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I. INTRODUCTION

The search for Time Reversal Invariance Violation (TRIV) in nuclear physics has been

a subject of experimental and theoretical investigation for several decades. The search has

covered a large variety of nuclear reactions and nuclear decays with T-violating parame-

ters, which are sensitive to either CP-odd and P-odd (or T- and P-violating) interactions

or T-violating P-conserving (C-odd and P-even) interactions. There are a number of ad-

vantages to searching for TRIV in nuclear processes. The main advantage is the possibil-

ity of an enhancement of T-violating observables by many orders of a magnitude due to

complex nuclear structures (see, for example, paper [1] and references therein). Another

advantage is the availability of many systems with T-violating parameters. This provides

assurance that there will be enough observations to avoid a possible “accidental” cancelation

of T-violating effects due to unknown structural factors related to the strong interactions.

Taking into account that different models of CP-violation may contribute differently to a

particular T/CP-observable1, which may have unknown theoretical uncertainties, TRIV nu-

clear processes should provide complementary information to electric dipole moment (EDM)

measurements.

One promising approach to searching for TRIV in nuclear reactions is a measurement of

TRIV effects in the transmission of polarized neutrons through a polarized target. These

effects could be measured at new spallation neutron facilities, such as the SNS at the Oak

Ridge National Laboratory or the J-SNS at J-PARC in Japan. It was shown that these

TRIV effects can be enhanced [2] by a factor of 106. Similar enhancement factors have been

observed for parity-violating effects in neutron scattering. In contrast to the parity-violating

(PV) case, the enhancement of TRIV effects leads not only to an opportunity to observe

T violation, but also to validate models of CP-violation based on the values of observed

parameters. However, existing estimates of CP-violating effects in nuclear reactions have

at most order of magnitude of accuracy. In this relation, it is interesting to compare the

calculation of TRIV effects in complex nuclei with the calculations of these effects in the

simplest few-body systems, which could be useful for clarification of the influence of nuclear

structure on TRIV effects. Therefore, as a first step to the investigation of many-body

1 For example, the QCD θ-term can contribute to neutron EDM, but cannot be observed in K0-meson

decays. On the other hand, the CP-odd phase of the Cabibbo-Kobayashi-Maskawa matrix was measured

in K0-meson decays, but its contribution to the neutron EDM is extremely small and beyond the reach

of current experimental precision. 2



nuclear effects, we study TRIV and parity-violating effects in one of the simplest available

nuclear process, namely elastic neutron-deuteron scattering.

We treat TRIV nucleon-nucleon interactions as a perturbation, while unperturbed three-

body wave functions are obtained by solving Faddeev equations for a realistic strong in-

teraction Hamiltonian, based on the AV18+UIX interaction model. To describe the TRIV

potentials, we use both a meson exchange model and the effective field theory (EFT) ap-

proach.

II. OBSERVABLES

We consider TRIV and PV effects related to the σn · (p × I) correlation, where σn

is the neutron spin, I is the target spin, and p is the neutron momentum, which can be

observed in the transmission of polarized neutrons through a target with polarized nuclei.

This correlation leads to a difference [3] between the total neutron cross sections for σn

parallel and anti-parallel to p× I

∆σ/T /P =
4π

p
Im(f+ − f−), (1)

and to neutron spin rotation angle [4] φ around the axis p× I

dφ/T /P

dz
= −2πN

p
Re(f+ − f−). (2)

Here, f+,− are the zero-angle scattering amplitudes for neutrons polarized parallel and anti-

parallel to the p× I axis, respectively; z is the target length; and N is the number of target

nuclei per unit volume. It should be noted that these two parameters cannot be simulated by

final state interactions (see, for example [1] and references therein), therefore, measurements

of them are unambiguous tests of violation of time reversal invariance, similar to the case of

neutron electric dipole moment.

