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Neutron elastic-scattering angular distributions were measured at beam energies of 11.9 and
16.9 MeV on 40,48Ca targets. These data plus other elastic-scattering measurements, total and
reaction cross sections measurements, (e, e′p) data, and single-particle energies for magic and dou-
bly magic nuclei have been analyzed in the dispersive optical model (DOM) generating nucleon
self-energies (optical-model potentials) which can be related, via the many-body Dyson equation, to
spectroscopioc factors and occupation probabilities. It is found that for stable nuclei with N ≥ Z,
the imaginary surface potential for protons exhibits a strong dependence on the neutron-proton
asymmetry. This result leads to a more modest dependence of the spectroscopic factors on asym-
metry. The measured data and the DOM analysis of all considered nuclei clearly demonstrates
that the neutron imaginary surface potential displays very little dependence on the neutron-proton
asymmetry for nuclei near stability (N ≥ Z).

PACS numbers: 21.10.Pc,24.10.Ht,25.40.Dn

I. INTRODUCTION

Mean-field quantum-mechanical orbits account for a
large fraction of the properties of valence nucleons. The
spectroscopic factors, the overlap integral between the A
and the A−1 (or A+1) wavefunctions for hole (particle)
states, provide a quantitative measure of the strength re-
siding in these independent-particle-model (IPM) orbits.
For closed-shell stable nuclei, (e, e′p) measurements at
NIKHEF have demonstrated that ≃65% of the strength
is found in the IPM orbits [1]. The remaining strength
has been moved to higher and lower energies by the in-
fluence of both long and short-range correlations.
Short-range correlations are dominated by p-n inter-

actions [2–4] and produce high-momentum components
below the Fermi energy [5] and push strength from IPM
orbits out to very large energies (by many hundreds of
MeV) [6]. The strong p-n interactions, a consequence of
the tensor force, imply a dependence of these short-range
correlations on the proton-neutron asymmetry. Protons
will feel stronger correlations in a neutron-rich nucleus
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and vice versa. This asymmetry dependence is predicted
to give rise to a modest asymmetry dependence of the
occupation probabilities in infinite nuclear matter [7, 8].
Long-range correlations, associated with the coupling

to the collective motion of nucleons, spread strength out
more modestly; out to roughly 50 MeV from the IPM
value. Experimentally, the asymmetry dependence for
protons appears to be much stronger than expected on
the basis of short-range correlations [9]. Although a
theoretical understanding is lacking, it is clear that the
enhancement over the short-range effects occurs in the
domain where surface excitations dominate.
Experimental spectroscopic factors derived from the

eikonal analysis of heavy-ion knockout reactions appar-
ently exhibit a very strong asymmetry dependence [10,
11]. The extreme example is for 32Ar, where the 0d5/2
valence neutron hole level has a spectroscopic factor of
about 16% of the IPM value. More recent measurements
of transfer reactions generate spectroscopic factors that
are in contradiction with these results [12] and indicate
only a small or moderate dependence on nucleon asym-
metry.
Current and future radioactive beam facilities will have

to exclusively rely on hadronic reactions to extract such
information, since more weakly interacting probes like
the (e, e′p) reaction cannot be employed. In view of the
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present disagreement between the interpretation of the
transfer and knockout measurements, it is important to
identify methods that can uniquely determine correla-
tion effects exhibited for example by spectroscopic fac-
tors, as well as identify the origin of the implied corre-
lations. This issue is already conspicuous because spec-
troscopic factors derived from different optical potentials
in the analysis of transfer reactions generate differences
as large as 30%, although the asymmetry dependence is
similar [12].

Information about correlations is contained in the
nucleon self-energy which is a non-local and energy-
dependent one-body potential that determines the nu-
cleon single-particle propagator from the Dyson equa-
tion [13]. The nucleon self-energy is complex and its real
part can be obtained from its imaginary part by a disper-
sion relation and a correlated Hartree-Fock contribution
that is energy-independent. The Dyson equation gener-
ates both the properties of the system when a nucleon
is added to the ground state, or when one is removed.
The nucleon self-energy therefore determines the elastic
nucleon scattering cross section when it is iterated to all
orders into the corresponding T -matrix. The solution of
the Dyson equation also generates the bound-state ener-
gies that can be reached by adding or removing a particle
from the ground state, as well as the corresponding over-
lap functions that are normalized by the spectroscopic
factors. Finally, the solution of the Dyson equation also
generates the hole spectral function, or removal proba-
bility (energy) density for energies in the continuum of
the A− 1 system.

Traditionally, the term optical-model potential has
been employed to describe a complex, energy-dependent,
usually local, one-body potential that describes the elas-
tic scattering of a nucleon for positive energies. In the
Dispersive Optical Model developed by Mahaux and Sar-
tor [14], the OM potential is also considered for negative
energies and causality is enforced by a dispersion rela-
tion which links the real and imaginary potentials. With
this model, the OM potential can be fit to both elastic-
scattering data as well as bound-state properties. The
fitted potential can be considered as a local approxima-
tion to the self-energy with a scaled imaginary poten-
tial. The latter scaling is also a consequence of the local
approximation (Sec III A). Ultimately, a real nonlocal
potential is required before the full utility of the self-
energy can be realized. It was shown recently [15] that
replacing the energy-dependent local Hartree-Fock con-
tribution to the real OM potential by a nonlocal potential
(without energy dependence) allows for an interpretation
of the DOM potential as a proper self-energy provided a
well-defined reverse scaling is made to the imaginary part
[14, 15]. On account of their intimate connection, we will
employ the two terms self-energy and optical potential
interchangeably in the following.

An accurate determination of the nucleon self-energy
both above and below the Fermi energy for a wide range
of nuclei is essential for the reliable extraction of corre-

lation effects as expressed in terms of spectroscopic fac-
tors when hadronic reactions are employed. We point
again to the present uncertainty of at least 30% based on
the choice of the optical potential used in the analysis of
the (d, p) transfer reactions [12] as a case in point. We
also note that in the adiabatic wave approximation [16]
employed for the analysis of this reaction, proton and
neutron optical potentials are used at half the deuteron
energy to describe the deuteron distorted wave, as well
as overlap functions for the added or removed neutron.
Since these quantities are part of the DOM framework,
the future analysis of transfer reactions may profit from a
unified approach and yield a more consistent description
of spectroscopic factors.
Given the disagreement between the asymmetry de-

pendencies of spectroscopic factors deduced in knockout
and transfer reactions, the DOM provides an alternative
route to explore this physics. From experimental stud-
ies of the asymmetry dependence of the DOM potential
one can, via the Dyson equation or the approximate ex-
pressions of Mahaux and Sator, deduce the asymmetry
dependence of the spectroscopic factors.
In a standard DOM analysis, one parametrizes the

real and imaginary potentials based on theoretical ex-
pectations and past experimental work and constrains
these parameters via fits to elastic-scattering measure-
ments, reaction and total cross sections and bound-state
data. Our previous work on the Ca isotopes [17] showed
that the imaginary surface potential for protons increased
strongly with neutron excess. This implied a modest de-
crease in the spectroscopic factors of the valence levels
with asymmetry, i.e. protons experience stronger corre-
lations with increasing neutron number for neutron-rich
systems. This trend is qualitatively consistent with those
deduced from heavy-ion knockout reactions, but the mag-
nitude is significantly smaller, much more in line with
the results from transfer reactions and microscopic cal-
culations using the Faddeev random phase approxima-
tion [18].
The overall nucleon asymmetry dependence of the

magnitude of the imaginary surface potential has been
parametrized in global optical-model fits [19–21] accord-
ing to

