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Abstract
We introduce a cumulant expansion to parameterize possible initial conditions in relativistic

heavy ion collisions. We show that the cumulant expansion converges and that it can system-

atically reproduce the results of Glauber type initial conditions. At third order in the gradient

expansion, the cumulants characterize the triangularity
〈
r3 cos 3(φ− ψ3,3)

〉
and the dipole asymme-

try
〈
r3 cos(φ− ψ1,3)

〉
of the initial entropy distribution. We show that for mid-peripheral collisions

the orientation angle of the dipole asymmetry ψ1,3 has a 20% preference out of plane. This leads to

a small net v1 out of plane. In peripheral and mid-central collisions the orientation angles ψ1,3 and

ψ3,3 are strongly correlated, but this correlation disappears towards central collisions. We study

the ideal hydrodynamic response to these cumulants and determine the associated v1/ε1 and v3/ε3

for a massless ideal gas equation of state. The space time development of v1 and v3 is clarified

with figures. These figures show that v1 and v3 develop towards the edge of the nucleus, and

consequently the final spectra are more sensitive to the viscous dynamics of freezeout. The hydro-

dynamic calculations for v3 are provisionally compared to Alver and Roland fit of STAR inclusive

two particle correlation functions. Finally, we propose to measure the v1 associated with the dipole

asymmetry and the correlations between ψ1,3 and ψ3,3 by measuring a two particle correlation with

respect to the participant plane, 〈cos(φα − 3φβ + 2ΨPP )〉. The hydrodynamic prediction for this

correlation function is several times larger than a correlation currently measured by the STAR

collaboration, 〈cos(φα + φβ − 2ΨPP )〉. This experimental measurement would provide convincing

evidence for the hydrodynamic and geometric interpretation of two particle correlations at RHIC.
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I. INTRODUCTION

In a recent and significant paper B. Alver and G. Roland (AR) [1] provided the most

compelling explanation to date for the striking features measured in two particle correla-

tions at the Relativistic Heavy Ion Collider [2–7]. These features (which are described with

picturesque names such as the “ridge” and “shoulder”) are said to arise from the collective

response to fluctuating initial conditions. Specifically, if the initial conditions are parame-

terized with a quadrapole and triangular moment, the two particle correlations reflect the

response of the nuclear medium to these anisotropies. The work of AR was motivated in

part by event by event simulations of heavy ion collisions with ideal hydrodynamics which

showed that the flow from fluctuating initial conditions can describe the general features of

the measured two particle correlations [8]. The general idea that the curious correlations

are due to a third harmonic in the flow profile was previously suggested by Sorensen [9]. In

addition, many of the features of the observed two particle correlations were found in the

AMPT model [10–12], though the geometric nature of these correlations was not understood

before the work of Alver and Roland.

The hydrodynamic interpretation of the measured two particle correlations is important

for several reasons. First, before this conclusion there was a significant correlation between

the measured particles which was not understood. This confusion casted doubt on the hy-

drodynamic interpretation of RHIC results and clouded the important conclusion that the

shear viscosity to entropy ratio of QCD is of order ∼ ~/4π near the phase transition [13].

However, since the unusual two particle correlations are actually a prediction of hydrody-

namics, the observation of these unusual features in the data validates hydrodynamics as an

appropriate effective theory for heavy ion events and marginalizes other models. Further,

once the hydrodynamic interpretation is adopted the measured correlations can be used to

constrain the properties of the medium, e.g. the shear viscosity and the Equation of State

(EOS). In particular the effect of viscosity was calculated in Refs. [14, 15] which will be

discussed more completely below.

Motivated by these results, the current work will characterize the fluctuating initial con-

ditions with a cumulant expansion. Instead of running hydrodynamics event to event, the

linear response to specified cumulants can be calculated with ideal or viscous hydrodynamics.

Subsequently, these response functions can be combined with a Glauber model for the event-

by-event cumulants (and their correlations), and the combined result can be fairly compared

to data. At third order in the gradient expansion, the initial condition is parameterized by

a radial dependence to the dipole moment, 〈r3 cosφ〉, and the triangularity, 〈r3 cos 3φ〉 . In

Section III we will calculate (with ideal hydrodynamics) how the medium responds to these

moments and illustrate how this response develops in space and time. Subsequently in Sec-

tion IV we will compute the corresponding particle spectra v1(pT ) and v3(pT ) and study the

sensitivity to certain model parameters related to freezeout. In Section V A we will make a

comparison to V3∆/V2∆ as extracted by Alver and Roland in their analysis of two particle

correlations. We will also make definite predictions for the dipole asymmetry v1(pT ), which,

if confirmed, would firmly establish the geometric nature of the two particle correlations.

The comparison to data is not final as the effects of resonance decays, viscosity, and higher
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cumulants have not been included, Nevertheless, the preliminary comparison will firmly tie

the formal cumulant expansion outlined in this paper to the measured correlations. Finally,

we will compare our calculations to the recent results of Refs. [14–16] in Section V B.

II. CUMULANT EXPANSION AND HYDRODYNAMICS AT RHIC

A. The initial conditions for ideal hydrodynamics

In this paper we will use 2+1 dimensional boost invariant ideal hydrodynamics to simulate

RHIC events [13, 17, 18]. Briefly, in ideal hydrodynamics the stress tensor satisfies the

constituent relation and the conservation laws:

T µν = (e+ P(e))uµuν + P(e)gµν , ∇µT
µν = 0 , (2.1)

where e is the energy density, uµ is the flow velocity, and the pressure P is specified by the

EOS, P = P(e). We will work in flat space but with coordinates

τ =
√
t2 − z2 , ηs =

1

2
log

(
t+ z

t− z

)
.

With the assumption of boost invariance, the hydrodynamic fields are independent of ηs and

uη = 0. Using the constraint uµu
µ = −1, the independent fields which must be determined

by solving the conservation laws are

e(τ,x) , ux(τ,x) uy(τ,x) , (2.2)

where x denotes two dimensional vectors in the transverse plane. We will specify the initial

conditions for the subsequent evolution in what follows. At the initial time τo it is reasonable

to assume that flow fields are small, ux ' uy ' 0. This leaves the initial energy density

which must be specified e(τo, x, y). We will specify the initial entropy density s(τo, x, y) with

a cumulant expansion and infer the initial energy density from the equation of state.

A typical initial condition might be fairly complicated involving several structures. How-

ever, the effect of the shear viscosity is to damp the highest Fourier modes. Thus, after

damping the shortest wavelengths, the initial entropy distribution is approximately described

by a Gaussian with average squared radius 〈r2〉 and elliptic eccentricity ε2 as has tradition-

ally been used to characterize heavy ion events [17]. The damping of the highest Fourier

modes is nicely seen in Fig. 1 of a recent preprint [15]. The next paragraphs formalize this

description and categorize corrections.

