
This is the accepted manuscript made available via CHORUS. The article has been
published as:

π and ρ mesons, and their diquark partners, from a contact
interaction

H. L. L. Roberts, A. Bashir, L. X. Gutiérrez-Guerrero, C. D. Roberts, and D. J. Wilson
Phys. Rev. C 83, 065206 — Published 22 June 2011

DOI: 10.1103/PhysRevC.83.065206

http://dx.doi.org/10.1103/PhysRevC.83.065206


CB10302

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

π- and ρ-mesons, and their diquark partners, from a contact interaction

H.L. L. Roberts,1, 2, 3 A. Bashir,4, 5 L.X. Gutiérrez-Guerrero,4 C.D. Roberts,1, 2, 5, 6 and D. J. Wilson1

1Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich, Germany
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We present a unified Dyson-Schwinger equation treatment of static and electromagnetic prop-
erties of pseudoscalar and vector mesons, and scalar and axial-vector diquark correlations, based
upon a vector-vector contact-interaction. A basic motivation for this study is the need to document
a comparison between the electromagnetic form factors of mesons and those diquarks which play
a material role in nucleon structure. A notable result, therefore, is the large degree of similarity
between related meson and diquark form factors. The simplicity of the interaction enables compu-
tation of the form factors at arbitrarily large spacelike-Q2, which enables us to expose a zero in the
ρ-meson electric form factor at zρQ ≈

√
6mρ. Notably, rρz

ρ
Q ≈ rDz

D
Q, where rρ, rD are, respectively,

the electric radii of the ρ-meson and deuteron.
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I. INTRODUCTION

In numerous respects, π- and ρ mesons are the simplest bound-states to study in QCD. That is, of course, supposing
that the framework employed is Poincaré-covariant, capable of simultaneously implementing light-quark confinement
and expressing dynamical chiral symmetry breaking (DCSB), and admits a global-symmetry-preserving truncation
scheme. All these features are required because, amongst many other things, the pion is the lightest hadron and
QCD’s Goldstone mode, the ρ-meson couples strongly to two pions and is an important part of the photon’s vacuum
polarisation, and modern facilities probe hadrons with momentum transfers far in excess of any reasonable constituent-
quark-like mass-scale.
The Dyson-Schwinger equations (DSEs) [1, 2] provide an approach to hadron physics that is distinguished by its

ability to satisfy these demands;1 and there is a large body of research that addresses π- and ρ-meson properties.
For example, the analysis of static properties is reported in Refs. [7–27] and of interactions in Refs. [28–47]. There is
nevertheless a need to return to this theme; namely, a programme aimed at charting the interaction between light-
quarks by explicating the impact of differing assumptions about the behaviour of the Bethe-Salpeter kernel on hadron
elastic and transition form factors [48].
To expose the connection we remark that in quantum field theory a baryon appears as a pole in a six-point quark

Green function. The pole’s residue is proportional to the baryon’s Faddeev amplitude, which is obtained from a
Poincaré covariant Faddeev equation that sums all possible quantum field theoretical exchanges and interactions that
can take place between three dressed-quarks. A tractable truncation of the Faddeev equation is based [49] on the
observation that an interaction which describes mesons also generates diquark correlations in the colour-3̄ channel [9].
The dominant correlations for ground state octet and decuplet baryons are scalar (0+) and axial-vector (1+) diquarks
because, for example, the associated mass-scales are smaller than the baryons’ masses and their parity matches that
of these baryons. This is elucidated in Ref. [50].
At leading-order in a global-symmetry preserving truncation of the DSEs [15, 17], simple changes in the equations

describing π- and ρ mesons yield expressions that provide detailed information about the scalar and axial-vector
diquarks; e.g., their masses [9, 10, 18, 23, 50, 51], and electromagnetic elastic [41] and transition form factors,
which are critical elements in the computation of a baryon’s kindred properties. It is therefore natural to elucidate
concurrently the properties of π- and ρ-mesons and those of the scalar and axial-vector diquark correlations because
it opens the way to a unified, symmetry-preserving explanation of meson and baryon properties as they are predicted
by a single interaction. The potential of this approach is apparent in Refs. [52, 53] but it has yet to be fully realised.
For the present the best connection is provided by the less rigorous approach of Ref. [54], which uses more parameters
to express features of QCD but also predicts and describes simultaneously a larger array of phenomena [55–57].
Herein, as part of the programme outlined above, we describe results for a range of static and dynamic properties of

these simplest u/d-mesons and -diquark-correlations as produced by a vector-vector current-current interaction that is
mediated by a momentum-independent boson propagator; i.e., by the symmetry-preserving regularisation of a contact
interaction. Given the large body of work based on QCD-like vector-boson propagation that is already available, this
study will provide numerous points for comparison and contrast that are relevant to existing and planned experiments.
In Sec. II we describe a global-symmetry-preserving regularisation and DSE-formulation of the contact interaction,

following Refs. [44, 46, 50]. Our scheme is such that confinement is manifest, and chiral symmetry and the pattern by
which it is broken are veraciously represented. In addition to the current-quark mass, the model has two parameters.
In Sec. III we describe results for π- and ρ-meson electromagnetic elastic and transition form factors, computed using
the rainbow-ladder truncation of the DSEs; with the analogous discussion of diquark correlations reported in Sec.IV.
Section V provides a summary and perspective.

II. CONTACT VECTOR-CURRENT-CURRENT INTERACTION

A. Gap equation

The typical starting point for a DSE study of hadron phenomena is the dressed-quark propagator, which is obtained
from the gap equation:

S(p)−1 = iγ · p+m

+

∫

d4q

(2π)4
g2Dµν(p− q)

λa

2
γµS(q)

λa

2
Γν(q, p), (1)

1 Within the DSE framework, gauge invariance follows from gauge covariance, with which a truncation is imbued via the dressed-quark-
gluon vertex. A prescription and programme exist for addressing this challenge; e.g., Refs. [3–6].
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wherein m is the Lagrangian current-quark mass, Dµν is the vector-boson propagator and Γν is the quark–vector-
boson vertex. Much is now known about Dµν in QCD [58–61] and nonperturbative information is accumulating on
Γν [4, 6, 26, 62, 63].