W sur = W sur
0 ±W sur

1

N − Z

A
, (1)

where the plus sign refers to protons and the minus to
neutrons. This form is based on the Lane potential [22]
and can easily be justified for the volume imaginary po-
tential, but its application to the imaginary surface po-
tential is not obvious. This parametrized dependence
implies that neutrons experience an equally strong asym-
metry dependence as protons, but of the opposite sign
implying that neutron correlations decrease with increas-
ing neutron excess. However, it was shown that this ap-
proach leads to inconsistencies and it was suggested [9]
that neutrons have a much smaller asymmetry depen-
dence than protons. Other global DOM analyses have
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been performed, but these pertain only to positive en-
ergy data [23, 24].
In order to extend our understanding of the asymme-

try dependencies of both proton and neutron correlations
we have extended our DOM analyses in two ways. First
for the Ca isotopes, we have made measurements of neu-
tron elastic-scattering and total reaction cross sections
on 48Ca. The former are discussed in Sec. II and the lat-
ter have recently been published in Ref. [25]. This work
allows us to compare neutron correlations in 40Ca and
48Ca. Second, we have extended our analysis to include
heavier closed-shell nuclei. We have obtained elastic-
scattering, total and reactions cross sections and some
(e, e′p) data from previously published works for both
protons and neutrons. The nuclei studied include the Ca,
Ni, Sn, and Pb isotopes and some N=28 and 50 isotones.
Details of the data sets are discussed in Appendix A. A
complete description of the present DOM procedure is
provided in Sec. III. We have fitted the data globally in
four mass regions and present the comparison with data
in Sec. IV.
An important difference between the work presented

here and our previous work is that we do not impose
any parametrized asymmetry dependence of the imagi-
nary surface potential such as Eq. (1) or the other form
tried in our earlier work [9]. Instead, in the present DOM
analysis we fit the magnitude of this potential for each
nucleus and each nucleon type separately. An analysis
of the resulting potentials is performed in Sec. V. From
the fitted magnitudes, we deduce the overall asymmetry
dependencies of the imaginary potentials in Sec. VA and
the real potentials in Sec. VB. The consequences for the
asymmetry dependencies of the spectroscopic factors are
then presented in Sec. VC. An example of the predic-
tive power of the method is presented in Sec. VI, which
discusses the behavior of occupation numbers and relies
also on the work of Ref. [15] since occupation numbers
are not always correctly described by the approximate ex-
pressions proposed in Ref. [14]. The example discussed
in detail involves the role of neutron number on the last
mostly occupied proton orbit in Sn nuclei and presents
strength functions, spectroscopic factors, and occupation
numbers for the g9/2 orbit. Finally, the conclusions of
this work are drawn in Sec. VII.

II. EXPERIMENT

A. Experimental Method

An experiment to measure neutron elastic-scattering
differential cross sections on 48Ca was performed at the
Triangle Universities Nuclear Laboratory (TUNL). In ad-
dition to the 48Ca measurements, data were also taken
with a 40Ca target to compare with previous measure-
ments and check for consistency.
The measurements were performed with the pulse-

beam neutron time-of-flight technique using the

2H(d,n)3He reaction to produce neutrons. The exper-
imental setup is almost the same as that described
in detail by El-Kadi et al. [26] and so only a brief
description is given here. Unpolarized deuteron beams
of energies 14.4 and 9.39 MeV were extracted from
the FN tandem Van de Graaff accelerator. The beams
were pulsed at 2 MHz with a pulse width of 2.0 ns and
had time-averaged intensities of ∼1.5 pµA. The beam
traversed a 5.27 mg/cm2 Havar foil to enter a 3.16-cm
deuterium-filled gas cell which was held at 7.8 bar. The
neutrons emitted from the gas cell are calculated to have
mean energies of 16.9 and 11.9 MeV with energy spreads
of 141 and 207 keV, respectively [27].

The target position was located 12.9 cm downstream
from the center of the gas cell. The target location was
enclosed in a right-cylindrical helium balloon structure
of radius 7.6 cm and height 22.9 cm. The He balloon was
enclosed with 840 µg/cm2-thick mylar and helium at at-
mospheric pressure flowed throughout the measurement
period. The neutrons entered the balloon at its center
perpendicular to its symmetry axis. The helium helped
prevent the oxidation of the Ca targets and in addition
reduced the background in the time-of-flight spectra as
the probability of neutron scattering in the helium sur-
rounding the target is significantly reduced compared to
that obtained with air.

The targets were of cylindrical geometry with a diame-
ter of 12.7 mm and a height of ∼12 mm. Both the target
and the balloon axes were aligned vertically. A natu-
ral Ca and an enriched 48Ca target with masses of 2.575
and 2.717 g, respectively were used in the measurements.
The enriched target was 92.8% 48Ca by atom and the
only significant contaminant of the enriched target was
40Ca. To reduce the probability of oxidation during the
transfer to and from the He balloon, these targets were
enclosed in close-fitting argon-filled Mylar bags of wall
thickness 840 µg/cm2. These bags were positioned in the
center of the balloon using thin threads. For background
subtraction, data were also collected with an empty bag
suspended, in the same manner as the targets, inside of
the balloon.

Scattered neutrons were detected in two heavily
shielded NE-218 liquid-scintillator detectors located in
the horizontal reaction plane and at distances of 3.75 m
and 2.29 m from the target. The larger scattering angles
were measured with the closer 2.29-m detector. Tapered
copper and tungsten shadow bars were used to block neu-
trons emitted directly from the gas cell. A third, fixed
scintillator detector was located at 10◦ and was used to
monitor the neutron yield.

The pulse heights of the detectors were calibrated us-
ing the Compton-edge energies measured with 22Na and
137Cs γ-ray sources. Hardware thresholds were set at
∼60% of the value of the 137Cs Compton edge.

For each event, the deposited energy (E), particle iden-
tification determined from the pulse shape PID, and
time of flight were recorded. E-PID gates was used to
obtain neutron γ-ray separation. For each angle-target



4

C
ou

nt
s

50

100

150

200 (a)

TOF [channels]

2700 2800 2900 3000

C
ou

nt
s

0

100

200

300

(b)

12 16

40
48

FIG. 1. (Color online) (a) Time-of-flight spectra obtained
with 16.9 MeV neutrons at θlab=120◦ with the 48Ca target
(solid histogram) and with the empty bag (dashed-histogram)
by the detector located at 3.75 m. (b) The spectrum after
subtraction giving the contribution from scattering by the
48Ca sample. The expected centroids of scattering from the
indicated target masses are shown by the arrows.

configuration, a background spectrum was obtained with
the empty bag. Normalization of this spectrum was ob-
tained either from the monitor counter or from a beam-
current integrator.
Absolute normalization of all cross sections were ob-

tained from elastic scattering off of hydrogen. Measure-
ments were performed with both polyethylene and car-
bon targets when the two detectors were located at 30◦.
This angle was chosen to maximize the separation of hy-
drogen scattering from the elastic and inelastic-scattering
peaks due to carbon. The carbon spectra were subtracted
from the polyethylene results to yield the spectra for hy-
drogen scattering. The absolute normalization was ob-
tain from the hydrogen scattering yields using the n+p

cross sections given in Ref. [28].

B. Results

An example of a typical neutron time-of-flight spec-
trum obtained with the 48Ca target and the correspond-
ing background spectrum obtained with the empty bag
are shown in Fig. 1(a) for θlab=120◦. The difference be-
tween these two spectra gives the contribution from scat-
tering by the 48Ca sample and this is shown in Fig. 1(b).
The arrows indicate the expected centroids for elastic
scattering for A=12, 16, 40, 48 target nuclei. We observe
only one significant peak which corresponds to scattering
from Ca. The yield from the small 40Ca contaminant of
the 48Ca sample is not separable in the data. There is

no measurable yield for scattering from carbon or oxygen
which are found in the mylar bag. No evidence was found
for increased oxygen loading with time as one would have
expected if there was significant oxidation of the targets
during the experiment. The contribution of 40Ca was re-
moved using known cross sections [29, 30]. For smaller
angles, the Ca peak and any oxygen peak would not be
completely resolved. In these cases, the elastic peak was
fit with two Gaussians, one representing the contribu-
tion of 48Ca and the other 16O, with constrained widths
and centroids. The oxygen contribution was found to be
always less than 1%.