B. Cumulants

The Fourier transform of the entropy density for a given initial condition is∫
d2x eik·xρ(x) = ρ(k) , (2.3)
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where ρ(x) = τos(τo,x)/Stot and Stot =
∫
τod

2x s(τo,x) is the total entropy per space time

rapidity. Since the highest Fourier modes are damped, we will expand the initial distribution

in k. Expanding both sides of Eq. (2.3) with respect to k,

ρ(k) = 1 + ikaρ1,a +
(ika)(ikb)

2!
ρ2,ab + . . . , (2.4)

we see that ρ(k) generates moments of the entropy distribution

ρ1,a = 〈xa〉 , ρ2,ab = 〈xaxb〉 , (2.5)

where the average is appropriately defined

〈. . .〉 =

∫
d2xρ(x) . . . . (2.6)

Although we could classify the initial conditions with these moments, a cumulant expansion

seems more natural since the average Glauber distribution is roughly Gaussian and the

cumulants are translationally invariant. We therefore define W (k)

exp(W (k)) ≡
∫

d2x eik·xρ(x) , (2.7)

and expand both sides in a fourier series

W (k) = 1 + ikaW1,a +
1

2!
(ika)(ikb)W2,ab + . . . . (2.8)

From this expansion we see that W (k) is the generating function of cumulants of the un-

derlying distribution ρ(k)

W1,l = 〈xl〉 , W2,ab = 〈xaxb〉 − 〈xa〉 〈xb〉 . (2.9)

From now on we will shift the origin so that 〈xa〉 = 0, and the distribution is approximately

Gaussian to quadratic order

ρ(k) = exp

(
−1

2
kakbW2,ab

)
. (2.10)

Higher order corrections in this expansion will correct the distribution away from the Gaus-

sian. The tensor W2,ab is a reducible tensor and should be decomposed into irreducible

components,

W2,ab =
1

2
W2,ccδab +

(
W2,ab −

1

2
W2,ccδab

)
. (2.11)

We orient the x, y axes to the participant plane [19] where W2,xy = 0. Then the irreducible

moments are

W2,aa =
〈
x2 + y2

〉
, (2.12)

W2,xx −
1

2
Wccδxx =

1

2

〈
x2 − y2

〉
. (2.13)
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Clearly the irreducible components of the cumulant expansion are related to the traditional

parameters of heavy ion physics:〈
x2 + y2

〉
, and ε2 ≡

〈y2 − x2〉
r2

. (2.14)

To write down corrections to these results it is more convenient and illustrative to use

cylindrical tensors rather than Cartesian tensors. Appendix A develops this expansion in

detail and only certain features will be summarized here. Appendix A 1 expands W (k) in a

Fourier series:

W (k) = W0(k) + 2
∞∑
n=1

W c
n(k) cos(nφk) + 2

∞∑
n=1

W s
n(k) sin(nφk) , (2.15)

where k and φk are the norm and azimuthal angle of the momentum vector. The W c,s
n (k)

are also expanded in k to characterize the distribution at largest wavelength:

W0(k) =1 +
1

2!
W0,2(ik)2 +O(k4) , (2.16a)

W c
1 (k) =W c

1,1 +O(k3) , (2.16b)

W s
1 (k) =W s

1,1 +O(k3) , (2.16c)

W c
2 (k) =

1

2!
W c

2,2(ik)2 +O(k4) , (2.16d)

W s
2 (k) =W s

2,2 +O(k4) . (2.16e)

After Appendix A we find that to order k2

W0,2 =
1

2

〈
r2
〉
, (2.17)

W c
1,1 =0 , (2.18)

W s
1,1 =0 , (2.19)

W c
2,2 =

1

4

〈
r2 cos(2φ)

〉
, (2.20)

W s
2,2 =0 . (2.21)

Here we have used translational invariance and rotational invariance (as in the Cartesian

case) to eliminate W c
1,1, W s

1,1, and W s
2,2. To third order in the gradient expansion the dipole

terms W c
1 (k) and W s

1 (k) are non-zero

W c
1 (k) =

1

3!
W1,3(ik)3 +O(k5) , W c

1,3 =
3

8

〈
r3 cosφ

〉
, (2.22a)

W s
1 (k) =

1

3!
W1,3(ik)3 +O(k5) , W s

1,3 =
3

8

〈
r3 sinφ

〉
. (2.22b)

Similarly, at third order in the gradient expansion there are terms proportional to cos(3φ)

W c
3 (k) =

1

3!
W3,3(ik)3 +O(k5) , W c

3,3 =
1

8

〈
r3 cos(3φ)

〉
, (2.22c)

W s
3 (k) =

1

3!
W3,3(ik)3 +O(k5) W s

3,3 =
1

8

〈
r3 sin(3φ)

〉
. (2.22d)
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Once the fourier coefficients Wn,m are specified, the entropy distribution in space can be

found with a fourier transform; see Eqs. 2.34 and 2.35 and the surrounding text for further

discussion.

C. A strategy for event by event hydrodynamics

If the cumulants beyond second order are in some sense small, then the change in the

hydrodynamic spectra due to a specified set of higher cumulants is linearly proportional to

the deformation
dδN

dφp
=

∑
n,m,{s,c}

[
1

W c,s
n,m

dδN

dφp

]
n,m,{s,c}

W c,s
n,m , (2.23)

where [
1

W c,s
n,m

dδN

dφp

]
n,m,{c,s}

, (2.24)

is the normalized response to a given cumulant. If the non-linear interactions between the

elliptic flow and the higher cumulants can be ignored (i.e. the elliptic flow is sufficiently

small), then the background Gaussian is approximately radially symmetric and the response

of the sin terms are related to the response of the cosine terms through a rotation. In this

case, we are free to rotate our coordinate system by an angle ψn,m

ψn,m =
1

n
atan2(W s

n,m,W
c
n,m) +

π

n
, (2.25)

so that the sin terms vanish. In this rotated frame (which we will notate as Ŵ ) the cumulants

are

Ŵ s
n,m = 0 , Ŵ c

n,m = −
√

(W c
n,m)2 + (W s

n,m)2 , (2.26)

and the spectrum can be written

dδN

dφp
=
∑
n,m,c

[
1

Ŵ c
n,m

dδN

d(φp − ψn,m)

]
n,m,{c}

Ŵ c
n,m . (2.27)

Thus, the assumption of a rotationally invariant background reduces the number of coeffi-

cients by a factor of two.

In this paper we will assume that all deformations from spherical are small including

the elliptic flow. Thus, we will neglect the non-linear couplings between the elliptic flow

and the triangular flow and the elliptic flow and the dipolar flow. We have investigated the

influence of the ellipticity on the triangular and dipolar flow and our preliminary findings

show that the effect of the elliptic flow on the triangular flow is small. A similar finding

was reported in the very recent preprint by the Duke group [20]. However, the effect of the

elliptic flow on the dipolar flow is non-negligible when the dipole angle is oriented in plane.

This complication will be reported on in future work [21].
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The angle ψ2,2 specifies the orientation of the participant plane ΨPP , and the second

order cumulant Ŵ2,2 determines the ellipticity

ε2 ≡ −
〈r2 cos 2(φ−ΨPP )〉

〈r2〉
= −

4Ŵ c
2,2

〈r2〉
, ΨPP ≡ ψ2,2 . (2.28)

The participant plane angle ΨPP is distinct from the reaction plane angle which we denote

with ΨR.

The third order cumulant Ŵ c
3,3 describes the triangularity as introduced by Alver and

Roland. These authors suggested a definition of the triangularity and orientation angle εAR3

and ψAR3 with a quadratic radial weight

εAR3 = −
〈
r2 cos(3(φ−ΨAR

3 ))
〉

〈r2〉
, ΨAR

3 =
1

3
atan2(

〈
r2 sin(3φ)

〉
,
〈
r2 cos(3φ)

〉
) +

π

3
. (2.29)

We will abandon this analytically frustrated definition, and define the triangularity ε3 and

the associated angle with an r3 weight

ε3 ≡−
〈r3 cos 3(φ− ψ3,3)〉

〈r3〉
= −

8Ŵ c
3,3

〈r3〉
, (2.30)

ψ3,3 ≡
1

3
atan2(

〈
r3 sin 3φ

〉
,
〈
r3 cos 3φ

〉
) +

π

3
. (2.31)

The difference between the r2 and r3 weight is captured by the response of the system to

the fifth order cumulants, W c
3,5 ∝ [〈r5 cos 3φ〉 − 4 〈r2〉 〈r3 cos 3φ〉] . Recent studies of the

response of the system to ε5 (or W5,5 in the current context) suggests that the response to

these fifth order cumulants will be small [14].