However, our goal is to build a stock of material that can be used to identify unambiguous signals in experiment
for the pointwise behaviour of: the interaction between light-quarks; the light-quarks’ mass-function; and other
similar quantities. Whilst these are particular qualities, taken together they will enable a characterisation of the
nonperturbative behaviour of the theory underlying strong interaction phenomena [45, 48]. We therefore elucidate
predictions following from the assumption

g2Dµν(p− q) = δµν
1

m2
G

, (2)

where mG is a gluon mass-scale, and proceed by embedding this interaction in a rainbow-ladder truncation of the
DSEs, which is the leading-order in the most widely used, global-symmetry-preserving truncation scheme [17]. This
means

Γν(p, q) = γν (3)

in Eq. (1) and in the subsequent construction of the Bethe-Salpeter kernels.

One may view the interaction in Eq. (2) as being inspired by models of the Nambu–Jona-Lasinio type [64]. However,
as will become plain, our treatment is atypical. It is also worth remarking that Eq. (2) is an antithetical complement to
the interaction proposed in Ref. [65]; i.e., a δ-function in four-momentum space, which is confining because it provides
a strong interaction that is independent of separation, x2.

Using Eqs. (2), (3), the gap equation becomes

S−1(p) = iγ · p+m+
4

3

1

m2
G

∫

d4q

(2π)4
γµ S(q) γµ , (4)

an equation in which the integral possesses a quadratic divergence, even in the chiral limit. If the divergence is
regularised in a Poincaré covariant manner, then the solution is

S(p)−1 = iγ · p+M , (5)

where M is momentum-independent and determined by

M = m+
M

3π2m2
G

∫ ∞

0

ds s
1

s+M2
. (6)

One must specify a regularisation procedure in order to proceed. We write [66]

1

s+M2
=

∫ ∞

0

dτ e−τ(s+M2)

→
∫ τ2

ir

τ2
uv

dτ e−τ(s+M2) (7)

=
e−(s+M2)τ2

uv − e−(s+M2)τ2
ir

s+M2
, (8)

where τir,uv are, respectively, infrared and ultraviolet regulators. It is apparent from Eq. (8) that a finite value of
τir =: 1/Λir implements confinement by ensuring the absence of quark production thresholds [67, 68]. We note that
since Eq. (2) does not define a renormalisable theory, Λuv := 1/τuv cannot be removed but instead plays a dynamical
role and sets the scale of all dimensioned quantities. The gap equation can now be written

M = m+
M

3π2m2
G

Ciu(M2) , (9)

where Ciu(M2)/M2 = Γ(−1,M2τ2uv)− Γ(−1,M2τ2ir), with Γ(α, y) being the incomplete gamma-function.
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B. Point-meson Bethe-Salpeter equation

In rainbow-ladder truncation, with the interaction in Eq. (2), the homogeneous Bethe-Salpeter equation for a colour-
singlet meson is

Γ(k;P ) = −4

3

1

m2
G

∫

d4q

(2π)4
γµχ(q;P )γµ , (10)

where χ(q;P ) = S(q + P )Γ(q;P )S(q) and Γ(q;P ) is the meson’s Bethe-Salpeter amplitude. Since the integrand does
not depend on the external relative-momentum, k, then a symmetry-preserving regularisation of Eq. (10) will yield
solutions that are independent of k. It follows that if the interaction in Eq. (2) produces bound states, then the
relative momentum between the bound-state’s constituents can assume any value with equal probability. This is the
defining characteristic of a pointlike composite particle.
With a dependence on the relative momentum forbidden by the interaction, the pseudoscalar and vector Bethe-

Salpeter amplitudes take the general form2 [69]

Γπ(P ) = iγ5Eπ(P ) +
1

M
γ5γ · PFπ(P ) , (11)

Γρ
µ(P ) = γT

µEρ(P ) +
1

M
σµνPνFρ(P ) , (12)

where Pµγ
T
µ = 0 and γT

µ + γL
µ = γµ. We observe that

Fρ(P )
ladder≡ 0 . (13)

However, it should be borne in mind that this is an artefact of the rainbow-ladder truncation; viz., even using Eq. (2),
Fρ(P ) 6= 0 in any symmetry-preserving truncation that goes beyond this leading-order [17]. We will see that the
accident expressed in Eq. (13) has material consequences.

C. Ward-Takahashi identities

No study of π- or ρ-meson observables is meaningful unless it ensures expressly that the vector and axial-vector
Ward-Takahashi identities are satisfied. The m = 0 axial-vector identity states (k+ = k + P )

PµΓ5µ(k+, k) = S−1(k+)iγ5 + iγ5S
−1(k) , (14)

where Γ5µ(k+, k) is the axial-vector vertex, which is determined by

Γ5µ(k+, k) = γ5γµ − 4

3

1

m2
G

∫

d4q

(2π)4
γαχ5µ(q+, q)γα . (15)

We must therefore implement a regularisation that maintains Eq. (14). This requirement is readily found to entail
the following two chiral limit identities [44]:

M =
8

3

M

m2
g

∫

d4q

(2π)4

[

1

q2 +M2
+

1

q2+ +M2

]

, (16)

0 =

∫

d4q

(2π)4

[

P · q+
q2+ +M2

− P · q
q2 +M2

]

, (17)

which must be satisfied after regularisation. Analysing the integrands using a Feynman parametrisation, one arrives
at the follow identities for P 2 = 0 = m:

M =
16

3

M

m2
G

∫

d4q

(2π)4
1

[q2 +M2]
, (18)

0 =

∫

d4q

(2π)4

1
2q

2 +M2

[q2 +M2]2
. (19)

2 We assume isospin symmetry throughout and hence do not include the Pauli isospin matrices explicitly.
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Equation (18) is just the chiral-limit gap equation. Hence it requires nothing new of the regularisation scheme. On
the other hand, Eq. (19) states that the axial-vector Ward-Takahashi identity is satisfied if, and only if, the model
is regularised so as to ensure there are no quadratic or logarithmic divergences. Unsurprisingly, these are the just
the circumstances under which a shift in integration variables is permitted, an operation required in order to prove
Eq. (14).
It is notable, too, that Eq. (14) is valid for arbitrary P . In fact its corollary, Eq. (16), may be used to demonstrate

that in the chiral limit the two-flavour scalar-meson rainbow-ladder truncation of the contact-interaction DSEs pro-
duces a bound-state with mass mσ = 2M [50, 70]. In the presence of a momentum-dependent dressed-quark mass
function, one could reverse this association and define a chiral-limit dressed-quark constituent-mass as one-half the
mass of the lightest rainbow-ladder scalar meson. This procedure yields M0 ≃ 0.3GeV, as may readily be determined
from Ref. [2].
The second corollary, Eq. (17), entails

0 =

∫ 1

0

dα
[

Ciu(ω(M2, α, P 2)) + Ciu
1 (ω(M2, α, P 2))

]

, (20)

with

ω(M2, α, P 2) = M2 + α(1− α)P 2 , (21)

Ciu
1 (z) = −z(d/dz)Ciu(z)

= z
[

Γ(0,M2r2uv)− Γ(0,M2r2ir)
]

. (22)

The vector Ward-Takahashi identity

PµiΓ
γ
µ(k+, k) = S−1(k+)− S−1(k) , (23)

wherein Γγ
µ is the dressed-quark-photon vertex, is crucial for a sensible study of electromagnetic form factors [29].