The scattering amplitudes can be represented in terms of the matrix R̂ which is related to

the scattering matrix Ŝ as R̂ = 1̂− Ŝ. We define the matrix element RJ
l′S′,lS = 〈l′S ′|RJ |lS〉,

where unprimed and primed parameters correspond to initial and final states, l is an orbital

angular momentum between neutron and deuteron, S is a sum of neutron spin and deuteron

total angular momentum, and J is the total angular momentum of the neutron-deuteron sys-

tem. For low-energy neutron scattering, one can consider only s- and p -wave contributions,
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which leads to the following expressions for the TRIV parameters
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The symmetry-violating R̂ -matrix elements can be calculated with a high level of accuracy

in the Distorted Wave Born Approximation (DWBA) as

RJ
l′S′,lS ≃ 4i−l′+l+1µp (−)〈Ψ, (l′S ′)JJz|V/T /P |Ψ, (lS)JJz〉(+), (5)

where µ is a neutron-deuteron reduced mass, V/T /P is TRIV nucleon-nucleon potential, and

|Ψ, (l′S ′)JJz〉(±) are solutions of 3-body Faddeev equations in configuration space for a

strong interaction Hamiltonian satisfying outgoing (incoming) boundary conditions. The

factor i−l′+l in this expression is introduced to match the R-matrix definition in the modi-

fied spherical harmonics convention [5] with the wave functions in the spherical harmonics

convention used for wave functions calculations. The matrix elements of the TRIV potential

in the spherical harmonics convention are symmetric, and the R-matrix in modified spherical

harmonics convention is antisymmetric under the exchange between initial and final states.

For calculations of wave functions, we used a jj-coupling scheme instead of a lS coupling

scheme. We can relate R-matrix elements in the lS coupling scheme to those in the jj-

coupling scheme using a unitary transformation (see, for example [6])

|[ly ⊗ (sk ⊗ jx)S ]JJz〉 =
∑

jy
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(7)

where, RJ
l′j′,lj is a R-matrix in the jj-basis.
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III. TIME REVERSAL VIOLATING POTENTIALS

The most general form for the time reversal violating and parity violating part of the

nucleon-nucleon Hamiltonian up to first order in the relative nucleon momentum can be

written as the sum of momentum-independent and momentum-dependent parts, H /T /P =

H
/T /P
stat +H

/T /P
non−static [7],

H
/T /P
stat = g1(r)σ− · r̂ + g2(r)τ1 · τ2σ− · r̂ + g3(r)T

z
12σ− · r̂

+g4(r)τ+σ− · r̂ + g5(r)τ−σ+ · r̂ (8)

H
/T /P
non−static = (g6(r) + g7(r)τ1 · τ2 + g8(r)T

z
12 + g9(r)τ+)σ× ·

p̄

mN

+ (g10(r) + g11(r)τ1 · τ2 + g12(r)T
z
12 + g13(r)τ+)

×
(
r̂ · σ×r̂ ·

p̄

mN
− 1

3
σ× ·

p̄

mN

)

+g14(r)τ−

(
r̂ · σ1r̂ · (σ2 ×

p̄

mN
) + r̂ · σ2r̂ · (σ1 ×

p̄

mN
)
)

+g15(r)(τ1 × τ2)zσ+ ·
p̄

mN

+g16(r)(τ1 × τ2)z
(
r̂ · σ+r̂ ·

p̄

mN

− 1

3
σ+ ·

p̄

mN

)
, (9)

where the exact form of gi(r) depends on the details of particular theory. Here, we consider

three different approaches for the description of TRIV interactions: a meson exchange model,

pionless EFT, and pionful EFT.

Ther TRIV meson exchange potential in general involves exchanges of pions (JP = 0−,

mπ = 140 MeV), η-mesons(JP = 0−, mη = 550 MeV), and ρ- and ω-mesons (JP = 1−,

mρ,ω = 770, 780 MeV). To derive this potential, we use the strong Lst and TRIV L/T /P

Lagrangians, which can be written as [8, 9]

Lst = gπN̄iγ5τ
aπaN + gηN̄iγ5ηN

−gρN̄
(
γµ − i χV

2mN

σµνqν

)
τaρaµN

−gωN̄
(
γµ − i χS

2mN
σµνqν

)
ωµN, (10)
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L/T /P = N̄ [ḡ(0)π τaπa + ḡ(1)π π0 + ḡ(2)π (3τ zπ0 − τaπa)]N

+N̄ [ḡ(0)η η + ḡ(1)η τ zη]N

+N̄
1

2mN

[ḡ(0)ρ τaρaµ + ḡ(1)ρ ρ0µ + ḡ(2)(3τ zρ0µ − τaρaµ)]σµνqνγ5N

+N̄
1

2mN
[ḡ(0)ω ωµ + ḡ(1)ω τ zωµ]σ

µνqνγ5N, (11)

where qν = pν − p′ν , χV and χS are iso-vector and scalar magnetic moments of a nucleon

(χV = 3.70 and χS = −0.12), and ḡ(i)α are TRIV meson-nucleon coupling constants. Further,

we use the following values for strong couplings constants: gπ = 13.07, gη = 2.24, gρ =

2.75, gω = 8.25.