The third order cumulant Ŵ c
1,3 describes a dipole asymmetry and also appears to the

same order in the gradient expansion. By analogy we define ε1 and ψ1,3

ε1 ≡−
〈r3 cos(φ− ψ1,3)〉

〈r3〉
= −8

3

Ŵ c
1,3

〈r3〉
, (2.32)

ψ1,3 ≡atan2(
〈
r3 sinφ

〉
,
〈
r3 cosφ

〉
) + π . (2.33)

Estimates for these parameters and their correlations will be given in the next section.

D. The dipole asymmetry and triangularity

To get a feeling for the dipole asymmetry and triangularity we first record the explicit

coordinate space expressions for a distribution with only triangularity

s(x, τ) ∝

[
1 +
〈r3〉 ε3

24

((
∂

∂x

)3

− 3

(
∂

∂y

)2
∂

∂x

)]
e
− r2

〈r2〉 , (2.34)

and a distribution with only a dipole asymmetry

s(x, τ) ∝

[
1 +
〈r3〉 ε1

8

((
∂

∂x

)3

+

(
∂

∂y

)2
∂

∂x

)]
e
− r2

〈r2〉 . (2.35)
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FIG. 1: (Color online) A schematic of an event with (a) net triangularity and (b) net dipole

asymmetry. The triangularity produces a net v3(pT ) and the dipole asymmetry produces a net

v1(pT ). The red lines show contours of constant entropy density, while the blue arrows with

relative lengths indicate flow directions and relative speeds. The cross in (b) indicates the center

of entropy (analogous to the center of mass) and the black arrow indicates the orientation of the

dipole asymmetry.

Here the orientation angles ψ3,3 and ψ1,3 are set to zero 1 and the overall constant is adjusted

to reproduce the total entropy in a central RHIC collision.

Fig. 1a illustrates the familiar triangular initial condition that leads to a v3(pT ). Fig. 1b

shows an initial condition with a net dipole asymmetry and is less familiar. In this case the

maximum of the entropy distribution sits to the right of the center of entropy (see figure).

This maximum is balanced by the left-of-center entropy so that 〈r cosφ〉 = 0. Due to the

asymmetry in the initial distribution, the matter to the right of the maximum flows to the

east with larger velocity, while the matter to the left of the maximum flows to the west

with smaller velocity. Since there is more entropy to the left than to the right (relative to

the maximum) the total momentum in the x direction is zero. This flow pattern leads to a

v1(pT ) that satisfies a momentum conservation sum-rule∫ ∞
0

dN

dpT
pTv1(pT ) = 0 . (2.36)

At high pT v1(pT ) is positive reflecting the fast matter to the right of the maximum, while

at low pT v1(pT ) is negative reflecting the slow (but abundant) matter to the left of the

maximum. These qualitative features of the dipole flow are corroborated by our numerical

work.

To estimate these asymmetries and their correlations we have used the PHOBOS monte

carlo Glauber code [22]. Fig. 2 shows the distribution of ε1, ε2 and ε3 as a function of the

1 At large enough radius the derivative terms become large and overwhelm the leading term making the

distribution negative. This is an unavoidable consequence of truncating a cumulant expansion at any

finite order. Appendix A explains how these terms are regulated at large radius.
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FIG. 2: (Color online) Size of the moments ε1, ε2 and ε3 as a function of the number of participants.

The points indicate the average value of 〈〈εn〉〉 and the errorbars indicate the variance of εn (i.e.√
〈〈ε2n〉〉 − 〈〈εn〉〉2) at fixed Npart.

number of participants. We see that the dipole asymmetry is about a factor of two smaller

than the triangularity but is not negligibly small.

Fig. 3 shows the distribution of ψ1,3 and ψ3,3 with respect to reaction plane at various

impact parameters. We see that although ψ3,3 is uncorrelated with respect to the reaction

plane, ψ1,3 shows an anti-correlation with respect to the reaction plane, which eventually

disappears toward central collisions.

More importantly, the angles ψ1,3 and ψ3,3 are strongly correlated in mid central collisions

(a similar observation was made recently by Staig and Shuryak [23]). Fig. 4 shows the

conditional probability distribution, i.e.

P (ψ3,3|ψ1,3,ΨR) ≡ The probability of ψ3,3 given ψ1,3 and ΨR.

The strong correlation may be explained physically as follows. When the dipole asymmetry

is in plane then the triangular axis is at π/3, i.e. the point of the triangle is aligned with

the dipole axis as exhibited in Fig. 5(a). However, when the dipole axis is out of plane then

the triangular axis is also out of plane as exhibited in Fig. 5(b).

These correlations are a reflection of the almond shape geometry and their general form

can be established by symmetry arguments. First, since the probability of finding a dipole

asymmetry in a given quadrant of the ellipse is the same for every quadrant, the probability

distributions dP/d(ψ1,3 −ΨR) must only involve even cosine terms

dP

dψ1,3

=
1

2π
(1− 2A cos 2(ψ1,3 −ΨR)) + . . .) . (2.37)

The sign has been chosen so that a positive A coefficient describes the out-of plane preference

seen in Fig. 3. The coefficient A must vanish in a cylindrically symmetric collision, and for
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FIG. 3: (Color online) Distribution of the angles ψ1,3 and ψ3,3 with respect to the reaction plane

for three different impact parameters.

small anisotropy we have

A ∝ 〈〈ε2〉〉 , (2.38)

where the double brackets denotes an event averaged ε2 Similarly dP/d(ψ3,3 − ΨR) must

involve even cosine terms and must be 2π/3 periodic

dP

d(ψ3,3 −ΨR)
=

1

2π
(1 + 2A6 cos(6(ψ3,3 −ΨR)) + . . .) . (2.39)

The relatively high fourier number n = 6 explains the smallness of the observed asymmetry,

and A6 will be ignored from now on. The form of the conditional probability distribution can

also be established based on general considerations. Appendix B uses symmetry arguments,

a fourier expansion, and the statement that the correlation is strongest when the triangle

and dipole angles are aligned at π/2 out of plane, to establish a three parameter functional

form which describes the correlations fairly well

P (ψ3,3|ψ1,3,ΨR) =
1

2π

[
1− 2 (B0 − 2B2 cos(2ψ1,3 − 2ΨR) ) cos(3ψ3,3 − φ∗ − 2ΨR)

]
, (2.40)

where

φ∗ = ψ1,3 − C sin(2ψ1,3 − 2ΨR) . (2.41)

The signs are chosen so that B0, B2, and C are positive constants in the final fits. A

sample fit with this functional form is given in Fig. 16 of Appendix B. The phase angle φ∗ is

illustrated by the dashed black line in Fig. 4, which is found by solving 3ψ3,3−φ∗+2ΨR = π

for ψ3,3. Although we have written the conditional probability when the reaction plane angle

is fixed, the same arguments could have been used to determine the functional form of the
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FIG. 4: (Color online) The conditional probability distribution P (ψ3,3|ψ1,3ΨR) for three different

impact parameters b = 0, 7.6, 10.5 fm. The functional form of the dashed curve is given by Eq. (2.41)

with fit parameter C = 0.53 for b = 7.6 fm and C = 0.56 for b = 10.5 fm.

conditional probability when the participant plane angle is fixed, i.e.

P (ψ3,3|ψ1,3ΨPP ) = Eq. (2.40) with ΨR → ΨPP and sightly different numerical coefficients.