Ideally, the vertex needs to be dressed at a level consistent with the truncation used to compute the bound-state’s
Bethe-Salpeter amplitude [33]. In our case this means the vertex should be determined from the following inhomoge-
neous Bethe-Salpeter equation:

Γµ(Q) = γµ − 4

3

1

m2
G

∫

d4q

(2π)4
γαχµ(q+, q)γα , (24)

where χµ(q+, q) = S(q + P )Γµ(Q)S(q). Owing to the momentum-independent nature of the interaction kernel, the
general form of the solution is

Γµ(Q) = γT
µ PT (Q

2) + γL
µPL(Q

2) , (25)

where Qµγ
T
µ = 0 and γT

µ + γL
µ = γµ. This simplicity doesn’t survive with a more sophisticated interaction nor with

Eq. (2) beyond rainbow-ladder truncation [50].
Inserting Eq. (25) into Eq. (24), one readily obtains

PL(Q
2) = 1 , (26)

owing to Eq. (17). Using this same identity, one finds

PT (Q
2) =

1

1 +Kγ(Q2)
, (27)

with (C1(z) = C1(z)/z)

Kγ(Q
2) =

1

3π2m2
G

×
∫ 1

0

dαα(1 − α)Q2 Ciu

1 (ω(M2, α,Q2)) . (28)

Plainly,

PT (Q
2 = 0) = 1 , (29)
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FIG. 1. (Color online) Dressing function for the transverse piece of the quark-photon vertex; viz., PT (Q
2) in Eq. (27), computed

using the parameter values described in connection with Table I.

so that at Q2 = 0 in the rainbow-ladder treatment of the interaction in Eq. (2) the dressed-quark-photon vertex is
equal to the bare vertex.3

However, this is not true for Q2 6= 0. In fact the transverse part of the dressed-quark-photon vertex will display a
pole at that Q2 < 0 for which

1 +Kγ(Q
2) = 0 . (30)

This is just the model’s Bethe-Salpeter equation for the ground-state vector meson.
In Fig. 1 we depict the function that dresses the transverse part of the quark-photon vertex. The pole associated

with the ground-state vector meson is clear. This is accompanied by a minimum at spacelike-Q2, a feature observed
in all computations of the dressed-quark-gluon vertex; e.g., Ref. [33]. The minimum arises because, in an internally
consistent computation, spectral strength in the 1−−-channel is shifted to the ρ-meson pole. One cannot simulta-
neously satisfy the Ward-Takahashi identity, PT (Q

2 = 0) = 1, and exhibit the ρ-pole unless the dressing function
is depleted for Q2 > 0. The precise location and depth of the minimum are model-dependent but its existence is
model-independent. Another important feature is the behaviour at large spacelike-Q2; namely, PT (Q

2) → 1− as
Q2 → ∞. This is the statement that a dressed-quark is pointlike to a large-Q2 probe. The same is true in QCD, up
to the logarithmic corrections which are characteristic of an asymptotically free theory [33].

D. Bethe-Salpeter kernels for π and ρ

At this point we can write the explicit form of Eq. (10) for the pion:
[

Eπ(P )
Fπ(P )

]

=
1

3π2m2
G

[

KEE KEF

KFE KFF

] [

Eπ(P )
Fπ(P )

]

, (31)

where

KEE =

∫ 1

0

dα
[

Ciu(ω(M2, α,−m2
π))

+2α(1− α)m2
π C

iu

1 (ω(M2, α,−m2
π))

]

, (32)

KEF = −m2
π

∫ 1

0

dα Ciu

1 (ω(M2, α,−m2
π)), (33)

KFE =
1

2
M2

∫ 1

0

dα Ciu

1 (ω(M2, α,−m2
π)), (34)

KFF = −2KFE . (35)

3 Equations (26), (29) guarantee a massless photon and show that our regularisation also ensures preservation of the Ward-Takahashi
identity for the photon vacuum polarisation [71].
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This is an eigenvalue problem for the pion mass-squared, m2
π. NB. We used Eq. (20) to arrive at Eq. (35).

The explicit form of Eq. (10) for the ρ-meson, whose solution yields its mass-squared, is

1 +Kγ(−m2
ρ) = 0 , (36)

where Kγ is given in Eq. (28).
In the computation of observables, one must use the canonically-normalised Bethe-Salpeter amplitudes. For the

rainbow-ladder pion this means that Γπ is rescaled to satisfy

Pµ = Nc tr

∫

d4q

(2π)4
Γπ(−P )

∂

∂Pµ
S(q + P ) Γπ(P )S(q) , (37)

which, in the chiral limit, becomes

1 =
Nc

4π2

1

M2
C1(M2; τ2ir, τ

2
uv)Eπ [Eπ − 2Fπ]. (38)

For the rainbow-ladder ρ-meson, on the other hand, the vector meson analogue of Eq. (37) requires that

1

E2
ρ

= −9m2
G

d

dz
Kγ(z)

∣

∣

∣

∣

z=−m2
ρ

. (39)

In terms of the canonically normalised Bethe-Salpeter amplitudes, the leptonic decay constants of the π- and
ρ-mesons are respectively given by

fπ =
1

M

3

2π2
[Eπ − 2Fπ]KP 2=−m2

π

FE , (40)

fρ = −9

2

Eρ

mρ
Kγ(−m2

ρ) . (41)

Another important low-energy property is the in-pion condensate4

κπ = fπ
3

4π2
[EπKP 2=−m2

π

EE + Fπ KP 2=−m2
π

EF ] . (42)

In the chiral limit κπ → κ0
π = −〈q̄q〉; i.e., the so-called vacuum quark condensate [72]. Moreover, in this limit, too,

one can readily verify that [44]

Eπ
m=0
=

M

fπ
, (43)

which is a particular case of one of the Goldberger-Treiman relations proved in Ref. [19], and Fπ(P = 0) satisfies a
similar identity.