All time-of-flight spectra were determined with a soft-
ware threshold on the pulse height of the neutron detec-
tor of 2 and 2.2 times the value measured for the 137Cs
Compton-edge for the 3.75 and 2.29-cm detectors, respec-
tively. These counts were then corrected for the energy-
dependent efficiency of the detector using the efficiency
curves derived in Ref. [27].

To correct the data for multiple scattering in the target
and the target’s finite size, the experiment was simulated
with the transport code GEANT4 [31]. In these simula-
tions, the distance a deuteron projectile traveled in the
3-cm-long gas cell before reacting with the deuterium gas
particle was distributed linearly. The neutron energy is
linearly dependent on the distance the deuteron traveled,
ranging from 16.759 to 17.041 MeV, or from 11.793 to
12.207 MeV, with the larger energy corresponding to a
reaction at the back of the gas cell. The spatial distribu-
tion of the neutrons, in the axes other than the beam axis,
was assumed to be Gaussian with a FWHM of 5 mm.
The angular distributions of the neutrons emitted from
the gas cell is basically flat over the ±5◦ region of interest
for which interactions with the target are possible [32].
Thus, the initial direction of the neutrons was chosen
isotropically in this interval. The neutrons then prop-
agated in a straight line until they entered the target.
The probability of scattering off a 48Ca target nuclei was
proportional to the length of the chord segment the neu-
trons passed through in the target. After scattering, the
neutrons propagated in straight lines and, if they arrived
at a detector, a hit was registered. The assumed n+48Ca
differential cross sections were taken from optical-model
fits to the raw experimental angular distributions.

The absolute normalization of the finite-size correction
was achieved by normalizing the simulated differential
cross section to the raw value at an angle where the dif-
ferential cross section was relatively flat and thus only
an insignificant finite-size correction is expected. For the
11.9 MeV data, this angle was taken to be 110◦, while
for the 16.9 MeV data, we selected 50◦ and 80◦ for the
2.29 and 3.75 m detectors, respectively. As expected, the
finite-size corrections were by far the most significant for
the sharp minima in differential cross section. Finite size-
effects fill in these minima making them shallower and
less sharp.

The corrections for finite-size at 11.9 MeV were rela-
tively small, because there were no sharp minima in the
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FIG. 2. (Color online) Comparison of n+40Ca differential
cross sections measured in this work for neutron energies of
16.9 and 11.9 MeV (filled data points) to those by Honore
et al. at 16.9 MeV [30] and Tornow et al. at 11.9 MeV [29]
(open data points). The 16.9 MeV data have been scaled by
the indicated factor.

differential cross sections. These corrections were at most
6%, while the average correction was approximately 1%.
The finite size corrections at 16.9 MeV were more signifi-
cant; the correction in the sharp minimum was 14%. The
corrections at other angles were much smaller, around 1-
3%.

The finite-size corrected differential cross sections were
fit with the optical model and the total elastic cross sec-
tion was deduced. The GEANT4 simulations were then
performed using this cross section to determine the scat-
tering and multiscattering probabilities. The correction
factor was then determined from the fraction of events in
the simulated detector which originated from a multiscat-
tering interaction in the target. In the end, the effects of
multiscattering were found to be quite small. The largest
correction was 1.5%, and most corrections were under
0.5%. The corrections are substantially smaller than for
previous neutron elastic-scattering works [29, 30] as our
target was significantly smaller in size.

The results obtained for 40Ca are compared in Fig. 2
to previous angular distributions measured with the same
apparatus [29, 30]. The present results are quite consis-
tent with the earlier measurements; the largest deviations
being ∼10%.

III. DISPERSIVE-OPTICAL-MODEL ANALYSIS

A. Model Description

A complete description of the dispersive optical model
developed by Mahaux and Sartor can be found in
Ref. [14]. The real part of the nucleon self-energy
or optical-model potential can be decomposed into
an energy-independent nonlocal part and an energy-
dependent part which can also be nonlocal, i.e.

Re Σ (r, r′;E) = Re Σ (r, r′;EF ) + ∆V(r, r′;E), (2)

where EF is the Fermi energy and the second term, the
dispersive correction, can be determined from the imag-
inary part through the subtracted dispersion relation

∆V(r, r′;E) = (3)

+
1

π
P
∫

Im Σ (r, r′;E′)

(
1

E′ − E
− 1

E′ − EF

)
dE′,

where P stands for the principal value and we note the
convention to employ the same sign for the imaginary
part of the self-energy above and below the Fermi en-
ergy [14]. By definition in Eq. (2), the dispersive correc-
tion is zero at the Fermi energy. The dispersive correction
varies rapidly around EF and causes the valence single-
particle levels to be focused towards the Fermi energy.
Following Perey and Buck [33], the nonlocal energy-

independent term Re Σ (r, r′;EF ) can be approximated
by a local energy-dependent term which Mahaux and Sar-
tor designate as the Hartree-Fock potential VHF (r, E).
Strictly this is not a Hartree-Fock potential, but it does
describe the effects of the mean field. The energy deriva-
tive of VHF is a measure of nonlocality, which is related
to the momentum-dependent effective mass

m̃ (r, E)

m
= 1− dVHF (r, E)

dE
, (4)

where m is the nucleon mass.
A consequence of the local approximation is that one

needs to use a scaled imaginary potential

W =
m̃ (r, E)

m
ImΣ (5)

and a similarly scaled dispersive correction. The imag-
inary part of the self-energy is also approximated as a
local potential and thus the dispersive correction is cor-
respondingly local. Mahaux and Sartor argue that this
modifies ∆V by a smooth function of energy which can
easily be compensated by correspondingly smooth mod-
ification of VHF .
The Fermi energy is defined as

EF =
E+

F + E−
F

2
(6)

E+
F = MA+1 − (MA +m) (7)

E−
F = MA − (MA−1 +m), (8)
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where E+
F and E−

F represent the binding energy for
adding or removing a nucleon, or alternatively, the single-
particle energies of the valence particle and hole states.
In addition to the momentum-dependent effective

mass, two other effective masses can be defined. The
total effective mass is given by

m∗(r, E)

m
= 1− d

dE
[VHF (r, E) + ∆V(r, E)] , (9)

while the energy-dependent effective mass is

m (r, E)

m
= 1− m

m̃ (r, E)

d∆V(r, E)

dE
. (10)

At the highest energies considered in this work, rela-
tivistic effects become relevant. We have included a cor-
responding lowest-order correction in solving the radial
wave equation [34]

[
d2

dρ2
+

(
1− Σ̃ (ρ,E)

Etot −M −m
− ℓ (ℓ+ 1)

ρ2

)]
u (ρ) = 0

(11)

with ρ = k r, where k = M
Etot

√
T (T + 2m), T is the

laboratory kinetic energy, Etot is the total energy in the
center-of-mass frame, and M is the target mass. The
scaled potential is

Σ̃ = γ Σ, γ =
2 (Etot −M)

Etot −M +m
. (12)

If unℓj (r) are bound-state solutions to the radial wave
equation, then the normalized wave functions corrected
for nonlocality are given by

unℓj (r) =

√
m̃ (r, Enℓj)

m
unℓj (r) . (13)

In this work we have employed the following approx-
imations, developed by Mahaux and Sartor [14], to de-
termine bound-state properties. For valence states, the
spectroscopic factor, relative to the independent-particle-
model value, is

Snℓj =

∫ ∞

0

u2
nℓj (r)

m

m(r, Enℓj)
dr, (14)

and the root-mean-square (rms) radius is

Rrms
nℓj =

√∫ ∞

0

u2
nℓj (r) r

2dr. (15)