(2.42)

In the limit of small elliptic eccentricity the coefficients scale as

B0 ∝ 〈〈ε2〉〉 , B2 ∝ 〈〈ε2〉〉2 , C ∝ 〈〈ε2〉〉 , (2.43)

as is shown in Appendix B. Thus the conditional probability distribution simplifies in this

limit to

P (ψ3,3|ψ1,3ΨR) =
1

2π
[1− 2B0 cos(3ψ3,3 − ψ1,3 − 2ΨR)] , (2.44)
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FIG. 5: (Color online) The figure qualitatively describes the fluctuations associated with the

Glauber model as illustrated in Fig. 4. When the dipole asymmetry is in plane (Position A), then

the tip of triangularity is aligned with dipole asymmetry. When the dipole asymmetry is out of

plane (Position B), the tip of the triangle is anti-aligned with the dipole asymmetry.

which describes almost all of the essential physical features.

The strong correlation means that if the triangular and the participant planes are known,

then the dipole plane can be determined statistically. The probability distribution of ψ1,3

for fixed ψ3,3 and ΨPP is approximately

P (ψ1,3|ψ3,3ΨPP ) ' 1

2π

[
1 + 2A cos(2ψ1,3− 2ΨPP )− 2B0 cos(3ψ3,3−ψ1,3− 2ΨPP )

]
. (2.45)

Maximizing this probability we determine the most probable angle of ψmp
1,3 given ψ3,3 and

ΨPP . Neglecting the A coefficient which is significantly smaller than B0 we find

ψmp
1,3 = 3ψ3,3 − 2ΨPP − π . (2.46)

To estimate the degree of correlation between the most probable value and ψ1,3 we calculate

− 〈〈cos(ψ1,3 − 3ψ3,3 + 2ΨPP )〉〉 , (2.47)

and illustrate the result in Fig. 6. We will use this correlation in Section V A to make a

definite prediction for the behavior of two particle correlations with respect to the reaction

plane.

E. Convergence of the cumulant expansion for smooth Glauber type initial con-

ditions

In the previous section we introduced a cumulant expansion to characterize the response

of the system to a set of perturbations. In this section we will study the convergence

of the cumulant expansion. Specifically, for a smooth (optical) Glauber profile, we will

replace the initial entropy distribution with an approximately Gaussian profile and cumulant

corrections through forth order. The distribution of entropy in the optical Glauber model
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(see Appendix A 2) is first used to calculate 〈r2〉 and 〈r2 cos 2φ〉, which determines the two

coefficients of the Gaussian. Also the normalization (i.e. the total entropy) is the same

between the Gaussian and the Glauber distribution. Taking the impact parameter to be

b = 7.6 fm, Fig. 7 compares the spectra and the elliptic flow for these two distributions. In

the next approximation, the fourth cumulants to the Gaussian are adjusted as described in

Section II D and Appendix A 2 to reproduce the 〈r4〉, 〈r4 cos 2φ〉, and 〈r4 cos 4φ〉 moments of

the Glauber distribution. Fig. 7 shows that the cumulant expansion reproduces the response

of the Glauber distribution in detail.

III. TIME DEVELOPMENT OF THE RESPONSE

In the previous sections we introduced a set of initial conditions with definite triangularity

and dipole asymmetry. In this section we will show how the hydrodynamic response to these

cumulants develops in space and time. The point here is to understand the hydrodynamics

without the complications of freezeout and a freezeout prescription.

To show how the dipole and triangular flow develop in time, we have generalized the

discussion of elliptic flow given in Ref. [24]. The spatial anisotropy is characterized by the

second moment

ε2x = −〈r
2 cos 2φ〉
〈r2〉

, (3.1)

which is a function of time in general. As the system expands, the spatial anisotropy de-

creases and the momentum anisotropy increases. The momentum anisotropy is traditionally

defined with ε2p :

ε2p ≡
∫

d2x (T xx − T yy)∫
d2x (T xx + T yy)

=

∫
d2x (e+ p)u2

r cos 2φu∫
d2x [(e+ p)u2

r + 2p]
, (3.2)
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FIG. 7: (Color online) (a) Spectra in the smooth (optical) Glauber model compared to the

cumulant expansion. The coefficients of the Gaussian and fourth order cumulant expansions have
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〉
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〈
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〉
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respectively. The total

entropy of the cumulant expansion is also matched to the total entropy of the glauber distribution.

(b) Elliptic flow in the Glauber model compared to the cumulant expansion.

where ur =
√

(ux)2 + (uy)2 and φu = tan−1(uy/ux) . This definition has its flaws since the

numerators and denominators do not transform as components of a tensor under transverse

boosts2 [13]. An alternative definition is found by constructing an irreducible rank two

tensor out of the momentum density T 0i and the flow velocity uj

T 0(iuj) − traces ≡ 1

2

(
T 0iuj + T 0jui − δijT 0lul

)
. (3.3)

Then we define

ε2p =

∫
d2xτ

[
T 0(xux) − traces

]∫
d2xτ [T 00u0]

=

∫
d2x τu0 [(e+ p)u2

r cos 2φu]∫
d2x τu0 [(e+ p)u2

r + e]
, (3.4)

which is almost the same as Eq. (3.2). For the triangularity and dipole asymmetry we define

the (reducible) third rank tensor

T 0(iujul) =
1

3!

(
T 0iujul + perms

)
. (3.5)

Then the traceless (or irreducible) tensor is used to define the momentum space triangular

anisotropy

ε3p ≡
∫

d2xτ
[
T 0(xuxux) − traces

]∫
d2xτ [T 00u0u0]

=

∫
d2x τu0 [(e+ p)u3

r cos 3φu]∫
d2xτ [T 00u0u0]

, (3.6)

2 This flaw is easily remedied by replacing d2x with the fluid three volume in the local rest frame dΣµu
µ =

d2xdη τu0. The additional factor of u0 appears naturally below.
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√
〈r2〉/cs ' 5.4 fm.

and the trace is used to define momentum space dipole asymmetry

ε1p ≡
∫

d2xτ
[
δjlT

0(xujul)
]∫

d2xτ [T 00u0u0]
=

∫
d2x τu0 [(e+ p)u3

r cosφu]∫
d2xτ [T 00u0u0]

. (3.7)

Armed with these definitions, Fig. 8 illustrates the development of the triangular flow

and the dipole asymmetry as a function of time. As is familiar from studies of the elliptic

flow [17, 24], the spatial anisotropy decreases leading to a growth of the momentum space

anisotropy. When the spatial anisotropy crosses zero, the growth of the momentum space

anisotropy stalls. The figures also indicate that the elliptic flow, the dipole asymmetry, and

the triangularity all develop on approximately the same time scale, τ '
√
〈r2〉/cs.

Another important aspect of the flow is the transverse radial flow profile. To illustrate

this profile we decompose the transverse flow velocity into harmonics:

ur(r, φ) =u0
r(r) + 2u(1)

r (r) cos(φ) + 2u(2)
r (r) cos(2φ) + 2u(3)

r (r) cos(3φ) + . . . . (3.8)

For a radially symmetric Gaussian distribution only the zero-th harmonic is present, and

u
(0)
r shows a linearly rising flow profile. When the elliptic deformation is added the second

harmonic also shows a linearly rising profile. Close to the origin this behavior can be

understood with a linearized analysis of the acoustic waves. The flow velocity in an acoustic

analysis is the gradient of a scalar function Φ which can be expanded in harmonics:

Φ(r, φ) = Φ(0)(r) + 2Φ(2)(r) cos 2φ+ . . . . (3.9)

If Φ(r, φ) is an analytic function of x and y, then Φ(2) must be quadratic for small r.