III. π AND ρ ELASTIC AND TRANSITION FORM FACTORS

In order to compute the form factors we need to fix the model’s two parameters; namely, mG and Λuv.
5 We

do that by performing a least-squares fit in the chiral limit to [44, 46, 73–75]: M0 = 0.40GeV, κ0
π = (0.22GeV)3,

f0
π = 0.088GeV, m0

ρ = 0.78GeV and f0
ρ = 0.15GeV. This procedure yields the results in Table I. We remark

that, in fitting, the same weight was given to each quantity because they are equally important. In dealing with
electromagnetic form factors, some might suppose that one should lean more heavily toward obtaining the empirical
value of mρ. However, the dressed-quark mass, in-pion condensate and pion leptonic decay constant are low-energy
observables that are just as important as mρ. Furthermore, attempts to suppress the value of mρ lead invariably to a
marked reduction in the value of fρ; e.g., a 20% reduction in mG and 10% reduction in Λuv, produce mρ = 0.91GeV
(a 2% reduction) and fρ = 0.11GeV (a 15% reduction). Given the importance of fρ in electromagnetic processes,
it must be weighted at least equally with mρ. A description of static pion and ρ-meson observables with a 13%

4 There is an analogous in-ρ-meson condensate but that will be discussed elsewhere.
5 We fix Λir = 0.24GeV≈ ΛQCD since rQCD := 1/ΛQCD ≈ 0.8 fm is a length-scale typical of confinement.
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TABLE I. Results obtained with (in GeV) mG = 0.132 , Λir = 0.24 , Λuv = 0.905, which yield a root-mean-square relative-error
of 13% in comparison with our specified goals for the observables. Dimensioned quantities are listed in GeV.

m Eπ Fπ Eρ M κ
1/3
π mπ mρ fπ fρ

0 3.568 0.459 1.520 0.358 0.241 0 0.919 0.100 0.130
0.007 3.639 0.481 1.531 0.368 0.243 0.140 0.928 0.101 0.129

root-mean-square relative-error, in which mρ is just 19% too large and fρ, 13% too small, is the best result achievable
in an internally-consistent, symmetry-preserving treatment of the vector-vector contact-interaction we have defined.

It is worth observing that mG is merely the single parameter we have chosen to characterise g2Dµν(p − q) in
Eq. (2). We could equally have written g2D = 4παir/[m

ol
G]

2, where mol
G = 0.8GeV is a mass-scale typical of the

one-loop renormalisation-group-improved interaction introduced in Refs. [20, 22]. With this alternative prescription,
mG = 0.132GeV corresponds to αir/π = 0.93, a magnitude commensurate with contemporary estimates of the
zero-momentum value of a running-coupling in QCD [75–78].

A. π-meson elastic form factors

We are solving the interaction of Eq. (2) in the rainbow-ladder truncation; i.e., at leading-order in the nonpertur-
bative global-symmetry-preserving truncation of Refs. [15, 17]. At this order the generalised impulse approximation is
computed for three-point scattering processes [29], such as elastic form factors. An analysis of the associated triangle
diagram yields the formulae in Sec. A 1 and the computed result is depicted in Fig. 2. Two features are immedi-
ately apparent; viz., the pole associated with the ρ-meson at timelike momentum, which is a consequence of dressing
the quark-photon vertex; and a momentum-independent interaction produces Fπ(Q

2) = constant as Q2 → ∞. The
following function is a valid interpolation of the full result on the domain shown:

F em
π (Q2)

interpolation
=

1 + 0.33Q2 + 0.024Q4

1 + 1.20Q2 + 0.053Q4
(44)

In Table II we report the pion charge radius:

r2π = −6
d

dQ2
Fπ(Q

2)

∣

∣

∣

∣

Q2=0

. (45)

The result is less than experiment (rπ = 0.672±0.008 fm [79]). This owes in small part to our omission of pseudoscalar
meson rescattering effects [80] but more to the large value we obtain for the ρ-meson’s mass. It cannot be remedied
in our global-symmetry-preserving rainbow-ladder treatment of Eq. (2) because all dimensioned quantities are too
closely tied to the value of M . An interaction which preserves the one-loop renormalisation group behaviour of QCD
[20, 22] provides decoupling between the values of ultraviolet and infrared phenomena, such as κπ and mρ.

B. ρ-meson elastic form factors

The JPC = 1−− ρ-meson has three elastic form factors and we follow Ref. [43] in defining them. Denoting the
incoming photon momentum by Q, and the incoming and outgoing ρ-meson momenta by pi = K − Q/2 and pf =
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FIG. 2. (Color online) F em
π (Q2) computed in rainbow-ladder truncation from the interaction in Eq. (2): solid curve – fully

consistent, i.e., with a dressed-quark-photon vertex so that the ρ-pole appears; and dashed curve – computed using a bare
quark-photon vertex. Dotted curve – fit to the result in Ref. [35], which was obtained with a momentum-dependent interaction
that preserves the one-loop renormalisation group behaviour of QCD, included a consistently-dressed quark-photon vertex, and
serves to illustrate the trend of contemporary data.

TABLE II. Row 1 : Form factor radii (in fm), and magnetic and quadrupole moments for the ρ-meson, Gρ
M (Q2 = 0) and

Gρ
Q(Q

2 = 0) respectively, computed with (in GeV) m = 0.007, mG = 0.132 , Λir = 0.24 , Λuv = 0.905. For a structureless vector
meson, µ = 2 and Q = −1 [81]. The next four rows list results reported elsewhere. Experimentally, rπ = 0.672± 0.008 fm [79].
(NB. None of the quoted computations included contributions from nonresonant pseudoscalar-meson final-state interactions
and hence agreement with the experimental value of rπ should be seen as a defect of the associated model [80]. The nature
of this flaw is understood within the DSE context, where such contributions can be viewed as computable corrections to the
rainbow-ladder truncation [52].) The last two lines report results for the scalar and axial-vector diquark correlations. Here
the magnetic and quadrupole moments should be multiplied by the relevant charge factor; viz., e{uu} = 4

3
, e{ud} = 1

3
and

e{dd} = − 2

3
.

rπ rEρ rMρ rEρ µρ Qρ

This work 0.45 0.56 0.51 0.51 2.11 -0.85
Ref. [43] 0.66 0.73 2.01 -0.41
Refs. [82, 83] 0.56 0.61 2.69 -0.84
Refs. [84, 85] 0.66 0.61 2.14 -0.79
Refs. [86, 87] 0.66 0.52 1.92 -0.43

r0+ rE
1+

rM
1+

rE
1+

µ1+ Q1+

This work 0.49 0.55 0.51 0.51 2.13 -0.81
Ref.˙[41] 0.71

K +Q/2, then K ·Q = 0, K2 +Q2/4 = −m2
ρ and the ρ-γ-ρ vertex can be expressed:

Λλ,µν(K,Q) =

3
∑

j=1

T j
λ,µν(K,Q)Fj(Q

2) , (46)

T 1
λ,µν(K,Q) = 2KλPT

µα(p
i)PT

αν(p
f ) , (47)

T 2
λ,µν(K,Q) =

[

Qµ − piµ
Q2

2m2
ρ

]

PT
λν(p

f )

−
[

Qν + pfν
Q2

2m2
ρ

]

PT
λµ(p

i) , (48)

T 3
λ,µν(K,Q) =

Kλ

m2
ρ

[

Qµ − piµ
Q2

2m2
ρ

] [

Qν + pfν
Q2

2m2
ρ

]

,

(49)
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where PT
µν(p) = δµν − pµpν/p

2. A symmetry-preserving regularisation scheme is essential here so that the following
identities are preserved throughout the analysis:

QλΛλ,µν(K,Q) = 0 (50)

piµΛλ,µν(K,Q) = 0 = pfνΛλ,µν(K,Q) . (51)

The electric, magnetic and quadrupole form factors are constructed as follows:

Gρ
E(Q

2) = F1(Q
2) +

2

3
ηGQ(Q

2) , (52)

Gρ
M (Q2) = −F2(Q

2) , (53)

Gρ
Q(Q

2) = F1(Q
2) + F2(Q

2) + [1 + η]F3(Q
2) , (54)

where η = Q2/[4m2
ρ]. In the limit Q2 → 0, these form factors define the charge, and magnetic and quadrupole

moments of the ρ-meson; viz.,

Gρ
E(Q

2 = 0) = 1 , (55)

Gρ
M (Q2 = 0) = µρ , G

ρ
Q(Q

2 = 0) = Qρ . (56)

It is readily seen that Eq. (55) is a symmetry constraint. One has GE(Q
2 = 0) = F1(Q

2 = 0) and

Λ(K,Q)
Q2→0
= 2Kλ PT

µα(K)PT
αν(K)F1(0) . (57)

Using Eqs. (23), (27), (A10), this becomes

Kλ PT
µν(K)F1(0)

= NcE
2
ρtrD

∫

d4q

(2π4)
iγν

∂

∂Kλ
S(ℓ+K)iγµ S(ℓ) . (58)

The right-hand-side (rhs) is simply the analogue of Eq. (37) for the rainbow-ladder vector meson. Hence, when Eρ is
normalised according to Eq. (39) and so long as one employs a global-symmetry-preserving regularisation procedure,
the rhs is equal to Kλ PT

µν(K) and thus F1(0) = 1.
We compute the form factors using the formulae in Sec. A 2. In Table II we report form factor radii, and the

magnetic and quadrupole moments. The comments following Eq. (45) are also relevant to the magnitudes of the
ρ-meson radii.
From the Table we find rπ/rρ = 0.80. However, an interpretation of this value is not straightforward because we

have consistently used the rainbow-ladder truncation; and whereas Fπ(P ) 6= 0 always, Fρ(P ) = 0 in rainbow-ladder
truncation. (NB. In all more sophisticated truncations, Fρ(P ) 6= 0.) Another relevant comparison may therefore
be obtained if one artificially sets Fπ(P ) = 0 when computing the pion form factor. This yields rπ = 0.51 fm and
therefore rπ/rρ = 0.92. Now, the DSE computation in Ref. [43], which employs a QCD-based interaction, produces
rπ/rρ = 0.90; and in combination, the more phenomenological DSE studies of Refs. [82, 83] yield rπ/rρ = 0.92. This
context establishes that our result is actually typical of studies in which the structure of π- and ρ-mesons is treated
equally.
Our computed ρ-meson electric form factor is plotted in Fig. 3. It displays a zero at Q2 = 5.0GeV2 and remains

negative thereafter. Given that the deuteron is a weakly-bound J = 1 system, constituted from two fermions, and its
electric form factor possesses a zero [88], it is unsurprising that Gρ

E(Q
2) exhibits a zero. It is notable in addition that

the deuteron’s zero is located at zDQ :=
√
Q2 = 0.8GeV, so that

zDQrD ≈ zρQr
E
ρ , (59)

where rD is the deuteron’s radius. An interpolation valid on Q2 ∈ [−m2
ρ, 10GeV2] is

Gρ
E(Q

2)
interpolation

=
1− 0.20Q2

1 + 1.15Q2 − 0.013Q4
. (60)

In Fig. 3 we also depict the magnetic and quadrupole form factors of the ρ-meson, both normalised by their values
Q2 = 0. Notably, neither of these two form factors change sign: for Q2 > −m2

ρ, G
ρ
M (Q2) is positive definite and
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FIG. 3. (Color online) Solid curve – ρ-meson electric form factor, Gρ
E(Q

2), which exhibits a zero at Q2 = 5.0GeV2. (It is
notable that 1 − 2

3
η = 0 for Q2 = 6m2

ρ = 5.2GeV2.) The dashed curve, Gρ
M (Q2)/µρ, and dot-dashed curve, Gρ

Q(Q
2)/Qρ, are

almost indistinguishable, as emphasised by the dotted curve, [Gρ
M (Q2)/µρ]/[G

ρ
Q(Q2)/Qρ]. The charge radii, and magnetic and

quadrupole moments are given in Table II. NB. All form factors exhibit a pole at Q2 = −m2
ρ because the quark-photon vertex

is dressed as described in Sec. IIC.