For hole states, the occupation probability is approxi-
mated by

Nnℓj =

∫ ∞

0

u2
nℓj (r)

×
[
1 +

m

m̃ (r, Enℓj)

1

π

∫ ∞

EF

W(r, E′)

(E′ − Enℓj)
2 dE

′

]
dr, (16)

while for particle states, the same approximation gives

Nnℓj = −
∫ ∞

0

u2
nℓj (r)

×
[

m

m̃ (r, Enℓj)

1

π

∫ EF

−∞

W(r, E′)

(E′ − Enℓj)
2 dE

′

]
dr. (17)

B. Parametrization of the potentials

The parametrization of the real and imaginary optical-
model potentials is the central aspect of a DOM analysis.
The number of free parameters in the fits must be suffi-
cient to allow one to describe the important physics but
not too large or fitting becomes impractical in term of
CPU usage. The functional forms we have used in the
present work are mostly similar to our previous study [9]
which were based on theoretical expectations and con-
frontation with data, though there are some differences
that are discussed below.
The imaginary potential is composed of the sum of

volume, surface, and imaginary spin-orbit components,

W (r, E) = −W vol (E, r)

+ 4asurW sur (E)
d

dr
f(r, rsur , asur) +Wso (r, E) . (18)

with Woods-Saxon form factors:

f(r, Ri, ai) =
1

1 + e
r−Ri

ai

. (19)

Standard optical-model fits to elastic-scattering data
at a single energy require a surface type absorption at
low bombarding energies E ≪50 MeV and a volume type
absorption at high bombarding energies E ≫ 50 MeV.
However, fits encompassing a large range of energies of-
ten have a significant, but small, surface absorption com-
ponent extending to energies much larger than 50 MeV
[9, 21, 35]. One can reconcile these statements by not-
ing that the addition of a small surface component to a
volume-type component acts to increase the radius of the
volume component.
If the radius of the volume potential is increased by

δR, we find, after a Taylor expansion, that

f(r, R+ δR, a) ∼ f(r, R, a) +
df

dR
δR (20)

∼ f(r, R, a)− df

dr
δR (21)

and thus the first-order correction is a surface-type com-
ponent.
Thus a gradually decaying surface term above

E=50 MeV can be understood as being associated with a
volume-type component whose radius decreases with en-
ergy. Such a feature is found in the JLM potential [36, 37]
which is derived from infinite-matter calculations coupled
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with the local-density approximation to get the potential
in the surface region. We have assumed the radius of the
imaginary volume potential to decay with energy as

Rvol(E) = Rvol
0 + δR exp

(
−|E − EF |

ER

)
. (22)

However, an energy dependence of the radius was not
used in the fits as it would require the dispersive correc-
tion to be calculated for each r value which would be very
CPU intensive. Instead we make use of the expansion of
Eq. (21) to obtain

W vol(E, r) = W vol
0 (E)f(r, Rvol

0 , avol)

− 4avolW vol
sc (E)

d

dr
f(r, Rvol

sc , avol) (23)

where W vol
0 (E) is the energy dependence of the depth of

the volume component and the surface-correction, which

accounts for the energy dependence of the radius, is

W vol
sc (E) = W vol

0 (E)
δR

4avol
exp

(
−|E − EF |

ER

)
. (24)

Thus in this work we also have a surface component
that extends well beyond E=50 MeV, however unlike
other studies it is not tied to the “true” surface com-
ponent at lower energies which is important if we are
going to separate the asymmetry dependencies of the sur-
face and volume components. It is also useful to main-
tain a distinction between the “true” surface potential at
low energies which is associated with long-range correla-
tions and the surface-correction at high energies associ-
ated with short-range correlations.
The phase space of particle levels for E ≫ EF is signifi-

cantly larger than that of hole levels for E ≪ EF . There-
fore the contributions from two-particle-one-hole states
for E ≫ EF to the self-energy will be larger than that
for two-hole-one-particle states at E ≪ EF . Thus at en-
ergies well removed from EF , the form of the imaginary
volume potential should no longer be symmetric about
EF . Hence the following form was assumed for the depth
of the volume potential

W vol
0 (E) = ∆WNM (E) +




0 if |E − EF | < Evol

p

Avol
(
1± Cvol N−Z

A

) (|E−EF |−Evol
p )

4

(|E−EF |−Evol
p )

4
+(Bvol)4

if |E − EF | > Evol
p

(25)

where ∆WNM (E) is the energy-asymmetric correction
modeled after nuclear-matter calculations. Apart from
this correction, the parametrization is similar to the
Jeukenne and Mahaux form [38] used in many DOM
analyses. For the asymmetry term, the + and - values
refer to protons and neutrons respectively. This form of
the asymmetry potential is consistent with the Lane po-
tential [22] and for short-range correlations can be jus-
tified based on the difference between the n-p and the
n-n or p-p in-medium nucleon-nucleon cross sections [9].
Nuclear-matter calculations of occupation probabilities,
which should be closely associated with the volume com-

ponent, also suggest that this form is valid except for
extreme asymmetry values [7, 8].

We set the parameter Evol
p =11 MeV to force the imag-

inary potential to be zero just in the vicinity of the Fermi
energy (see later). The radii of the volume and surface-
correction components, W vol

0 and W vol
sc are taken to be

identical:

Rvol
0 = rvol0 A1/3 (26)

The energy-asymmetric correction was taken as :

∆WNM (E) =





αAvol
[√

E + (EF+Ea)
3/2

2E − 3
2

√
EF + Ea

]
for E − EF > Ea

−Avol (EF−E−Ea)
2

(EF−E−Ea)2+(Ea)2
for E − EF < −Ea

0 otherwise

(27)

which is similar to the form suggested by Mahaux and
Sartor [14]. Following our previous study [9], we have

taken α=0.08 MeV−1/2 and Ea=60 MeV.
The “true” imaginary surface potential is taken to have

the form
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W sur(E) =





0 if |E − EF | < Esur
p

Asur

1+exp
(

|E−EF |−Csur

Dsur

)

exp

(

|E−EF |−Esur
p

Bsur

)

−1

exp

(

|E−EF |−Esur
p

Bsur

)

+1
if |E − EF | > Esur

p

(28)

where for protons and neutrons (i = n, p) the E
sur(i)
p pa-

rameter is related to the experimental particle-hole en-
ergy gaps ∆i via

Esur(i)
p = f∆

[
∆i

2
+ min (∆p,∆n)

]
(29)

∆i = E
(i)+
F − E

(i)−
F (30)

In the independent-particle model, f∆=1 and Esur
p

represents the minimum particle energy above the Fermi
value, for which a particle can couple to a two-particle-
one-hole excitation. Similarly it also characterizes the
maximum energy, relative to the Fermi value, for which
a hole can couple to the a two-hole-one-particle excita-
tion. Thus between these two limits, damping of single-
particles states is not possible and the imaginary poten-
tial should exhibit a region of width 2Esur

p where it is
exactly zero. Many-body correlations reduce the width
of this gap and thus we include the fitting parameter f∆.
Mahaux and Sartor had also explored imaginary poten-
tials which were zero in the immediate vicinity of the
Fermi energy [14], however, they assumed a somewhat
different energy dependence.
The mass dependence was taken as

Rsur = rsur0 A1/3 (31)

and the parameter Asur was individually fit for each nu-
cleus and nucleon type.
The Hartree-Fock potential is parametrized in the fol-

lowing way

VHF (r, E) = −V V ol
HF (E) f(r, rHF , aHF )

+ 4V sur
HF

d

dr
f(r, rHF , aHF ) + Vc (r) + Vso(r, E), (32)

where the Coulomb VC and real spin-orbit Vso terms have
been separated from the volume and surface components.
The volume component contains the energy-dependence
representing nonlocality, which is approximated by the
cubic equation

V HF
vol (E) = V HF

0

− αvol (E − EF )− βvol (E − EF )
2 − γvol (E − EF )

3
.