The meson exchange models from these Lagrangians lead to a TRIV potential

V/T /P =

[
− ḡ

(0)
η gη
2mN

m2
η

4π
Y1(xη) +

ḡ
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ω gω
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+
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− ḡ
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m2
η
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4mN

m2
ρ

4π
Y1(xρ) +

ḡ
(1)
ω gω
2mN

m2
ω

4π
Y1(xω)

]
τ+σ− · r̂

+

[
− ḡ

(1)
π gπ
4mN

m2
π

4π
Y1(xπ)−

ḡ
(1)
η gη
4mN

m2
η

4π
Y1(xη)−
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(1)
ρ gρ
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m2
ρ
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ḡ
(1)
ω gω
2mN

m2
ω

4π
Y1(xω)

]
τ−σ+ · r̂,

(12)

where T z
12 = 3τ z1 τ

z
2 − τ1 · τ2, Y1(x) = (1 + 1

x
) e

−x
x
, and xa = mar.

Comparing eq.(8) with this potential, one can see that the gi(r) functions in the meson
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exchange model are defined as

gME
1 (r) = − ḡ
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(0)
π gπ
2mN

m2
π

4π
Y1(xπ) +

ḡ
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For the TRIV potentials in the pionless EFT potential, these functions are

g 6π1 (r) =
c 6π1

2mN

d

dr
δ(3)(r)→ − c

6π
1µ

2

2mN

µ2

4π
Y1(µr)

g 6π2 (r) =
c 6π2

2mN

d

dr
δ(3)(r)→ − c

6π
2µ

2

2mN

µ2

4π
Y1(µr)

g 6π3 (r) =
c 6π3

2mN

d

dr
δ(3)(r)→ − c

6π
3µ

2

2mN

µ2

4π
Y1(µr)

g 6π4 (r) =
c 6π4

2mN

d

dr
δ(3)(r)→ − c

6π
4µ

2

2mN

µ2

4π
Y1(µr)

g 6π5 (r) =
c 6π5

2mN

d

dr
δ(3)(r)→ − c

6π
5µ

2

2mN

µ2

4π
Y1(µr), (14)

where the low energy constants (LECs) c 6πi of the pionless EFT have the dimension [fm2]. In

our calculations with this potential, we use the Yukawa function (µ
3

4π
Y0(µr), where Y0(x) =

e−x

x
) with the regularization scale µ = mπ, instead of the singular δ(3)(r) in paper [9].

The pionful EFT acquires long-range terms due to the one-pion exchange, in addition to

the short-range term expressions equivalent to the ones provided by the pionless EFT. Then,

ignoring two-pion exchange contributions at the middle range and higher order corrections,
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one can write the gi(r) functions for the pionful EFT as

gπ1 (r) = −
cπ1µ

2

2mN

µ2

4π
Y1(µr)

gπ2 (r) = −
cπ2µ

2

2mN

µ2

4π
Y1(µr)−

ḡ
(0)
π gπ
2mN

m2
π

4π
Y1(xπ)

gπ3 (r) = −
cπ3µ

2

2mN

µ2

4π
Y1(µr)−

ḡ
(2)
π gπ
2mN

m2
π

4π
Y1(xπ)

gπ4 (r) = −
cπ4µ

2

2mN

µ2

4π
Y1(µr)−

ḡ
(1)
π gπ
4mN

m2
π

4π
Y1(xπ)

gπ5 (r) = −
cπ5µ

2

2mN

µ2

4π
Y1(µr)−

ḡ
(1)
π gπ
4mN

m2
π

4π
Y1(xπ). (15)

For this potential, the cutoff scale µ is larger than the pion mass, because pion is a degree

of freedom of the theory. Therefore, in general the magnitudes of LECs and their scaling

behaviors, as a function of a cutoff parameter cπi (µ) are different from the c 6πi (µ) scaling

behaviors.