Gρ
Q(Q

2) is negative definite.6 It is worth remarking that on this entire domain Gρ
M,Q(Q

2) exhibit a very similar

Q2-dependence, which is made especially apparent via the dotted-curve in Fig. 3. Interpolations valid on Q2 ∈
[−m2

ρ, 10GeV2] are

Gρ
M (Q2)

interpolation
=

2.11 + 0.021Q2

1 + 1.15Q2 − 0.015Q4
, (61)

Gρ
Q(Q

2)
interpolation

= − 0.85 + 0.038Q2

1 + 1.17Q2 + 0.014Q4
. (62)

The similar momentum-dependence of Gρ
M and Gρ

Q recalls a prediction in Ref. [81]; namely,

GE(Q
2) : GM (Q2) : GQ(Q

2)
Q2→∞
= 1− 2

3
η : 2 : −1 (63)

in theories with a vector-vector interaction mediated via bosons propagating as 1/k2 at large-k2. Our computed ratio
rM/Q := Gρ

M (Q2)/Gρ
Q(Q

2) conforms approximately with this prediction on a large domain of Q2; e.g.,

Q2 0 10 102 103

rM/Q −2.48 −2.54 −2.38 −2.17
. (64)

However, at Q2 = 104GeV2, rM/Q = −1.28. Moreover, the remaining two ratios are always in conflict with the

prediction; and closer inspection reveals that even the apparent agreement for Gρ
M (Q2)/Gρ

Q(Q
2) is accidental, since

Eqs. (63) are true if, and only if,

F1(Q
2) : F2(Q

2) : Q2F3(Q
2)

Q2→∞
= 1 : −2 : 0 ; (65)

and none of these predictions are satisfied in our computation.
The mismatch originates, of course, with Eq. (2) and the concomitant need for a regularisation procedure in which

the ultraviolet cutoff plays a dynamical role. If one carefully removes Λuv → ∞, Eqs. (65) are recovered but at the
cost of a logarithmic divergence in the individual form factors. We conclude therefore that a vector-vector contact
interaction cannot reasonably be regularised in a manner consistent with Eq. (63).
In closing this subsection we reiterate that it is only in the rainbow-ladder truncation that Fρ(P ) ≡ 0. Therefore

in connection with the ρ-meson’s form factors, material changes should be anticipated when proceeding beyond this
leading-order truncation.

6 In constituent-like quark models, Qρ = Gρ
Q(Q2 = 0) < 0 corresponds to oblate deformation [89]. Contemporary lattice simulations

arrive at a similar conclusion [90, 91]. In this connection it should be borne in mind that Q = GQ(Q2 = 0) = −1 for a structureless
J = 1 bound-state [81].
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FIG. 4. (Color online) Solid curve – the full result for Gπγρ(Q2); and dashed curve – Gπγρ(Q2) obtained with Fπ(P ) ≡ 0.
Experimentally [79], the partial width for ρ+ → π+γ is 68± 7 keV, which corresponds to [38] gπγρ = (0.74 ± 0.05)mρ. This is
in fair agreement with our computed result; viz., gπγρ = 0.63mρ.

C. ρ-π transition form factor

This transition is closely related to the γ∗πγ transition form factor, whose behaviour in connection with Eq. (2)
was analysed in Ref. [46]. The interaction vertex is expressed in Eq. (A18) and defines a single form factor; viz.,

T πγρ
µν (k1, k2) =

gπγρ
mρ

ǫµναβk1αk2β G
πγρ(Q2) , (66)

where k21 = Q2, k22 = −m2
ρ. The coupling constant, gπγρ, is defined such that Gπγρ(Q2 = 0) = 1; and explicit formulae

for computing this form factor are provided in App. A 3.
Our computed form factor is depicted in Fig. 4. Naturally, because the quark-photon vertex is dressed (see Fig. 1),

the transition form factor exhibits a pole at Q2 = −m2
ρ, which we have not displayed. An interpolation valid on

Q2 ∈ [−m2
ρ, 10GeV2] is

Gπγρ(Q2)
interpolation

=
1 + 0.37Q2 + 0.024Q4

1 + 1.29Q2 + 0.015Q4
. (67)

In the neighbourhood of Q2 = 0, the form factor is characterised by a radius-like length-scale; viz.,

r2πγρ := −6
d

dQ2
Gπγρ(Q2)

∣

∣

∣

∣

Q2=0

= (0.46 fm)2, (68)

which is almost indistinguishable from both rπ = 0.45 fm in Table II and the anomaly interaction radius defined in
Ref. [46]; viz., r∗π0 = 0.48 fm. On the other hand

lim
Q2→∞

Gπγρ(Q2) = 0.11 , (69)

owing to the presence of the pion’s pseudovector component, a result in keeping with the pointlike nature of bound-
states generated by a contact-interaction [44, 46].

IV. 0+- AND 1+-DIQUARK ELASTIC AND TRANSITION FORM FACTORS

A. Scalar-diquark elastic form factor

In the context of the interaction in Eq. (2), a detailed discussion of the relationship between pseudoscalar- and
vector-mesons and scalar- and axial-vector-diquark correlations may be found in Ref. [50]. Using the information
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FIG. 5. (Color online) Solid curve – full result for scalar-diquark elastic electromagnetic form factor; and dashed curve – result
obtained without dressing the quark-photon vertex. The computed mass of the diquark is mqq

0+
= 0.776GeV and the charge

radius is given in Table II.

provided therein, it is straightforward to show that in rainbow-ladder truncation the electromagnetic form factor of a
scalar diquark is readily obtained from the expression for F em

π (Q2). Namely,

F em
0+ (Q2) =

1

3
F em
π (Q2)

∣

∣

(Eπ,Fπ)→
√

2
3
(Eqq

0+
,Fqq

0+
)

mπ→mqq
0+

, (70)

where the scalar-diquark Bethe-Salpeter amplitude is expressed via (C = γ2γ4 is the charge-conjugation matrix)

Γqq
0+

(P )C† = γ5

[

iEqq
0+

(P ) +
1

M
γ · PFqq

0+
(P )

]

. (71)

Our result for the scalar diquark elastic electromagnetic form factor is presented in Fig. 5. An interpolation valid
on Q2 ∈ [−m2

ρ, 10GeV2] is

F em
0+ (Q2)

interpolation
=

1

3

1 + 0.25Q2 + 0.027Q4

1 + 1.27Q2 + 0.13Q4
. (72)

The normalisation is different but the momentum-dependence is similar to that of F em
π . This is indicated, too, by

the ratio of charge radii; viz., r0+/rπ = 1.08, which may be compared to the value of 1.09 obtained in Ref. [41] and
contrasted with the value of 0.8 in [92]. In the absence of the scalar-diquark Bethe-Salpeter amplitude’s pseudovector
component, Fqq

0+
≡ 0, we find r0+ = 0.51 fm; i.e., an increase of 6%.

B. Pseudovector-diquark elastic form factors

From the above observations it will be apparent that the rainbow-ladder results for the {ud} axial-vector diquark
elastic form factors may be obtained directly from those of the ρ-meson through the substitutions

F em
1+
{ud}

,j
(Q2) =

1

3
Fj(Q

2)
∣

∣

Eρ→
√

2
3
Eqq

1+

mπ→mqq
1+

. (73)

The momentum-dependence of the form factors for the {uu} and {dd} correlations is identical but in these cases the
normalisations are, respectively, 4

3 and − 2
3 .