Consequently the gradient of this function, u
(2)
r (r), rises linearly at small r. Similarly, the
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FIG. 9: (Color online) (a) The zeroth harmonic of the flow profile (see Eq. 3.8) for the radially

symmetric Gaussian adopted in this work. The root mean square radius of the Gaussian is adjusted

to reproduce an impact parameter of 7.6 fm. (b) The first harmonic of the flow profile for a

distribution with a net dipole asymmetry. (c) The second harmonic of the flow profile for an

elliptic perturbation. (d) The third harmonic of the flow profile for a triangular perturbation. The

deformations ε1, ε2 and ε3 are all set to 0.1.

triangular deformation Φ(3)(r) should be cubic at small r and the flow profile u
(3)
r should be

quadratic. These features are borne out by our numerical work as exhibited in Fig. 9. The

first harmonic is negative at small r followed by a quadratically rising profile at larger r.

This structure can be qualitatively understood using momentum conservation as discussed

in Fig. 1b and surrounding text.

As seen from Fig. 9, the triangular and dipolar flows are biased towards the edge of the

nucleus. In the next section we will see that due to this bias v1 and v3 are more sensitive to

the freezeout prescription than v2.
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Hadron Gas Tfo Hadron Gas sfo Massless Gas Tfo

130 MeV 4.34 fm−3 71 MeV

150 MeV 1.87 fm−3 96 MeV

170 MeV 0.77 fm−3 127 MeV

TABLE I: Table of freezeout temperatures used in this work. The first two columns show freezeout

temperatures and the corresponding entropy densities of a Hadron Resonance Gas (HRG) EOS.

The last column shows the freezeout temperatures where the massless gas EOS used in this work

attains the corresponding HRG entropy density.

IV. PARTICLE SPECTRA: v1(pT ) AND v3(pT )

Having illustrated the essential features of the hydrodynamic response, we will compute

the particle spectra associated with these flows. As discussed above, the analysis is limited

to a classical massless ideal gas. We will follow the time honored, but poorly motivated

prescription of specifying a freezeout temperature or a freezeout entropy density. Freezeout

temperatures in full hydrodynamic simulations with a Hadronic Resonance Gas (HRG) range

from T = 160 MeV to T = 120 MeV [13, 18]. The total initial entropy and initial volume

used in our massless ideal gas simulations were taken to be the similar to the total entropy

and initial volume used in these full hydrodynamic simulations. The final freezeout volume

of our massless-gas simulation is also taken to be similar to the final freezeout volume of

these full simulations. Since entropy is conserved, this can be accomplished by adjusting the

freezeout entropy density of the massless gas so that the entropy density equals the HRG

entropy density for a specified HRG freezeout temperature. Experience has shown that

this is a fair way to compare different equations of state. Rather than quoting the actual

freezeout temperature of the massless gas EOS, we will simply quote the corresponding HRG

freezeout temperature. Thus T ⇔ 170 MeV means that the actual freezeout temperature is

such that the entropy density of a massless gas is equal to the entropy density of the HRG

at T = 170 MeV. Table I shows a set of temperatures and entropy densities in a HRG model

and the corresponding freezeout temperatures for the massless gas equation of state.

Fig. 10 shows the momentum anisotropies as a function of time, and marks when the

average entropy density of the system reaches a specified freezeout entropy density. Specifi-

cally, the lines indicate when 〈s〉 in the notation of Eq. (2.6) falls below the freezeout entropy

density indicated in Table I. We see that for Tfo ⇔ 170 MeV the triangular and dipole flows

are still developing, while for Tfo ⇔ 130 MeV the flows are almost fully developed.

Once the freezeout surface is specified the particle spectra are computed using the Cooper-

Frye formula

(2π)3E
dN

d3p
=

∫
V

pµdVµ fo(−P · U(X)) , (4.1)

where fo(E) = g exp(−E/T (X)) is the distribution function of a classical massless gas. (The

notation here follows the review article [13].) Using this formula we compute the particle

spectra and determine the associated harmonics v1, v2 and v3. For each impact parameter we

determine the root-mean square radius and the total entropy from an optical Glauber model;
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freezeout entropy density specified by the the temperatures T ⇔ 130, 150, 170 MeV.

then the Gaussian parameters are adjusted to reproduce these Glauber quantities; finally

the simulation is run to the freezeout entropy density and the harmonics are computed.

Fig. 11 shows how the harmonics depend on centrality and the freezeout temperature.

Examining Fig. 11 we see that v1, v2 and v3 are roughly independent of centrality. How-

ever, it must be borne in mind that in a more complete simulation, the total entropy per

participant is also a function of centrality and this could change the result. Here the entropy

per participant is constant. Generally the freezeout criterion is also a function of centrality

and this could give a substantial shape to these curves in a final simulation. Finally, when

viscosity is included the triangularity is also a more complicated function of centrality [14].

This will be explored elsewhere [21].

Fig. 12 shows how these harmonics depend on pT . v2(pT ) and v3(pT ) show a characteristic

linear rise with pT that is a consequence of a strong radial flow [25–28]. Indeed examining

the thermal distribution with constant temperature, we have

eP ·U/T =e−EpUτ/T epT /T ur(r,φ) cos(φp−φu) , (4.2)

'e−Ep/T epT /Tu
(0)
r (r) cos(φp−φ)

×
[
1 +

2pT
T
u(2)
r (r) cos(2φ) cos(φp − φ) +

2pT
T
u(3)
r (r) cos(3φ) cos(φp − φ) + . . .

]
.

(4.3)

Here Ep is the energy, φp is the particles azimuthal angle; we have adopted a non-relativistic

approximation U τ ' 1 and assumed that the flow is approximately radial, φu ' φ. Further,

we have neglected u
(1)
r in this discussion. Unless the momentum angle equals the spatial
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freezeout temperatures. The anisotropy parameters are all 0.1 in the actual simulations.

angle φp ' φ, the thermal distribution is strongly suppressed by the leading Boltzmann

factor. Thus, we arrive at a form which illustrates the linear rise of rise of vn(pT ) with pT

eP ·U/T 'e−Ep/T epT /Tu
(0)
r (r)

[
1 +

2pT
T
u(2)
r (r) cos(2φp) +

2pT
T
u(3)
r (r) cos(3φp) + . . .

]
. (4.4)

Examining Fig. 12, we see that v1(pT ) also displays a similar linearly rising trend at higher

pT after an initial dip. As discussed in Fig. 1b and surrounding text (see Eq. (2.36)) the

non-monotonic structure of v1(pT ) is readily understood with momentum conservation.
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The root mean square radius of the initial Gaussian corresponds to a radius of b = 7.6 fm

V. FURTHER PREDICTIONS AND COMPARISON WITH OTHER WORKS.

A. Further predictions

Fig. 11 and Fig. 12 show the response of the hydrodynamic system to the deformations.

Certainly it is premature to compare the current calculation to data. For instance, the effect

of viscosity, resonance decays, and a lattice-based equation of state have not been included.

These reality factors will reduce the response. Nevertheless, in order to keep the final goal

clearly in sight, we will provisionally compare the current calculation to the Alver Roland

fit [1] of STAR inclusive two particle correlations [29]. Further, we will suggest a number of

additional observables which can confirm the geometric nature of the measured two particle

correlations.

The average over glauber configurations at fixed Npart is denoted with double brackets

〈〈. . .〉〉. Then the two particle angular correlation function can be expanded in a Fourier

series: 〈〈
dNpairs,αβ

dφαdφβ

〉〉
= 〈〈Npairs,αβ〉〉

(
1 +

∑
n

2Vn∆ cos(nφα − nφβ)

)
. (5.1)

The particle labels α and β could denote distinct particle types or pT bins for example.