One can see that all three potentials, which come from different approaches, have exactly

the same operator structure. The only difference between them is related to the different

scalar functions multiplying each operator. These, in turn, differ only through the presence

of different characteristic masses: mπ, mη, mρ, and mω. Therefore, to unify notations,

it is convenient to define new constants Ca
n(of dimension [fm]) and the scalar function

fa
n(r) =

µ2

4π
Y1(µr) (of dimension [fm−2]) as

gn(r) ≡
∑

a

Ca
nf

a
n(r), (16)

where the form of Ca
n and fa

n(r) can be read from eq. (13), (14) and (15).

Since non-static TRIV potentials, with gn>5, do not appear either in the meson exchange

model or in the lowest order EFTs, they can be considered as higher-order corrections to the

lowest order EFT or related to heavy meson contributions in the meson exchange model.

Nevertheless, for completeness we estimate the contributions of these operators using fa
n(r)

functions with proper mass scales.

IV. CALCULATION OF TRIV AMPLITUDES

The non-perturbed (parity-conserving) 3-body wave functions for neutron-deuteron scat-

tering are obtained by solving Faddeev equations (also often called Kowalski-Noyes equa-
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tions) in configuration space [10, 11]. The wave function in the Faddeev formalism is a sum

of three Faddeev components,

Ψ(x,y) = ψ1(x1,y1) + ψ2(x2,y2) + ψ3(x3,y3). (17)

In the particular case of three identical particles (this becomes formally true for three-nucleon

system in the isospin formalism), the three Faddeev equations (components) become formally

identical. In terms of the three-nucleon force, which under the nucleon permutation might

be expressed as a symmetric sum of three terms: Vijk = V k
ij+V

i
jk+V

j
ki, the Faddeev equations

read:

(E −H0 − Vij)ψk = Vij(ψi + ψj) +
1

2
(V i

jk + V j
ki)Ψ, (18)

where (ijk) are the particle indices, H0 is the kinetic energy operator, Vij is the two body

force between particles i, and j, and ψk = ψij,k is the Faddeev component.

Using relative Jacobi coordinates xk = (rj−ri) and yk =
2√
3
(rk− ri+rj

2
), one can expand

these Faddeev components in a bipolar harmonic basis:

ψk =
∑

α

Fα(xk, yk)

xkyk

∣∣∣
(
lx (sisj)sx

)
jx
(lysk)jy

〉
JM
⊗
∣∣(titj)tx tk

〉
TTz

, (19)

where the index α represents all allowed combinations of the quantum numbers present in

the brackets; lx and ly are the partial angular momenta associated with respective Jacobi

coordinates; and si and ti are the spins and isospins of the individual particles. The functions

Fα(xk, yk) are called partial Faddeev amplitudes. It should be noted that the total angular

momentum J as well as its projectionM are conserved, but the total isospin T of the system

is not conserved due to the presence of charge dependent terms in nuclear interactions.

Boundary conditions for Eq. (18) can be written in Dirichlet form. Thus, the partial

Faddeev amplitudes satisfy the regularity conditions:

Fα(0, yk) = Fα(xk, 0) = 0. (20)

For neutron-deuteron scattering with energies below the breakup threshold, the Faddeev

components vanish for xk → ∞. If yk → ∞, then interactions between the particle k and

the cluster ij are negligible, and the Faddeev components ψi and ψj vanish. Then, for the

component ψk, which describes the plane wave of the particle k with respect to the bound

9



particle pair ij,

lim
yk→∞

ψk(xk,yk)lnjn =
1√
3

∑

j′nl
′
n

∣∣∣{φd(xk)}jd ⊗
{
Yl′n(ŷk)⊗ sk

}
j′n

〉

JM
⊗
∣∣∣(titj)td tk

〉
1

2
,− 1

2

× i
2

[
δl′nj′n,lnjnh

−
l′n
(prnd)− Sl′nj

′
n,lnjnh

+
l′n
(prnd)

]
, (21)

where the deuteron, being formed from nucleons i and j, has quantum numbers sd = 1,

jd = 1, and td = 0, and its wave function φd(xk) is normalized to unity. Here, rnd = (
√
3/2)yk

is the relative distance between the neutron and the deuteron target, and h±ln are the spherical

Hankel functions. The expression (21) is normalized to satisfy a condition of unit flux for

the nd scattering wave function.