We depict the axial-vector diquark form factors in Fig. 6. They are similar to but distinguishable from those of the
ρ-meson, falling-off a little less rapidly owing to the larger mass of the axial-vector diquark. Interpolations valid on
Q2 ∈ [−m2

ρ, 10GeV2] are

G1+

E (Q2)
interpolation

=
1− 0.16Q2

1 + 1.17Q2 + 0.012Q4
, (74)

G1+

M (Q2)
interpolation

=
2.13− 0.19Q2

1 + 1.07Q2 − 0.10Q4
, (75)

G1+

Q (Q2)
interpolation

= − 0.81− 0.029Q2

1 + 1.11Q2 − 0.054Q4
, (76)
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FIG. 6. (Color online) Solid curve – Pseudovector-diquark electric form factor, G1+

E (Q2), which exhibits a zero at Q2 =
6.5GeV2. (In this case 1 − 2

3
η = 0 for Q2 = 6m2

1+
= 6.7GeV2, given the computed mass of 1.06GeV.) The dashed

curve, G1+

M (Q2)/µ1+ , and dot-dashed curve, G1+

Q (Q2)/Q1+ , are almost indistinguishable, as emphasised by the dotted curve,

[G1+

M (Q2)/µρ]/[G
1+

Q (Q2)/Q1+ ]. The charge radii, and magnetic and quadrupole moments are given in Table II. NB. All form

factors exhibit a pole at Q2 = −m2
ρ because the quark-photon vertex is dressed as described in Sec. IIC.
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FIG. 7. (Color online) Solid curve – momentum-dependence of full result for axial-vector–scalar-diquark transition form factor,

G0+γ1+ (Q2); and dashed curve – result for Gπγρ(Q2) in Fig. 4. The different rates of evolution are typical of meson cf. diquark
form factors computed herein. Note that e{ud}g0+γ1+mqq

1+
= e{ud}0.74 = 0.25.

from which the particular pseudovector diquark form factors are obtained after multiplication by the appropriate
charge factors, listed in Table II.

C. 1+-0+ diquark transition form factor

Owing to the flavour structure of the scalar diquark, this transition can only involve the {ud} axial-vector diquark.
It is described by a single form factor, which can be introduced through

T 0+γ1+

µν (k1, k2) =
1

3

g0+γ1+

mqq
1+

ǫµναβk1αk2β G
0+γ1+(Q2) , (77)

and one may readily determine that in rainbow-ladder truncation

G0+γ1+(Q2)

= Gπγρ(Q2)
∣

∣

(Eπ,Fπ,Eρ)→
√

2
3
(Eqq

0+
,Fqq

0+
,Eqq

1+
)

mπ→mqq
0+

,mρ→mqq
1+

. (78)

Computation of the form factor is straightforward and the result is depicted in Fig. 7. An interpolation valid on
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Q2 ∈ [−m2
ρ, 10GeV2] is

G0+γ1+(Q2)
interpolation

=
1 + 0.10Q2

1 + 1.073Q2
. (79)

The associated transition radius is

r0+γ1+ = 0.48 fm, (80)

which is 5% larger than rπγρ in Eq. (68), and

lim
Q2→∞

G0+γ1+(Q2) = 0.049 , (81)

just under one-half of the value in Eq. (69).

V. EPILOGUE

We described a unified Dyson-Schwinger equation treatment of static and electromagnetic properties of pseudoscalar
and vector mesons, and scalar and axial-vector diquark correlations based upon a vector-vector contact-interaction.
Isospin symmetry was assumed, with mu = md = m = 7MeV producing a physical pion mass; and two parameters
were used to define the gap- and Bethe-Salpeter. In a comparison with relevant static quantities, we recorded a value
of 13% for the overall root-mean-square relative-error.
A basic motivation for our study is the need to document a comparison between the electromagnetic form factors of

mesons and those diquarks which play a material role in nucleon structure because this is an important step toward
a unified description of meson and baryon form factors based on a single interaction. A notable feature of our results,
therefore, is the large degree of similarity between related form factors. For example, we find that it would be a good
practical approximation to assume equality of related radii: r0+ ≈ rπ and r1+ ≈ rρ.
As has previously been observed, a fully-consistent treatment of the contact interaction produces a pion electromag-

netic form factor that approaches a nonzero constant value at large spacelike momenta. On the other hand, owing to
a peculiarity of the rainbow-ladder truncation, which prevents the appearance at this order of a tensor component for
the ρ-meson produced by a contact interaction, the ρ-meson form factors approach zero at large spacelike momenta.
This accident means that a comparison with QCD-based DSE calculations can meaningfully be interpreted. In a
comparison with the most sophisticated such study, the form factors produced by the contact interaction are harder
although the ratio rπ/r

E
ρ is similar. Moreover, the contact interaction’s simplicity allows one to readily compute the

ρ-meson form factors at arbitrarily large spacelike-Q2 and expose a zero in the electric form factor at z2Q ≈ 6m2
ρ.

Notably, rDz
D
Q ≈ rEρ z

ρ
Q, where rD and zDQ are, respectively, the deuteron’s radius and the location of the zero in

its electric form factor. The ρ-meson’s magnetic and quadrupole form factors are positive- and negative-definite,
respectively. We reiterate that the behaviour of all pseudovector-diquark form factors is semiquantitatively the same.
At the core of our analysis is a global-symmetry-preserving treatment of a vector-vector contact interaction. This

has now been used in the completely-consistent computation of the hadron spectrum, and meson and diquark form
factors. The foundation has thus been laid for the computation of baryon elastic and transition form factors, which
will provide information that is crucial for the use of experimental data on such observables as a tool for charting the
nature of the quark-quark interaction at long-range [48].
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Appendix A: Form Factor Formulae

This appendix is a repository for the formulae we have used to compute the form factors.
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1. Elastic pion form factor

F em
π (Q2) = PT (Q

2)
[

E2
πT

em
π,EE(Q

2)

+ EπFπT
em
π,EF (Q

2) + F 2
πT

em
π,FF (Q

2)
]

, (A1)

where PT (Q
2) is given in Eq. (27) and

T em
π,EE =

3

4π2

[
∫ 1

0

dα Ciu

1 (ω(M2, α,Q2)) + 2m2
π

∫ 1

0

dα dβ α Ciu

2 (ω2(M
2, α, β,Q2,m2

π))