Following Alver and Roland we will approximate the two particle correlation with the dis-

connected component. The yield of particle type α for a fixed Glauber configuration is

dNα

dφα
=
Nα

2π

[
1 + 2

v1α

ε1
ε1 cos(φα − ψ1,3) + 2

v2α

ε2
ε2 cos(2φα − 2ΨPP )

+ 2
v3α

ε3
ε3 cos(3φα − 3ψ3,3)

]
, (5.2)
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where we have assumed that the response is linearly proportional to the deformation. Then

the two particle correlation function is approximated as

〈〈
dNpairs,αβ

dφαdφβ

〉〉
'
〈〈

dN

dφα

dN

dφβ

〉〉
' NαNβ

(2π)2

[
1 +

∑
n

2

(
vnαvnβ
ε2n

)
〈〈ε2n〉〉 cos(n(φα − φβ))

]
.

(5.3)

Here and below we have tacitly assumed that the multiplicity fluctuations at fixed Npart are

negligible. If this is not the case then one has the following replacements in Eq. (5.3)

NαNβ → 〈〈NαNβ〉〉 〈〈ε2n〉〉 →
〈〈NαNβε

2
n〉〉

〈〈NαNβ〉〉
. (5.4)

Given the parameterizations in Eq. (5.1) and Eq. (5.3), the response functions in Fig. 11

make a definite prediction for the different Fourier components Vn∆. The elliptic flow is

too large in the ideal massless gas model considered here. We will therefore simply plot

the ratios of the different fourier components as was done in the Alver and Roland paper.

Using the response functions in Fig. 11, and the Glauber estimates for 〈〈ε23〉〉/〈〈ε22〉〉, Fig. 13(a)

compares the strength of the triangular component to the quadrapole component. The ideal

hydrodynamic prediction (with a massless ideal gas EOS) is generally too large and fairly

sensitive to the freezeout temperature. This sensitivity reflects the fact that the triangular

flow develops further towards the edge of the nucleus. Fig. 13(b) compares the dipole

component to the quadrapole component. The dipole component is a factor of eight smaller

than the quadrapole component. This is a reflection of the fact that ε1 is small, and the
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fact that v1(pT )/ε1 is positive and negative. The dipolar flow is also sensitive to the details

of freezeout.

Next we wish to determine the general form of the two particle correlation function with

respect to the participant plane ΨPP〈〈
dNpairs,αβ

dφ1dφ2

〉〉
ΨPP

'
〈〈

dNα

d(φα −ΨPP )

dNβ

d(φβ −ΨPP )

〉〉
ΨPP

. (5.5)

Inserting Eq. (5.2) into Eq. (5.5) and averaging over glauber configurations several sev-

eral terms appear. In Section B we identified the principle correlations that exist be-

tween the angles ψ1,3, ψ3,3 and ΨPP . Namely, the only significant fourier expectation

values are 〈cos(2ψ1,3 − 2ΨPP )〉 (as determined by the coefficient A in Eq. (2.37)), and

〈cos(ψ1,3 − 3ψ3,3 + 2ΨPP )〉 (as determined by the coefficient B0 in Eq. (2.44)). With the

assumption that these are the only significant fourier expectation values at third order, the

form of the two particle correlation function with respect to participant plane becomes3:〈〈
dNpairs,αβ

dφαdφβ

〉〉
' NαNβ

(2π)2

[
1+
∑
n

2

(
vnαvnβ
ε2n

)
〈〈ε2n〉〉 cos(nφα − nφβ)

+ 2
v2α

ε2
〈〈ε2〉〉 cos(2φα − 2ΨPP )

+ 2
v2αv2β

ε22
〈〈ε22〉〉 cos(2φα + 2φβ − 4ΨPP )

+ 2
v1αv1β

ε21
〈〈ε21 cos(2ψ1,3 − 2ΨPP )〉〉 cos(φα + φβ − 2ΨPP )

+ 2
v1αv3β

ε1ε3
〈〈ε1ε3 cos(ψ1,3 − 3ψ3,3 + 2ΨPP )〉〉 cos(φα − 3φβ + 2ΨPP )

+ α↔ β
]
. (5.6)

The symmetrization with respect to α and β applies to all terms in this expression which

are not already symmetric, e.g. cos(2φα − 2ΨPP ). We will discuss this expression line by

line. The first three lines are not particularly novel: The first line is independent of the

reaction plane angle ΨPP . The next two lines reflect the underlying elliptic flow and would

normally be subtracted in a flow subtracted two particle correlation function.

The fourth line contains the first novel feature. This term arises because the dipole

asymmetry is preferentially oriented out plane, leading to a net v1 out of plane. Fig. 14(a)

shows the correlation function 〈cos(φα + φβ − 2ΨPP )〉 as a function of centrality. Recently,

the STAR collaboration measured a similar expectation value, but divided correlation func-

tion into the different possible charge components (i.e.++, +-, --) in order to investigate

the possibility of local parity violation in heavy ion collisions [30–32]. Fig. 14(b) shows the

measured STAR correlations. The measured correlation is the same order of magnitude as

3 For simplicity we have neglected the two particle correlation cos(φα + 3φβ − 4ΨPP ). This is because

the corresponding Glauber correlation 〈〈ε1ε3 cos(ψ1,3 + 3ψ3,3 − 4ΨPP )〉〉 is smaller than 〈〈ε1ε3 cos(ψ1,3 −
3ψ3,3 + 2ΨPP )〉〉 by a factor of 4− 10 depending on centrality. The conditional probability distribution in

Eq. (2.44) also neglects this smaller correlation.
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FIG. 14: (Color online) (a) The expectation value 〈cos(φα + φβ − 2ΨPP )〉 as predicted by hydro-

dynamics, where α and β label all particles. (b) The charge asymmetry with respect to reaction

plane 〈cos(φα + φβ − 2ΨR)〉 as measured by the STAR collaboration [30, 31]. Here α and β label

++,+−, or −−. The hydrodynamic prediction does not explain the charge asymmetry.

the out of plane flow found in this work. However many aspects of the out of plane dipole

flow (e.g. the pT dependence and most importantly the charge dependence) do not agree

with the measured correlation. Thus the STAR measurements can constraint the geometric

fluctuations reported here. This will be investigated in future work.

A second novel feature expressed by the two particle correlation function with respect

to reaction plane is recorded by the 5th line of Eq. (5.5). It shows that hydrodynamics,

together with the geometric fluctuations of the Glauber model makes a definite prediction

for the angular correlation

〈〈cos(φα − 3φβ + 2ΨPP )〉〉 . (5.7)

Taking α to label all the particles in a definite pT bin and β all the particles, this definite

prediction reads

〈〈cos(φα − 3φβ + 2ΨPP )〉〉 =
v1(pT )

ε1

v3

ε3
〈〈ε1ε3 cos(ψ1,3 − 3ψ3,3 + 2ΨPP )〉〉 . (5.8)

This result is illustrated in Fig. 15 and is based on the Glauber analysis in Fig. 6 and the

response functions calculated in Fig. 12. Another way to probe this same correlation is the

following. Experimentally, the participant plane ΨPP is traditionally estimated by using

the standard Q vector method, or the Yang-Lee zero generalization of this idea [33]. These

same methods can be used to determine the triangularity event plane ψ3,3 without significant

modifications [34]. The strong correlation between the dipole, triangular, and participant

planes implies that the knowledge of ψ3,3 and ΨPP determines the dipole event plane ψ1,3
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FIG. 15: (Color online) A hydrodynamic prediction for the expectation value

〈cos(φα − 3φβ + 2ΨPP )〉 which reflects the correlation between the dipole, triangular, and ellip-

tic event planes. Here α labels all particles in a given pT bin and β labels all particles.

at least statistically. The most probable orientation is given by Eq. (2.46) and is repeated

here for convenience

ψmp
1,3 = 3ψ3,3 − 2ΨPP − π .