Using a decomposition of the momentum p̄ which acts only on the nuclear wave function,

p̄ =
i
←−∇x − i

−→∇x

2
=
ix̂

2

(←−
∂

∂x
−
−→
∂

∂x

)
+
i

2

1

x

(←−∇Ω − i
−→∇Ω

)
, (22)

we can represent general matrix elements of local two-body parity-violating potential oper-

ators as

(−)〈Ψf |O|Ψi〉(+) = (

√
3

2
)3
∑

αβ

[∫
dxx2dyy2

(
F̃

(+)
f,α (x, y)

xy

)
X̂(x)

(
F̃

(+)
i,β (x, y)

xy

)]
〈α|Ô(x̂)|β〉,

(23)

where (±) means outgoing and incoming boundary conditions, and X̂(x) is a scalar function

or a derivative with respect to x acting on wave function. (Note that we have used the

fact that (F̃ (−))∗ = F̃ (+).) The partial amplitudes F̃i(f),α(x, y) represent the total system’s

wave function in one selected basis set among three possible angular momentum coupling

sequences for three particle angular momenta:

Ψi(f)(x, y) =
∑

α

F̃i(f),α(x, y)

xy

∣∣∣
(
lx (sisj)sx

)
jx
(lysk)jy

〉
JM
⊗
∣∣(titj)tx tk

〉
TTz

. (24)

The “angular” part of the matrix element is

〈α|Ô(x̂)|β〉 ≡
∫
dx̂

∫
dŷY†

α(x̂, ŷ)Ô(x̂)Yβ(x̂, ŷ), (25)

where Yα(x̂, ŷ) is a tensor bipolar spherical harmonic with a quantum numbers α. One can

see that the operators for “angular” matrix elements have the following structure:

Ô(x̂) = (τi ⊙ τj)(σi ⊚ σj) · (x̂, or
←−∇Ω, or

−→∇Ω), (26)
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where ⊙,⊚ = ±,×. We calculated the “angular” matrix elements by representing all op-

erators as a tensor product of isospin, spin, spatial operators. For details of the calcula-

tions of matrix elements, see paper [6]. Similar approaches have been successfully applied

for the calculations of weak and electromagnetic processes involving three-body and four-

body hadronic systems [12–17] and for the calculation of parity violating effects in neutron-

deuteron scattering [6, 18].

V. RESULTS AND DISCUSSIONS

Typical results for the contributions of different operators in a TRIV potential to matrix

elements are shown in Table I, where the mass scale was chosen to be equal to µ = 138MeV .

As was discussed, both the pionless and the pionful EFTs in the leading order, as well as the

meson exchange model, have only five operators which have non-zero coefficients. Taking

into account that the characteristic mass scale µ for operators with gn≥6 should be at least

larger than twice the pion mass, the actual contributions of these operators are at least

one order of magnitude smaller than the values shown in Table I. Thus, one can neglect

contributions from the suppressed n ≥ 6 operators provided the coupling constants satisfy

the naturalness assumption.

The possible contributions of different mesons to the TRIV amplitude at Ecm = 100 keV

are summarized in Table II. Using these data, the observable parameters at the neutron

energy Ecm = 100 keV can be re-written in terms of TRIV meson coupling constants as

1

N

dφ/T /P

dz
= (−65 rad · fm2)[ḡ(0)π + 0.12ḡ(1)π + 0.0072ḡ(0)η + 0.0042ḡ(1)η

−0.0084ḡ(0)ρ + 0.0044ḡ(1)ρ − 0.0099ḡ(0)ω + 0.00064ḡ(1)ω ] (27)

and

P /T /P =
∆σ /T /P

2σtot
=

(−0.185 b)

2σtot
[ḡ(0)π + 0.26ḡ(1)π − 0.0012ḡ(0)η + 0.0034ḡ(1)η

−0.0071ḡ(0)ρ + 0.0035ḡ(1)ρ + 0.0019ḡ(0)ω − 0.00063ḡ(1)ω ]. (28)

For a comparison, the DDH model of PV interaction with the AV18+UIX strong potential

at Ecm = 100 keV gives

1

N

dφ/P

dz
= (55 rad · fm2)

[
h1π + h0ρ(0.11) + h1ρ(−0.035) + h0ω(0.14) + h1ω(−0.12) + h

′1
ρ (−0.013)

]

(29)
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TABLE I. Typical matrix elements of the TRIV potential, Re
〈(l′yj′y),J |V

/T /P
n |(lyjy),J〉
C̃np

, in the jj-coupling

scheme with the AV 18 + UIX strong potential in the zero energy limit. The imaginary part of

the matrix element is zero in the zero energy limit. Scalar functions are chosen as m2
π

4π Y1(mπr) for

operators 1−5, and m2
π

4π Y0(mπr) for operators 6−16. O3,8,12 = 0 because of isospin selection rules.