]

, (A2)

T em
π,EF =

3

2π2

[

−
∫ 1

0

dα Ciu

1 (ω(M
2, α,Q2)) +

∫ 1

0

dα dβ α (αQ2 − 2m2
π) C

iu

2 (ω2(M
2, α, β,Q2,m2

π))

]

, (A3)

T em
π,FF = − 3

2π2

1

M2

∫ 1

0

dαdβ α
[

A(α,Q2,m2
π) C

iu

1 (ω2(M
2, α, β,Q2,m2

π)) (A4)

+ [B(M2, α, β,Q2,m2
π)−A(α,Q2,m2

π)ω2(M
2, α, β,Q2,m2

π)] C
iu

2 (ω2(M
2, α, β,Q2,m2

π))
]

, (A5)

with

B(M2, α, β,Q2,m2
π) = αQ2M2 +M2m2

π(α− 2) + αm2
π(αQ

2[1− α− 2β(1− β) + 3αβ(1 − β)]− (1− α)2m2
π), (A6)

A(α,Q2,m2
π) = −1

2
αQ2 +

1

2
m2

π(2− 3α), (A7)

ω2(M
2, α, β,Q2,m2

π) = M2 +Q2α2β(1 − β)

−α(1− α)m2
π , (A8)

where Ciu(z) is defined after Eq. (9); Ciu
1 (z) and ω(M2, α,Q2) in Eqs.(21), (22); Ciu

1 (z) after Eq. (27); and

Ciu
2 (z) = z2C′′(z) =

z

2

(

e−zr2uv − e−zr2ir

)

(A9)

with Ciu

2 = Ciu
2 (z)/z2.

2. Elastic ρ-meson form factors

In generalised impulse approximation the ρ-γ vertex in Eq. (46) becomes

Λλ,µν = 2NctrD

∫

d4q

(2π4)
Eρ(−pf)γT

ν S(q + pf )PT (Q
2)iγλ

×S(q + pi)Eρ(p
i)γT

µ S(q) , (A10)

whereEρ is the canonically-normalised ρ-meson Bethe-Salpeter amplitude. Explicit expressions for the scalar functions
F1,2,3(Q

2) can be obtained via contraction with any three sensibly chosen projection operators; and the subsequent
use of Feynman parametrisations yields

Fi(Q
2) =

3

4π2
E2

ρPT (Q
2)

∫ 1

0

dαdβ α
[

Ai C
iu

1 (ω2)

+ [Bi −Ai ω2] C
iu

2 (ω2)
]

, (A11)

where Fi = Fi(M
2, α, β,Q2,m2

ρ), Fi = Ai, Bi; viz.,

A1 = 2− α , (A12)

A2 =
m2

ρ(α(10β − 7)− 4) +Q2α(2β − 1)

2m2
ρ

, (A13)
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A3 =
2α(1− 2β)(5m2

ρ +Q2)

4m2
ρ +Q2

, (A14)

B1 = 2
[

M2(2− α) +m2
ρα(1− α)2

−α2β(2 − α)(1 − β)Q2
]

, (A15)

m2
ρ B2 = m2

ρ[M
2(−4− 7α+ 10αβ)−m2

ρ(−1 + α)α(1 − 7α− 6β + 10αβ)]

+α[M2(−1 + 2β) +m2
ρα(−1 + 2β + α[1 + β − 5β2 + 2β3])Q2] , (A16)

(4m2
ρ +Q2)B3 = 4α

[

m2
ρ(5M

2(1− 2β) +m2
ρ(−1 + α)[3 − 6β + α(−5− 6β + 16β2)])

+(M2(1− 2β)−m2
ρα[−1 + α− 2β + 3αβ + 4β2 − 7αβ2 + 2αβ3])Q2

]

. (A17)

3. Vector-pseudoscalar transition form factor

The interaction vertex describing the π-ρ transition

T πγρ
µν (k1, k2) =

gπγρ
mρ

ǫµναβk1αk2β G
πγρ(Q2) = trD

∫

d4ℓ

(2π)4
Γπ(−P )S(ℓ2)PT (Q

2) iγµ S(ℓ12) iΓ
ρ
ν(k2)S(ℓ1) , (A18)

where the incoming ρ-meson has momentum k2, the photon has momentum k1 = Q, the outgoing pion has momentum
P = (k1 + k2); and ℓ1 = ℓ− k1, ℓ2 = ℓ+ k2, ℓ12 = ℓ− k1 + k2. In this instance the kinematic constraints are

k21 = −m2
ρ , k

2
2 = Q2 , 2 k1 · k2 = m2

ρ −m2
π −Q2 . (A19)

Given the structure of the pion’s Bethe-Salpeter amplitude, one may write

Gπγρ(Q2) = Gπγρ
E (Q2) +Gπγρ

F (Q2) , (A20)

wherein

Gπγρ
E (Q2) =

EπEρ
2π2

MPT (Q
2)

∫ 1

0

dαdβ α C̄ir
2 (ω3) , (A21)

Ĝπγρ
F (Q2) = −FπFρ

4π2

1

M
PT (Q

2)

∫ 1

0

dαdβ α
[

fπγρ
1 C̄ir

1 (ω3)

+(fπγρ
0 − ω3 f

πγρ
1 )C̄ir

2 (ω3)
]

, (A22)

with

ω3 := ω3(M
2, α, β,m2

ρ,m
2
π, Q

2)

= M2 − α
[

αβ(1 − β)m2
π + (1 − α)(1 − β)m2

ρ

−(1− α)βQ2
]

(A23)

and

fπγρ
1 = 2− 3α , (A24)

fπγρ
0 = (2− α)(M2 + α2β(1− β)m2

π)

+(1− α)2(α(1 − β)m2
ρ − αβQ2) . (A25)

The vertex in Eq. (A18) is intimately connected with the Abelian anomaly, which describes the process π0 → γγ
and associated transition form factors. The manner by which all aspects of the anomaly may be reproduced in the
model we’re considering is detailed in Secs. III.A and III.B.2 of Ref. [46]. In the present context, consistency with the
anomaly requires that in Eqs. (A21), (A22), Eρ = Eρ/Nπγγ , with Nπγγ defined such that Gπγγ(Q2 = 0) = 1/2, and

Gπγρ
F (Q2) = Ĝπγρ

F (Q2)− Ĝπγρ
F (0). Both modifications are necessary in order to correct for the dynamical role played

by the ultraviolet cutoff in a contact-interaction theory.
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