Thus, the v1 associated with the dipole asymmetry can be determined by measuring the

expectation value

〈〈cos(φ− ψmp
1,3 )〉〉 . (5.9)

Essentially this correlation is a v1 with an extra twist to take out the shifting orientations

of the dipole and triangular event planes – see Fig. 5.

B. Discussion and comparison with other works

We hope that the cumulant expansion presented in Section II organizes and formalizes

the study of fluctuations in heavy ion collisions. The convergence of the cumulant expansion

is really quite good as illustrated in Fig. 7. At third order in the cumulant expansion there

are two additional terms, the triangularity 〈r3 cos 3(φ− ψ3,3)〉, and the dipole asymmetry

〈r3 cos(φ− ψ1,3)〉.
Our numerical results for the triangularity v3/ε3 are similar to recently reported results

[14, 15]. However, v3 (and v1) is significantly more sensitive to the freezeout dynamics.

To understand this we studied the space time development of the triangularity (and dipole

asymmetry) in Figs. 8 and 9. These figures indicate that the triangular flow develops on

the same time scale as the elliptic flow. (A similar conclusion for the triangular flow was

reached in Fig. 3 of Ref. [14] based on kinetic theory calculations.) However, there is an
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important difference between the elliptic flow and the dipole and triangular flows which has

not been fully clarified previously. Specifically, the dipole and triangular moments of the

transverse flow grow quadratically with radius, u
(3)
T ∝ r2, rather than linearly as is the case

with elliptic flow, u
(2)
T ∝ r. Consequently, edge effects can significantly reduce the dipole

and triangular flows. Increasing the freezeout temperature cuts on the exterior region of

the flow profile, and therefore v1 and v3 are more sensitive to the precise freezeout criterion

(see Figs. 11 and 12). This unfortunate result may limit the usefulness of the dipole and

triangular flows in determining the shear viscosity of the quark gluon plasma. Indeed the

strong reduction of the v3 due to the shear viscosity [14, 15] is presumably largely due to

the shear viscosity below Tc, though this conclusion requires further investigation.

We also investigated the dipole asymmetry, 〈r3 cos(φ− ψ1,3)〉. The dipole asymmetry

appears to the same order in the gradient expansion and has not been studied previously to

our knowledge. The dipole asymmetry is generally smaller than the triangularity since ε1 is

comparatively small. However, v1/ε1 is only marginally smaller than v2/ε2 and v3/ε3. In non-

central collisions the dipole asymmetry is strongly correlated with the triangularity and the

reaction plane as is illustrated in Fig. 4 and explained in Fig. 5. We find that in non-central

collisions the dipole asymmetry is preferentially out of plane leading to a v1 out of plane.

The size of the observed correlation is somewhat smaller than the observed correlations

measured by the STAR collaboration and does not explain the charge asymmetry.

Finally, we noted that the strong correlation between the dipole asymmetry and the trian-

gularity can be measured experimentally by measuring two particle correlations with respect

to reaction plane. The final result is a hydrodynamic prediction for a curious correlator

〈〈cos(φα − 3φβ + 2ΨPP )〉〉 , (5.10)

which is shown in Fig. 15. This average is similar to averages used to investigate the

Chiral Magnetic Effect (CME) and is no more difficult to measure. The hydrodynamic

prediction for Eq. (5.10) is several times larger than the correlation currently measured

by the STAR collaboration, 〈cos(φα + φβ − 2ΨPP )〉. Thus, the proposed measurement is

feasible and important. If the predictions of Fig. 15 are confirmed it would validate the

hydrodynamic and geometric nature of the measured two particle correlations. Further,

given the off-diagonal nature of the proposed measurement, it will be difficult to reproduce

this correlation with other mechanisms.

The current study neglected the effects of shear viscosity and resonance decays and used

an ideal gas rather than a lattice based equation of state. Incorporating these important

corrections is left for future work.
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Appendix A: Details of the cumulant expansion and initial conditions

1. Formal expansion

Our goal is to determine the cumulants of the underlying distribution ρ(x) and to de-

compose these cumulants into irreducible tensors with respect to rotations around the z

axis.

First we expand ρ(x) and its Fourier transform ρ(k) in a fourier series

ρ(x) = ρ(r, φ) =ρ0(r) + 2
∑
n=1

ρcn(r) cos(nφ) + 2
∑
n=1

ρsn(r) sin(nφ) , (A1)

ρ(k) = ρ(k, φk) =ρ0(k) + 2
∑
n=1

ρcn(k) sin(nφk) + 2
∞∑
n=1

ρsn(k) sin(nφk) , (A2)

where r, φ, k, φk are the magnitudes and azimuthal angles of x and k respectively. The

relation between the ρc,sn (k) and ρc,sn (r) is established by substituting the identity

eik·x = J0(kr) + 2
∞∑
n=1

inJn(kr) cos(φ− φk) (A3)

into the Fourier transform (Eq. (2.3)) and using elementary manipulations to obtain

ρc,sn (k) = 2π

∫
rdr inJn(kr)ρc,sn (r) . (A4)

Similarly, the generating function of cumulants is also given by a fourier series

W (k) = W0(k) + 2
∑
n

W c
n(k) cos(nφk) + 2

∑
n

W s
n(k) sin(nφk) , (A5)

and each W c,s
n (k) is expanded in k as described by equations Eqs. 2.16 and 2.22. Then we

can expand both sides of the defining relation

exp(W (k)) ≡ ρ(k) , (A6)

in a series expressions of the form km cos(nφk) and km sin(nφk). In developing this expansion

we use the series expansion of the Bessel function

Jν(z) = (1
2
z)ν

∞∑
k=0

(−1)k
(1

4
z2)k

k! Γ(ν + k + 1)
, (A7)

and the series expansion of W c,s
n (k). Comparing idential powers of km cos(nφk) and

km sin(nφk) we determine the W c,s
n,m in terms of the moments of the underlying distribution.

Through fifth order inclusive this comparison yields the following relations:

0-th harmonic:

W0,2 =
1

2

〈
r2
〉
, (A8)

W0,4 =
3

8

[〈
r4
〉
− 2

〈
r2
〉2 −

〈
r2 cos 2φ

〉2
]
, (A9)
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2nd harmonic:

W c
2,2 =

1

4

[〈
r2 cos 2φ

〉]
, (A10)

W c
2,4 =

1

4

[〈
r4 cos 2φ

〉
− 3

〈
r2
〉 〈
r2 cos 2φ

〉]
, (A11)

W s
2,4 =

1

4

[〈
r4 sin 2φ

〉]
, (A12)

4th harmonic:

W c
4,4 =

1

16

[〈
r4 cos 4φ

〉
− 3

〈
r2 cos(2φ)

〉2
]
, (A13)

W s
4,4 =

1

16

[〈
r4 sin 4φ

〉]
, (A14)

1st harmonic:

W c
1,3 =

3

8

[〈
r3 cos(φ)

〉]
, (A15)

W s
1,3 =

3

8

[〈
r3 sin(φ)

〉]
, (A16)

W c
1,5 =

5

16

[ 〈
r5 cos(φ)

〉
− 6

〈
r2
〉 〈
r3 cosφ

〉
−
(〈
r2 cos 2φ

〉 〈
r3 cos 3φ

〉
+ 3

〈
r3 cosφ

〉 〈
r2 cos 2φ

〉) ]
, (A17)

W s
1,5 =

5

16

[ 〈
r3 sin(φ)

〉
− 6

〈
r2
〉 〈
r3 sinφ

〉
−
(〈
r2 cos 2φ

〉 〈
r3 sin 3φ

〉
− 3

〈
r3 sinφ

〉 〈
r2 cos 2φ

〉) ]
, (A18)