All numbers are in units of fm2.

n 〈11
2 |v1/2|01

2 〉/p 〈13
2 |v1/2|01

2 〉/p 〈11
2 |v3/2|01

2 〉/p 〈13
2 |v3/2|01

2 〉/p

1 0.590 × 10−01 −0.787 × 10−01 0.151 × 10−01 0.177 × 10−01

2 0.627 × 10+00 −0.863 × 10−01 −0.144 × 10+00 −0.167 × 10+00

4 −0.268 × 10+00 0.107 × 10+00 0.330 × 10−01 0.379 × 10−01

5 0.321 × 10+00 −0.267 × 10+00 −0.199 × 10+00 −0.691 × 10−01

6 0.719 × 10−01 −0.104 × 10−01 −0.115 × 10−01 −0.141 × 10−01

7 −0.206 × 10−01 0.520 × 10−02 0.337 × 10−01 0.384 × 10−01

9 −0.650 × 10−01 0.865 × 10−02 0.238 × 10−03 0.134 × 10−02

10 0.106 × 10−01 −0.932 × 10−03 0.658 × 10−03 0.622 × 10−03

11 0.171 × 10−01 −0.548 × 10−03 −0.237 × 10−02 −0.273 × 10−02

13 −0.163 × 10−01 0.111 × 10−02 0.131 × 10−03 0.288 × 10−03

14 0.649 × 10−02 −0.628 × 10−02 −0.876 × 10−02 −0.250 × 10−03

15 0.338 × 10−01 −0.230 × 10−01 −0.293 × 10−01 −0.198 × 10−02

16 0.128 × 10−01 −0.816 × 10−02 −0.119 × 10−01 −0.335 × 10−03

TABLE II. The difference of scattering amplitudes, (f
/T /P
+ − f

/T /P
− )/(pCn) for the TRIV potential

operators n = 1, 2, 4, and 5 for mass scales corresponding to meson masses at Ecm = 100 keV. All

numbers are in units of fm.

n ∆fπ

p
∆fη

p
∆fρ

p
∆fω

p

1 −0.615 − i0.0567 −0.317 − i0.00738 −0.125 − i0.00329 −0.119 − i0.00317

2 −7.58 + i1.07 −0.761 + i0.0901 −0.302 + i0.0361 −0.288 + i0.0345

4 3.14 − i0.300 0.571 − i0.0227 0.225 − i0.00873 0.215 − i0.00832

5 −4.99 + i0.848 −0.262 + i0.0717 −0.0934 + i0.0273 −0.0888 + i0.0260
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P /P =
∆σ /P

2σtot
=

(0.395 b)

2σtot

[
h1π + h0ρ(0.021) + h1ρ(0.0027) + h0ω(0.022) + h1ω(−0.043) + h

′1
ρ (−0.012)

]
.

(30)

These expressions correspond to

1

N

dφ/P

dz
= (59 rad · fm2)

[
h1π + h0ρ(0.10) + h0ω(0.14)

+h1ρ(−0.042) + h1ω(−0.12) + h
′1
ρ (0.014)

]
(31)

in the zero energy limit, and to

P /P =
∆σ /P

2σtot
=

(0.140 b)

2σtot

[
h1π + h0ρ(0.021) + h0ω(0.022)

+h1ρ(0.002) + h1ω(−0.044) + h
′1
ρ (−0.012)

]
(32)

at Ecm = 10 keV, which were calculated using the DDH-II/AV18+UIX potentials in paper

[6]. The equations have the expected dependence of ∆σ /T /P and ∆σ /P on neutron energy as

(En)
1/2. The angle of the spin rotation, being proportional to the scattering length, is not

sensitive to neutron energy in the low energy regime.