(33)

The value of V HF
0 is constrained for each nucleus and nu-

cleon type by obtaining the correct Fermi energy. This is
essentially independent of the imaginary potential and
their dispersive corrections, i.e., the dispersive correc-
tions have equal but opposite effects on E+

F and E−
F and

so cancel in the calculation of the Fermi energy in Eq. (6).
We have included an asymmetry dependence of αvol;

αvol = αvol
0 ± αvol

NZ

N − Z

A
(34)

and

RHF = rHF
0 A1/3. (35)

The Hartree-Fock surface component was found neces-
sary to fit high-energy elastic-scattering data [9] and was
parametrized as

V sur
HF (E) =

{
0 if x < 0

αsur x2

x2+(γsur)2 if x > 0
(36)

where

x = E − EF − βsur . (37)

The Coulomb potential was taken as that of a sharp-
surfaced sphere with radius

RC = rCA
1/3. (38)

At high energies, OM potentials generally include an
imaginary spin-orbit potential [39]. Given that this term
is usually assumed to be zero for lower energies, this im-
plies that the imaginary spin-orbit term is energy depen-
dent. As such, it should give rise to a dispersive correc-
tion to the real component. Given these considerations,
the total spin-orbit potential was taken as

Uso(r, E) = Vso(r, E) + iWso(r, E) =

∆Vso (r, E) +

(
h

mπc

)2

[V so + iW so(E)]

× 1

r

d

dr
f(r, Rso, aso)

ℓ · s
2

,

where (~/mπc)
2
=2.0 fm2 and ∆Vso is the dispersive

correction determined from the imaginary component
Wso. As the imaginary spin-orbit component is generally
needed only at high energies, we chose the form

W so(E) = Aso (E − EF )
4

(E − EF )4 + (Bso)4
. (39)

The dispersive correction ∆Vso(E) associated with this
component gives an approximately linear decrease in
magnitude of the total real spin-orbit strength over the
energy region of interest. The mass and asymmetry de-
pendencies of the spin-orbit potential were taken as

V so = V so
0 ± V so

NZ

N − Z

A
, (40)

Rso = rso0 A1/3. (41)
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IV. RESULTS OF FITS

Global fits to elastic scattering data, total and reac-
tion cross sections, single-particle energies, rms radii, and
spectroscopic factors were performed for four regions: 1)
Ca, Ni isotopes and N = 28 isotones, 2) N = 50 isotones,
3) Sn isotopes, and 4) 208Pb. The data sets and their
references are listed in Appendix A. The final fitted pa-
rameters for these four regions are listed in Tables I and
II. The fitted elastic-scattering differential cross sections
are shown in Figs. 3 to 5 and the fitted analyzing pow-
ers are displayed in Figs. 6 and 7. Fitted reaction cross
sections for protons are shown in Fig. 8 while fitted re-
action and total cross sections for neutrons can be found
in Fig. 9. The relative difference in total neutron cross
sections between 40Ca and 48Ca were also included in the
fitting and the fitted results are displayed in Fig. 10. The
quality of the fits are at least as good, if not better, than
other global optical-model fits.
In the final fits, constraints on some parameters were

made based on initial fits. In a number of cases, a fitted
parameter was similar in the four fit regions. In some
cases, we attempted to replace these values by an average
value from the four fit regions and, if in the subsequent
refit, the χ2 didn’t increase significantly, then the average
value was kept. These values are indicated by the (*)
symbols in Table I.
In other cases, a parameter could not be adequately

constrained from the available data. This is especially
true for the Sn region where there is a lack of high-energy
data to constrain the imaginary volume potential and
the higher-order energy dependence of the Hartree-Fock
potentials. In such cases, an intermediate value between
the neighboring regions was chosen and fixed in the fits.
Such cases are indicated by an (fix) in Table I. Also the
parameters rC , a

vol, and asur were fixed at reasonable
values to reduce the number of fitting parameters.
A perusal of the remaining parameters generally re-

veals a consistency between the fits. The parameters
aHF , rsur , Avol, Bvol, V so

0 , rso are quite similar in the
different fit regions. The parameters αvol

0 , rHF , δR show
systematic mass dependencies. The value of δR=4.60 fm
for the Pb region may seem large, but over the energy re-
gion where the volume imaginary potential is significant
in our fits (Bvol to 200 MeV), the radius of W vol changes
by only 1.45 fm.
The spectroscopic factors and rms radii derived from

(e, e′p) measurements on 40Ca, 48Ca, 90Zr, and 208Pb are
compared to the fitted values in Figs. 11 and 12. The rms

radii are well fit and put tight constraints of the values
of rHF and aHF . The fitted spectroscopic factors for
the Ca isotopes are a little too high, approximately twice
the experimental σ values away from, but still consistent
with the experimental values.
Finally, fitted single-particle energies Enℓj are shown

in Figs. 13 to 15. For levels well below the Fermi energy,
the single-particle strength is highly fragmented and the
plotted values represent the mean energy. In Fig. 13, the

A dependence of some single-particle levels is presented.
Quite generally, the energies of the valence hole and par-
ticle states in the immediate vicinity to the Fermi energy
are well described. The more deeply bound proton lev-
els (0d5/2, 1s1/2, 0d3/2) for the Ni isotopes in Fig 13(b)
are not well reproduced. These levels have a greater ex-
perimental uncertainty concerning the average location
of the level strength. There may be even more deeply
bound strength unaccounted for in the experiments, bi-
asing the quoted result to higher energies. However, the
tensor force, which is not explicitly included in our fits,
may well be responsible for the behavior of the experi-
mental data [40]. Also in Fig. 13(a), one observes that
the trend in the 0d3/2 proton levels in the Ca isotopes is
not a smooth linear function of A as in the fits. Again
this might be a consequence of the influence of the tensor
interaction.
For the 40Ca and 58Ni systems, the average strength

of the deeply bound 0s1/2 and 0p proton levels is known.
These are compared to the fitted values in Fig. 14. The
location of this strength is described in the fits as well as
the shallower levels. Finally in Fig. 15, the levels in the
vicinity of the Fermi energy for the double closed shell
nuclei 40Ca, 48Ca, and 208Pb are compared to the fitted
values. The reproduction is adequate, but certainly not
perfect.

V. ANALYSIS OF FITTED POTENTIALS

A. Asymmetry dependencies

From the asymmetry dependencies of the imaginary
potentials, one can infer the asymmetry dependency of
the spectroscopic factors, occupation probabilities and
determined how nucleon correlations change with in-
creasing neutron or proton richness. Examples of the fit-
ted energy dependencies of the magnitudes of the imag-
inary potentials for some Ca, Sn and Pb isotopes are
shown in Fig. 16. Both the surface [W sur(E), Eq. (28)]
and volume [W vol

0 (E), Eq. (25)] components for both
protons (solid curves) and neutrons (dashed curves) are
shown.
The magnitude of the asymmetry dependence of the

imaginary volume potential can be gauged by the dif-
ferences between the proton and neutron volume com-
ponents in each panel of Fig. 16. For the N=Z 40Ca
nucleus in Fig. 16(d), the neutron and proton volume
potentials are identical by definition [Eq. (25)]. The mag-
nitude of the asymmetry coefficient Cvol in Eq. (25) was
determined solely from the 208Pb data and applied to all
other fits. The 208Pb data is the most appropriate for
determining Cvol as 208Pb has the largest asymmetry of
all systems studied and has significant data for both neu-
trons and protons at energies above 50 MeV where the
volume absorption is dominant. The magnitude of Cvol

is directly related to the difference between the proton
and neutron volume potentials in each of the panels of
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Fig. 16.