3rd harmonic:

W c
3,3 =

1

8

[〈
r3 cos(3φ)

〉]
, (A19)

W s
3,3 =

1

8

[〈
r3 sin(3φ)

〉]
, (A20)

W c
3,5 =

5

32

[〈
r5 cos 3φ

〉
− 4

〈
r2
〉 〈
r3 cos 3φ

〉
− 6

〈
r3 cosφ

〉 〈
r2 cos 2φ

〉]
, (A21)

W s
3,5 =

5

32

[〈
r5 sin 3φ

〉
− 4

〈
r2
〉 〈
r3 sin 3φ

〉
− 6

〈
r3 sinφ

〉 〈
r2 cos 2φ

〉]
, (A22)

5th harmonic:

W c
5,5 =

1

32

[〈
r5 cos(5φ)

〉
− 10

〈
r2 cos 2φ

〉 〈
r3 cos 3φ

〉]
, (A23)

W s
5,5 =

1

32

[〈
r5 sin(5φ)

〉
− 10

〈
r2 cos 2φ

〉 〈
r3 sin 3φ

〉]
. (A24)

Each coefficient has a simple interpretation. For instance, W0,2 = 1
2
〈r2〉 is simply the

root mean square radius of the Gaussian. To classify corrections to the Gaussian, one should

examine the difference between 〈r4〉 and 〈r2〉2; W0,4 ' 3
8

[
〈r4〉 − 2 〈r2〉2

]
is the required

difference. The underlined terms (i.e. 〈r2 cos 2φ〉2 in the case W0,4) are of suppressed by a

power of ε2 and are therefore generally unimportant except in very peripheral collisions.
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2. Fourier transform and regulating the cumulant expansion

After specifying the cumulants, the distribution is Fourier transformed to determine the

initial entropy density in coordiante space. For simplicity we will discuss only a spherically

symmetric Gaussian deformed by a small definite triangularity, W c
3,3. In this case the Fourier

transform of a distribution with W0,2 and small W c
3,3 ,

ρ(x) =

∫
d2k

(2π)2
e−ik·xe−

k2

2
W0,2

[
1 +

1

3!
W c

3,3(ik)3 cos 3φk + . . .

]
, (A25)

yields with the definition of ε3 in Eq. (2.30)

ρ(x) =

[
1 +
〈r3〉 ε3

24

((
∂

∂x

)3

− 3

(
∂

∂y

)2
∂

∂x

)]
e
− r2

〈r2〉

π 〈r2〉
, (A26)

where 〈r3〉 = 3
√
π/4 〈r2〉3/2. At large enough radius the correction term becomes large

compared to the leading Gaussian. To regulate this term we replace the whole correction

(≡ X) with

X → C tanh(X/C) , (A27)

where C = 0.95. We have checked that the results are independent of the precise value of

the constant C. The regulator here is not perfect as it (weakly) mixes different terms in the

fourier expansion, but we have found this to be unimportant from a practical perspective,

i.e. the v2 produced by this regulated ε3 distribution is small. Another complication is

that the input parameter εinput
3 in the regulated version of Eq. (A26) does not actually

equal the “true” ε3 of the initial distribution. In all figures we have divided by the true

ε3 ≡ −〈r3 cos(3φ)〉 rather than the input parameter εinput
3 .

We can now specify precisely the initial conditions that are used for Fig. 11 and other

results. At a given impact parameter we use the optical glauber model to calculate the

distribution of participants the transverse plane with σNN = 40 mb. In a traditional hydro-

dynamic simulation (such as labeled by the “Glauber” curves in Fig. 7) the entropy density

at an initial time τo = 1 fm is

s(x, y, τ0) =
Cs
τ0

dNp

dx dy
, (A28)

where dNp
dx dy

is the number of participants per unit area. The value Cs = 15.9 closely cor-

responds to the results of full hydrodynamic simulations [25, 35, 36] The equation of state

that is used in this work is a classical massless ideal gas P = 1/3 e. The relation between

the temperature and energy density is e/T 4 ' 12.2 which is the value for a two flavor ideal

quark-gluon plasma. In the current simulations we calculate the total entropy and average

squared radius 〈r2〉 for glauber distribution. We then take a deformation ε3 ' 0.1, and use

these parameters to initialize the regulated Gaussian described by Eq. (A26) and Eq. (A27).

Finally, the simulation is run and the spectra are calculated leading to Fig. 2.
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Appendix B: Correlations in the Glauber model

The goal of this appendix is to motivate Eq. (2.40). A given distribution of participants

is first characterized by the participant plane ΨPP ≡ ψ2,2 and we will assume that ε2 is

small. Then the probability distribution for ψ1,3 for fixed ΨPP is given by Eq. (2.37). For

fixed ΨPP and ψ1,3 the probability distribution for ψ3,3 must be 2π/3 periodic. Measuring

all angles with respect to participant plane and keeping only the first non-trivial term in the

Fourier series we have

P (ψ3,3|ψ1,3ΨPP ) =
1

2π

[
1 + 2B cos

(
3(ψ3,3 −ΨPP )− (φ∗ −ΨPP )

)]
. (B1)

The amplitude B and phase φ∗ are functions of ψ1,3 −ΨPP .

The amplitude B and the phase derivative can be expanded in a Fourier series

B =B0 + 2B2 cos (2ψ1,3 − 2ΨPP ) , (B2)

dφ∗

dψ1,3

=C0 + 2C2 cos (2ψ1,3 − 2ΨPP ) . (B3)

As the ψ1,3 increases by 2π, the phase φ∗ must change by a multiple of 2π to leave the

conditional probability distribution invariant. The simplest possibility which qualitatively

describes the trends illustrated in Fig. 4 and Fig. 5 is to take C0 = 1. In a general fourier

series of two variables other possibilities would be allowed, e.g. C0 = 3. However such

correlations turn out to be small in the Glauber model. Integrating Eq. (B3) we find

φ = ψ1,3 + C2 sin(2ψ1,3 − 2ΨPP ) + const (B4)

The constant required to reproduce Fig. 5 is π. The combination of Eqs. B1, B2, and B4

leads to the parameterization quoted in Eq. (2.40). In Eq. (2.40) we absorbed the constant

phase π into the leading minus sign of B0 and B2 and changed the sign of C2 so that all

coefficients are positive in the final fit. Fig. 16 shows a fit to the Monte Carlo Glauber

shown in Fig. 5 at b = 7.6 fm using this parameterization. The fit does capture most of the

essential features, but fails to reproduce the sharpness of the correlation band.

Finally, we can estimate the scaling of these coefficients with the average elliptic eccen-

tricity 〈〈ε2〉〉. In a central collision B(ψ1,3,ΨPP ) must vanish. This can be understood by

examining Fig. 5 and recognizing that in a central collision there is no distinguishable dif-

ference between Position A and Position B. The coefficient of cos(3ψ3,3 − φ∗ − ΨPP ) (i.e.

B) describes how phase between the triangular and the dipole planes changes from Position

A to Position B. This coefficient must vanish in central collisions where Position A and

Position B are identical. Finally the coefficients B2 and C2 reflect the almond shape and

must involve an additional power of 〈〈ε2〉〉 relative to C0 and B0. With these remarks we

arrive at the scalings given in Eq. (2.43).
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FIG. 16: (Color online) A fit based on Eq. 2.40 to the the Glauber data exhibited in Fig. 4. The

parameters are B0 = 0.277(2), B2 = 0.029(1), and C = 0.532(7). The normalization (i.e. the color

scale) is arbitrary, but is the same as in Fig. 4.
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