The results of Table II could also be considered as an illustration of the cutoff dependence

of matrix elements for the EFT calculations. However, physical observables do not depend

on the cutoff due to the renormalization of C 6π
i = − c 6πi µ

2

2mN
. In the pionless EFT with cutoff

µ = mπ, the observables can be written in terms of dimensional LECs, c 6πi (in fm2),

1

N

dφ/T /P

dz
= (−2.45 rad)[c 6π2 + c 6π1 (0.081) + c 6π4 (0.41) + c 6π5 (0.66)],

P /T /P =
∆σ /T /P

2σtot
=

(−0.35)
σtot

[c 6π2 + c 6π1 (−0.053) + c 6π4 (−0.28) + c 6π5 (0.79)]. (33)

For the case of the pionful EFT, the one-pion exchange contribution is considered explic-

itly, and all other cutoffs for contact terms should be larger than the pion mass. Therefore,

the results in Table II for pion, ρ, and ω masses correspond to results for different µ’s. For

example, choosing the cutoff scale µ = mρ, the expressions for TRIV observables are

1

N

dφ/T /P

dz
= (−65 rad · fm2)[ḡ(0)π + 0.12ḡ(1)π ]

+(−3.05 rad)[cπ2 + cπ1 (0.41) + cπ4 (−0.75) + cπ5 (0.31)] (34)

and

P /T /P =
∆σ /T /P

2σtot
=

(−0.185 b)

2σtot
[ḡ(0)π + 0.26ḡ(1)π ]

+
(−0.728)
2σtot

[cπ2 + cπ1 (−0.091) + cπ4 (−0.24) + cπ5 (0.76)]. (35)
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It should be noted that all existing calculations of TRIV couplings are based on the meson

exchange model, since EFT low energy constants for TRIV interactions are unknown. Using

the meson exchange model, one can predict TRIV effects for different mechanisms of CP-

violation, because the values of the TRIV meson-nucleon coupling constants depend on the

model of CP-violation.

The results of the calculations show that the dominant contributions to TRIV effects

come from the first five operators. Moreover, in the meson exchange formalism, the pion

exchange contribution is dominant, provided that CP-odd coupling constants for all mesons

have the same order of magnitude. Thus, comparing Eqs.(27) and (28) with Eqs.(29) and

(30), one can see that contributions from ρ and ω mesons to TRIV effects are suppressed

by about one order of magnitude in comparison to the contributions of these mesons to PV

effects. This fact is especially interesting because, in the majority of models of CP violation,

TRIV pion nucleon coupling constants are much larger than ρ and ω ones (for details see, for

example [19–22] and references therein.) Assuming that the dominant contributions come

from π -mesons and using the conventional parameter [8, 23] λ = ḡπ/h
1
π, one can describe

the TRIV observables in terms of the corresponding PV ones as

φ/T /P

φ/P
≃ (1.2)

(
ḡ
(0)
π

h1π
+ (0.12)

ḡ
(1)
π

h1π

)
,

∆σ /T /P

∆σ /P
≃ (−0.47)

(
ḡ
(0)
π

h1π
+ (0.26)

ḡ
(1)
π

h1π

)
. (36)

These ratios of TRIV and PV parameters do not depend on neutron energy.

It is useful to relate these estimates to the existing experimental constrains obtained

from electric dipole moment (EDM) measurements, even though the relationships are model

dependent. For example, the CP-odd coupling constant ḡ
(0)
π could be related to the value of

the neutron electric dipole moment (EDM) dn generated via a π− -loop in the chiral limit

[24] as

dn =
e

4πmN
ḡ(0)π gπ ln

Λ

mπ
, (37)

where Λ ≃ mρ. Then, using the experimental limit [25] on dn, one can estimate ḡ
(0)
π as less

2.5×10−10. The constant ḡ
(1)
π can be bounded using the constraint [26] on the 199Hg atomic

EDM as ḡ
(1)
π < 0.5× 10−11 [27].

Theoretical predictions for λ can vary from 10−2 to 10−10 for different models of CP

violation. See, for example, [8, 19–21, 23] and references therein. Therefore, one can estimate
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a range of possible values of the TRIV observable and relate a particular mechanism of CP-

violation to their values. It should be noted that the above parametrization assumes that

the pi meson exchange contribution is dominant for PV effects. Should the −→n + p→ d+ γ

experiment confirm the “best value” of the DDH pion-nucleon coupling constant h1π, Eqs.(36)

can be considered as an estimate for the value of TRIV effects in neutron-deuteron scattering.

Otherwise, if h1π is small, one needs to use hρ or hω with corresponding weights, which will

increase the relative values of TRIV effects.
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