The other quantities Avol and Bvol, parameterizing the
volume potential in Eq. (25) were fit individually for the
(Z=20, 28, N=28) and Pb regions. These values listed
in Table I are quite consistent. Their average value was
imposed on the fits to the Sn and N=50 regions where

there is little higher-energy data to constrain them.

The asymmetry dependence of the volume component,
undoubtedly associated with the tensor interaction, is
quite modest. On the other hand, we see in Fig. 16
very strong increases in the proton surface component
with increasing neutron number in the Ca and Sn iso-
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TABLE I. Fitted and fixed parameter values obtained in this work for the four indicated fit regions. For entries indicated by
a (fix), the quantity was fixed during the fits. For those indicated by an (*), a single value is used for all fitting regions which
was taken from the average of initial individual fits. The table also contains the number of the equation which defines each
individual parameter.

Z=20, 28, N=50 Z=50 Z=82 Eq.
N=28 num.

rC [fm] 1.3(fix) 1.3(fix) 1.3(fix) 1.3(fix) (38)
αvol
0 0.51 0.47 0.42 0.38 (34)

αvol
NZ 0.16 0.14(fix) 0.14(fix) 0.13 (34)

βvol [10−4MeV−1] -6.7 -10.5 -6.9(fix) -7.1 (33)
γvol [10−6MeV−2] -1.8 -0.7(fix) 0(fix) 0.6 (33)

αsur [MeV] 7.64 6.17 7.42(fix) 7.21 (36)
βsur [MeV] 7.17 8.00 14.2(fix) 21.2 (37)
γsur [MeV] 63.9 82.7 92(fix) 121 (36)
rHF
0 [fm] 1.18 1.21 1.24 1.23 (35)
aHF [fm] 0.65 .62 0.75 0.70 (19)

f∆ 0.8(*) 0.8(8) 0.8(*) 0.8(*) (29)
Bsur [MeV] 10.0 7.0 8.3 15.0 (28)

Csur 33.6 46.8 37.2 30.4 (28)
Dsur 12.2 7.1 10.9 11.5 (28)

rsur0 [fm] 1.17 1.13 1.20 1.20 (31)
asur [fm] 0.6(fix) 0.6(fix) 0.6(fix) 0.6(fix) (19)

Avol[MeV] 7.94 8.63 8.50(fix) 9.07 (25)
Cvol 4.22(fix) 4.22(fix) 4.22(fix) 4.22 (25)

Bvol [MeV] 40.0 41.2 43.7 40.8 (25)
rvol0 [fm] 1.35 1.28 1.33 1.28 (26)
δR [fm] 2.38 3.22 4.00 4.60 (24)
avol [fm] 0.6(fix) 0.6(fix) 0.6(fix) 0.6(fix) (19)
ER [MeV] 35.5(*) 35.5(*) 35.5(*) 35.5(*) (24)

α [MeV−1/2] 0.08(fix) 0.08(fix) 0.08(fix) 0.08(fix) (27)
Ea [MeV] 60(fix) 60(fix) 60(fix) 60(fix) (27)
Evol

p [MeV] 11(fix) 11(fix) 11(fix) 11(fix) (25)
V so
0 [MeV] 6.37 5.71 6.32 6.07 (40)

V so
NZ [MeV] -1.31(*) -1.31(*) -1.31(*) -1.31(*) (40)
rso0 [fm] 0.98 1.00 1.11 1.11 (41)
aso [fm] 0.70(*) 0.70(*) 0.7(*) 0.7(*) (19)

Aso [MeV] -3.65(*) -3.65(*) -3.65(*) -3.65 (39)
Bso [MeV] 208(*) 208(*) 208(*) 208(*) (39)
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topes. Also we see very large differences in the surface
component between protons and neutrons for all but the
40Ca case. In this instance, unlike the volume case, the
agreement between the magnitudes of proton and neu-
tron imaginary surface potential for 40Ca is not forced,
but a result of the fit. The neutron imaginary poten-
tials show only small dependencies on A and asymmetry
unlike the protons.

The asymmetry dependence of the W sur
max, the maxi-

mum value of the magnitude of the imaginary surface
potential W sur(E) , is plotted for all Sn isotopes stud-
ied in Fig. 17. These maximum values for protons show
a substantial increase with (N − Z)/A whereas for neu-
trons there is almost no change. The proton data could
be well fit by a linear relationship, however a linear ex-
trapolation to 100Sn [(N − Z)/A=0] would give a value
of W sur

max close to zero. This seems unlikely and suggests
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FIG. 10. Ratio of the difference to the sum of the total cross
sections of neutrons on 48Ca and 40Ca targets. As a reference,
the dashed line shows the magnitude just from the change in
radius assuming an A1/3 dependence. The curve shows the
fit to the experimental data points from Ref. [25].
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FIG. 13. (Color online) Comparison of experimental (data
points) and fitted single-particle energies for (a) Ca, (b) Ni,
(c) Sn, and (d) 92Mo levels. The dashed curves indicate the
Fermi energies.
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ted, neutron and proton, single-particle levels for the double-
closed-shell nuclei 48Ca, 40Ca, and 208Pb. Fermi energies are
indicated by the dashed lines.

that the true asymmetry dependence is nonlinear.

The asymmetry dependence for the Z=20, 28, N=28
fits are shown in Fig. 18. Here the asymmetry dependen-
cies are more complicated than those obtained for the Sn
isotopes. For protons we see an initial increase with in-
creasing asymmetry, but subsequently the magnitude of
the W sur

max saturates at around 10 MeV. For neutrons we
also see an initial increase with asymmetry, but for 48Ca,
the data point with the maximum value of asymmetry,
W sur

max is almost identical to its value for 40Ca, the data
point with the minimum asymmetry. This may suggest
an initial rise and then fall of W sur

max with asymmetry, but
the number of data points is small and thus this gener-
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alization may be premature.

In fact it is not clear that an asymmetry parameter
is the most appropriate one to characterize the neutron
dependences. In Fig. 19, W sur

max is plotted as a function
of proton number Z for all the neutron cases studied.
Here we see that the magnitude of the imaginary surface
potential for neutrons is very similar for all cases studied
and only varies by 20%. Also the data points with the
same Z values almost completely overlap suggesting that
for neutrons, this may be a better way to extrapolate
W sur

max values. For protons, plotting W sur
max versus either

Z or N does not add new insight.

The stronger asymmetry dependence obtained for pro-
tons can also be deduced more directly from some of the
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FIG. 18. (Color online) The maximum of the fitted imaginary
surface potential obtained for Z=20, 28 and N=28 are shown
as the data points. The curves show smoothed asymmetry
dependence through the points.

data sets. In standard optical-model fits to an angular
distribution from a single proton energy, there is often no
unique fit. However, the volume integral of the potentials
are generally found to be similar for all good fits [41]. The
magnitude of the integrated imaginary potential

JW (E) =

∫
drW (r, E) (42)

for ∼20 MeV protons in Sn and Ca isotopes obtained
by Wassenaar et al. [42] and McCamis et al. [43] are
plotted as a function of A in Figs. 20(a) and 21(a). The
data have been scaled by A−1 to remove the effect of
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TABLE II. The Fermi Energy and fitted values of the mag-
nitudes of the Hartree-Fock and imaginary surface potentials
and the maximum of the imaginary surface potential for all
the nuclei studied.

