neutron

matter are given in Table I. Table I refers to the largest
density we have studied, ρ3 = 5.32 × 10−3 fm−3. At
this density we find the maximum value of the same-spin
perturbative correction, which is 9 percent of the total
energy. As should be expected, for the 33 + 33 system
the energies of the ↑↑ and the ↓↓ interactions are identical
(within statistical error). As we increase the polarization,
there is a clear trend toward the increase of the ↑↑ rel-
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FIG. 2: (color online) Momentum distribution versus (k/kF )
2

for the two different spins, for the case of 37 ↑ and 33 ↓ par-
ticles (total density ρ3 = 5.32× 10−3 fm−3), shown as circles
and squares respectively. kF is taken here to refer to the

total density, kF =
(

3π2ρ3
)1/3

. The behavior exhibited is
commonly referred to as “Fermi surface mismatch”.

ative importance, which becomes nearly double that of
the corresponding ↓↓ energy for the 43+33 system. In all
cases, the same-spin contribution to the energy is small,
not growing to more than 1 percent of the total energy.

B. Distribution functions

We have also used GFMC to calculate distribution
functions at ρ3 = 5.32 × 10−3 fm−3 for 37 ↑ and 33 ↓
particles: in contradistinction to the case of the energy,
the results for these functions are not upper bounds to
the true ground-state results, but they are expected to be
accurate (the error being of second order in |Ψ0 −ΨV |).
Starting with the momentum distribution, we first dis-

cuss our expectations using mean-field BCS theory as a
guide. BCS is not quantitatively accurate in this regime,
[34] but can provide qualitative understanding. In BCS,
the momentum distribution is given by the following ex-
pression:

n(k) =
1

2

[

1−
ξ(k)

E(k)

]

, (24)

where ξ(k) = ǫ(k) − µ, the chemical potential is µ and

ǫ(k) = h̄2k2

2m is the single-particle energy of a particle with
momentum k. The elementary quasi-particle excitations
of the system have energy:

E(k) =
√

ξ(k)2 +∆(k)2 (25)

Overall, this is close to a step function for small gaps, but
it changes considerably in the strong coupling regime. In

0 0.5 1 1.5 2 2.5 3
r / r

0

0

0.25

0.5

0.75

1

1.25

g(
r)

majority component
minority component
non-interacting

FIG. 3: (color online) Same-spin pair-distribution function as
a function of the distance divided with a measure of the av-
erage interparticle distance, for the case of 37 ↑ and 33 ↓ par-
ticles (total density ρ3 = 5.32× 10−3 fm−3), shown as circles
and squares respectively. Also given is the same-spin pair-
distribution function for a non-interacting Fermi gas (line).

general, the spread of the momentum distribution around
µ is approximately 2∆. At this density, the system ex-
hibits a gap of ∆ = 1.05(11) which as a fraction of the
Fermi energy is ∆/EF = 0.17(2) implying that there is
no clearly defined Fermi surface. [34] Even so, in the case
of spin-polarized Fermi gases it is customary to use the
language of weak coupling and speak of a “Fermi surface
mismatch”. This follows from the fact that the Fermi en-
ergy is proportional to ρ

2/3
↑(↓) and in this case the densities

for the two spin populations are different.
In Fig. 2 we show the momentum distribution com-

puted using GFMC. This is calculated as the Fourier
transform of the one-body density matrix, through:

n↑(↓)(k) ≡
N↑(↓)

L3

{∫

dδreik·(r
′

n
−rn)

ΨV (r1, . . . , r
′
n)

ΨV (r1, . . . , rn)

}

,

(26)
where the curly brackets denote a stochastic integration
over the angles. The integral over δr = |r′n − rn| is per-
formed on a line analytically to avoid statistical errors
due to the oscillatory radial dependence. In both cases,
we see a considerable spread around the chemical poten-
tial value, but we also notice a clear distinction in how
the two species behave around that point, the majority
species showing a “lag” in its decline.
We have also computed the pair-distribution functions

and have plotted them in Fig. 3. These are calculated
from an expectation value of the form:

gP (r) = A
∑

i<j

〈Ψ0|δ(rij − r)OP
ij |ΨV 〉 , (27)

where we are interested in the case in which the oper-
ator is simply unity, and the normalization factor A is
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such that g1(r) ≡ gc(r) goes to one at large distances.
Such pair-distribution functions provide sum rules re-
lated to density- and other response functions versus
density and momentum. The solid line in the figure
shows the pair-distribution function of noninteracting
(NI) fermions with parallel spins:

gNI
c (r) = 1−

9

(kF r)6
[sin(kF r)− kF r cos(kF r)]

2
. (28)

The x-axis is the interparticle distance divided with a
quantity, r0, which describes the average interparticle
spacing:

4

3
πr30 =

1

ρ
. (29)

The free Fermi gas result is close to but distinct from both
QMC results (for spin-up and spin-down particles) due
to the effect of the interactions. As is to be expected, the
majority component values are slightly larger than those
of the minority species, implying that it is slightly more
likely to find a spin-up particle than a spin-down one.

IV. CONCLUSIONS AND FUTURE WORK

In summary, we have studied superfluid spin-polarized
low-density neutron matter at small polarizations using a
variationally optimized approach that includes the domi-
nant well-known terms in the Hamiltonian. We have cal-
culated the equation of state with the AV4′ interaction
at different densities. We have also calculated the mo-
mentum and pair-distribution functions for low-density
neutron matter. We find clear signals of a Fermi sur-
face mismatch, as expected, and also a linear dependence
of the energy on the polarization. These results are in
principle relevant to the physics of magnetars. Further-
more, they could be tested directly by using ultracold
fermionic atom gases with unequal spin populations. In
the case of cold atoms, Quantum Monte Carlo simula-
tions of spin-polarized matter have been used as input to

density-functional theory approaches.[41, 42] Thus, our
corresponding results for neutron matter might also be
used as input to self-consistent mean-field models of nu-
clei.

This line of Quantum Monte Carlo calculations, hav-
ing first been applied to and verified in cold atomic ex-
periments, can also provide directions for future work
in the field of nucleonic infinite matter. The simplest
case is that of a two-component gas where the two pop-
ulations are equal.[33, 34] The next step is to examine
the ramifications of taking different populations for the
two components: this is the case of spin-polarized low-
density neutron studied in this work. Cold-atom exper-
iments have by now also addressed Efimov physics, in
which three components are involved. In the nuclear con-
text, adding a third species could provide further insight
into the physics of neutron stars. If the third component
particles were taken to be protons and, as in this paper,
only a few of them were added, then it would be possi-
ble to study highly asymmetric nuclear matter. Another
possible avenue of future research is related to optical lat-
tice experiments with cold atoms: to first approximation
these are equivalent to periodic external potentials. In
the nuclear case, an external potential would allow us to
study the static response of neutron matter and would
also facilitate the understanding of the impact on neu-
tron pairing of the ion lattice that exists in a neutron
star crust.
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