system EF V HF
0 Asur W sur

max

[MeV] [MeV] [MeV] [MeV]
p+40Ca -4.7 59.2 14.6 6.7
p+42Ca -7.6 61.9 18.5 9.4
p+44Ca -9.5 63.0 19.6 9.9
p+48Ca -13.2 64.8 19.1 9.4
p+50Ti -10.1 65.9 20.7 10.6
p+52Cr -8.5 63.3 16.8 8.6
p+54Fe -7.0 60.7 15.1 7.8
p+58Ni -5.8 60.8 16.4 8.5
p+60Ni -7.2 61.8 17.8 9.1
p+62Ni -8.6 62.8 19.2 9.8
p+64Ni -10.0 63.8 18.2 9.3
p+90Zr -6.8 59.3 9.95 8.7
p+92Mo -5.8 60.1 13.1 11.4
p+112Sn -5.3 59.9 16.9 10.6
p+114Sn -6.1 59.5 18.0 11.4
p+116Sn -6.8 60.0 21.0 13.4
p+118Sn -7.6 60.4 22.2 14.2
p+120Sn -8.2 60.8 26.2 16.7
p+122Sn -9.0 61.4 25.4 16.3
p+124Sn -9.7 61.8 28.2 18.1
p+208Pb -5.9 61.2 35.7 13.1

n+40Ca -12.0 58.7 15.6 7.1
n+48Ca -7.5 54.1 14.2 7.1
n+54Fe -11.3 56.8 15.5 8.0
n+58Ni -10.6 57.0 16.0 8.4
n+60Ni -9.6 56.1 16.3 8.5
n+92Mo -10.3 53.3 10.8 9.4
n+116Sn -8.3 48.8 13.2 8.6
n+118Sn -7.6 47.2 12.9 8.4
n+120Sn -7.6 47.3 12.8 8.3
n+124Sn -7.1 48.8 12.6 8.2
n+208Pb -5.6 47.1 21.6 8.0
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FIG. 19. The maximum of the fitted imaginary surface po-
tential obtained for neutrons for all systems studied plotted
as a function of proton number Z.
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FIG. 20. (Color online) Mass dependence for Sn isotopes of
(a) the integrated imaginary potential for protons from the
fits to elastic-scattering data obtained by Wassenaar et al.

scaled by A−1 [42] and (b) the proton reaction cross section

measured at 25 MeV by Carlson et al. [44] scaled by A−2/3.

increasing volume with increasing A. At 20 MeV, the
results are dominated by the imaginary surface poten-
tial and the deduced dependencies are similar to the ex-
tracted asymmetry dependence of W sur

max in Figs. 17 and
18, .i.e. with increasing neutron number, the magnitude
of the imaginary surface potential increases for Sn iso-
topes. For Ca isotopes there is an initial increase and a
subsequent saturation of the imaginary potential as seen
in the extracted W sur

max in Fig. 18.
Similar trends can also be observed in the proton reac-

tion cross sections. Figures 20(b) and 21(b) show the A
dependence of the reaction cross sections scaled by A−2/3

to take into account the change in radius. The results for
proton energies of 25 MeV, which again emphasize the
imaginary surface component, were obtained by Carlson
et al. [44, 45]. These figures also display the same trends
as found for |JW |/A and W sur

max. The elastic-scattering
and reaction cross section data thus present consistent
pictures of the asymmetry dependence.
For the N=50 region, we only have data for two nuclei

and thus are not able to draw conclusions about the over-
all asymmetry dependence. We note that in Table II, the
p+92Mo value of W sur

max is 30% larger than the p+90Zr
values. In this case, the system with the larger neutron-
proton asymmetry has the smaller value W sur

max. Possibly
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this is a local fluctuation, but more data are needed for
other N=50 isotones to draw any firm conclusions.

B. Real potential

The magnitude of the real Hartree-Fock potential was
determined individually for each nucleus and nucleon
type by requiring the correct Fermi energy. This pro-
cedure is independent of the magnitude of the imaginary
potentials. A typical parametrization of the magnitude
of the real nuclear potential in standard optical-model
fits is [20]

V OM (E) = V OM
0 ± V OM

1

N − Z

A
− αvol(E − VC) (43)

where the average Coulomb energy of the nucleon inside
of the nucleus is given by

VC =
1.73ZZN

RC
. (44)

and ZN is the atomic number of the nucleon. This form
is consistent with the Lane potential [22] and the second
term is associated with asymmetry energy. The quantity

αvolVC is the difference in the nuclear potential between
a proton and a neutron for a Z=N nucleus and is called
the Coulomb correction.
The systematics of the V HF

0 values extracted from this
work do not need to explicitly use the Coulomb correc-
tion as the energy dependence in Eq. (33) is always with
respect to the Fermi energy which includes the Coulomb
energy. For example, Mahaux and Sartor [46] noted that
the difference in neutron and proton Fermi energies for
40Ca is VC . More generally, the Fermi energies can be
parametrized as [47]

EF = E0
F ± E1

F

N − Z

A
+ VC . (45)

Figure 22 shows the EF − VC values from the systems
studied in this work and the lines are fits, to the above
equation, giving E0

F=-13.9 MeV and E1
F=-42.9 MeV. To

first order, we can rewrite Eq. (33) to include the asym-
metry dependence as

V HF
vol = V HF

00 ± V HF
1

N − Z

A
− αvol(E − EF ). (46)

Inserting the Fermi energy from Eq. (45) into the above
equation yields the standard optical-model potential of
Eq. (43) with

V OM
0 = V HF

00 + αvolE0
F (47)

V OM
1 = V HF

1 + αvolE1
F (48)

The values of the terms in Eq. (46) can be obtained
from systems where both proton and neutrons are ana-
lyzed, i.e.

V HF
00 =

V HF
0 (p) + V HF

0 (n)

2
, (49)

V HF
1

N − Z

A
=

V HF
0 (p)− V HF

0 (n)

2
. (50)

Such values are plotted in Fig. 22(b) and 22(c) for the
first and second terms respectively. The linear asym-
metry dependence of the second term is readily ob-
served in Fig. 22(c) and the line is a linear fit giving
V HF
1 =37.7 MeV. The value of V HF

00 in Fig. 22(b) is
roughly constant for the systems plotted, but there is
a small mass dependence which is fit with the linear re-
lationship

V HF
00 = 60.4− 0.041A (51)

and is shown by the line in the figure. Using all the fitted
values and taking an average value of 0.45 for αvol from
Table I we obtain from Eqs. (47) and (48), V OM

0 = 54.1
- 0.041A MeV and V OM

1 =18.4 MeV which are close to
the values of 52.9 MeV and 13.1 MeV obtained from the
global fits of Varner et al. [20].
The term V OM

1 represents the potential part of the
asymmetry energy. When our value for this term is added
to the standard value of the asymmetry kinetic energy for
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FIG. 22. (Color online) (a) Asymmetry dependence of the
Fermi energy corrected for the average Coulomb energy inside
the nucleus VC . (b) and (c) are derived from the sum and
difference of the magnitudes of the Hartree-Fock potentials
extracted for protons and neutrons. In all cases the lines are
linear fits (see text).

saturated nuclear matter of 12 MeV [48] (which is 5/9
of the mean nucleon kinetic energy), a total asymmetry
energy of 30-31 MeV is obtained. This value can be com-
pared to those extracted from the Seeger’s mass formula
[49] or the Droplet Model [50] with values of 30.6 and
36.8 MeV, respectively. The sum of our potential con-
tribution and the standard kinetic-energy contribution is
also in close agreement with the value of 32.4 MeV found
by Danielewicz and Lee from the combined constraints
of a global-mass fit and the mass differences of isobaric
analog states [51].

The nonlocality parameter αvol represents the
momentum-dependent effective mass of m̃/m of 0.49 in
the center of the nucleus for the Ca region. It rises
to 0.62 for 208Pb. These values do seem to approach
the typical values of 0.7 from nuclear-matter calcula-
tions [52]. The asymmetry dependence of αvol from the
αvol
NZ term in Eq. (34) can be understood as specifying

different nonlocalities associated with the V HF
00 and V HF

1

components. The isoscalar component (V HF
00 ) has much

stronger nonlocality (energy-dependence) than than the
isovector component (V HF

1 ) which is consistent with that
found by Rook [53].

C. Spectroscopic Factors

In the independent-particle model, the strength of a
single-particle level is located at a single energy. How-
ever, the action of the correlations spreads this strength
out to higher and lower energies and the energy distribu-
tion is described by the spectral function

Sℓj(r;E) =
1

π
ImGℓj(r, r;E) (52)

and the spectral strength as a function of energy for a
given ℓj combination is given by

Sℓj(E) =

∫ ∞

0

dr r2 Sℓj(r;E). (53)

The propagatorGℓj is the solution of the Dyson equation
in coordinate space [15]. For a valence level, the strength
function consists of a delta function at the IPM level
energy plus continuum contributions at lower and higher
energies. The spectroscopic factor represents the integral
of the delta-function component and gives the reduction
in the localized strength at the IPM level energy due to
correlations.
Spectroscopic factors can be estimated from the fitted

potentials using Eq. (14). There is more uncertainty in
the absolute values of the spectroscopic factors than in
the relative values which are of interest when compar-
ing differences between levels or between nuclei or the
asymmetry dependence. For example, the parameter α
in Eq. (27) is not well constrained in the fits and modifi-
cations to its value will move all the spectroscopic factors
in the same direction, either to larger or smaller values,
preserving relative values [9, 14]. This factor is closely re-
lated to the strength of the repulsive core and the tensor
force of the underlying nucleon-nucleon interaction [8].
Data from the (e, e′p) reaction on 208Pb suggest a de-
pletion of the Fermi sea and a corresponding reduction
of spectroscopic factors of about 15% or slightly more as
being due to the effect of short-range and tensor correla-
tions [54] (see also below).
The asymmetry dependence of the extracted nucleon

potentials will induce an asymmetry dependence of the
spectroscopic factors in the DOM. However there are
other factors which are also important. Let us concen-
trate on the Sn isotopes to begin with. The spectroscopic
factors deduced from the fitted potential with Eq. (14) for
the valence-hole levels are plotted in Fig. 23. The spec-
troscopic strength of the valence levels are more sensitive
to the imaginary surface potential than are the deeper-
lying states. The protons show an overall decrease in the
spectroscopic strength with increasing A which is associ-
ated with the increase in the imaginary surface potential.
However, the magnitude of the effect is moderate; the
65% change in W sur

max from 112Sn to 124Sn corresponds to
only a 14% change in the spectroscopic factor. To under-
stand this we plot in Fig. 24 the radial dependence of the
two quantities in Eq. (14) used to calculate this quantity;
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FIG. 23. (Color online) Mass dependence of spectroscopic
factors (relative to IPM values) for valence hole levels deduced
from the fitted potentials for Sn isotopes.
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in 112Sn.

the reduced wave function and the energy-dependent ef-
fect mass. At the peak in the surface, the effective masses
from 112Sn and 124Sn differ by 30%, but elsewhere by a
smaller amount. [The enhancement above unity at small
radii in Fig. 24 is associated with the volume imaginary
potential with has only a very small asymmetry depen-
dence (Sec. IV)]. When averaged over the 0g9/2 wave-
function, this difference in effective mass corresponds to
the above mentioned 14% difference.
Beyond the overall decrease, the spectroscopic factor

for 116Sn is further lowered as its Esur
p value specify-

ing the gap in the imaginary potential around the Fermi
energy [see Eq. 28] is lower than the values for the neigh-
boring Sn isotopes. This is a consequence of the small
∆n value for neutrons in this isotope [See Eq. (30)].
The single-particle energies in the fits do not exactly

reproduce the experimental values. For the proton 0g9/2
orbits in these Sn isotopes, the fitted energy is at most
390 keV different from these experimental value. To see
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FIG. 25. (Color online) Comparison of proton 0g9/2 spec-
troscopic factors (relative to IPM values) for Sn isotopes ob-
tained with the standard fits (filled data points), where the
depth of the Hartree-Fock potential was adjusted to reproduce
the Fermi energy, to those where the depth was adjusted to
reduce the correct 0g9/2 level energy (open data points). Pre-

diction are also shown for 102Sn, 106Sn, 130Sn, 132Sn using a
linear extrapolation of W sur

max.

if this has a significant effect, we have refit all the data so
that instead of adjusting the depth of the Hartree-Fock
potential to get the correct Fermi energy, we have now
readjusted it to get the correct 0g9/2 level energy. This
refit makes only very small modifications in the values of
the fit parameters. The spectroscopic factors from these
new fits (open data points) are compared to the older val-
ues (filled data points) in Fig. 25. The differences in the
two spectroscopic factors are quite modest, The largest
difference in S, which occurs for the heavier Sn isotopes,
is only 0.04. However, the change in spectroscopic factor
from 112Sn to 124Sn has now increased to 23%.

In Fig. 25 we also show some extrapolated spectro-
scopic factors for proton 0g9/2 levels in 102Sn, 106Sn,
130Sn, and 132Sn. To obtain these we used a linear ex-
trapolation of the W sur

max values in Fig. 17. Although we
have expressed reservations concerning such a linear ex-
trapolation, these extrapolations will give indications as
to the possible largest variations in the spectroscopic fac-
tors across the Sn isotopes. For determining the particle-
hole gaps, ∆p and ∆n, in Eq. (30) for the 102Sn and
106Sn nuclei, some of the separation energies have not
been measured. In these cases we obtained these quanti-
ties from the mass estimates in Ref. [55]. With the linear
extrapolation, the spectroscopic factors show an overall
decrease in S by ∼0.2 from 100Sn to 132Sn. However for
102Sn and 132Sn, at or near a closed neutron shell, the ∆n

values are relatively larger and there is a relative shift up
in the spectroscopic factors, i.e. decrease in correlations.

Since the magnitude of the imaginary surface poten-
tial for neutrons is approximately constant, one might
expect that the spectroscopic factors (relative to the
independent-particle-model values) would also be con-
stant. However, one sees a big drop in Fig. 23 between
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FIG. 26. (Color online) The line connects the calculated mass
dependence for spectroscopic factors (relative to IPM values)
for proton 0d3/2 valence hole levels deduced from the fitted
potentials for Ca isotopes. The data points are results from
(e, e′p) measurements [56, 57].

120Sn and 124Sn. In the DOM calculations, this is a con-
sequence of the change in character of the valence levels.
A 2s1/2 level for 120Sn and a 0h11/2 level for 124Sn. The
larger centrifugal potential for the larger ℓ values sup-
press the wavefunction in the center of the nucleus and
thus enhancing it in the surface region (see Fig. 24 com-
paring the proton 0p1/2 and 0g9/2 wavefunctions). Thus
large ℓ levels, such as the 0h11/2, couple more strongly to
the imaginary surface potential, decreasing the spectro-
scopic factor. The magnitude of this effect is comparable
to that from the asymmetry dependence of the imaginary
potentials.

The mass dependence of the proton 0d3/2 valence hole
spectroscopic factors is displayed in Fig. 26 for Ca iso-
topes. This can be compared to the data from the (e, e′p)
reactions indicated by the data points. As mentioned
before, the values calculated from the DOM are slightly
higher. Their mass dependence is again strongly anti-
correlated with the imaginary surface potential, see for
example Fig. 21(a).

Spectroscopic factors for valence-hole levels derived
from knockout reactions exhibit a strong dependence on
asymmetry. Gade et al. [10, 11] have considered reduc-
tion factors, the ratio of the measured spectroscopic fac-
tor relative to shell-model predictions. When plotted ver-
sus either the separation energy Esep, i.e. the binding en-
ergy of the valence level, or ∆Esep which is Ep

sep−En
sep for

proton levels and En
sep−Ep

sep for neutrons levels, a signifi-
cant correlation is observed. Both Esep and ∆Esep are re-
lated to the neutron-proton asymmetry and the knockout
data imply that the minority species of nucleons experi-
ence stronger correlations when the number of the ma-
jority species is increased. This is qualitatively consistent
with the trend we obtain for protons due to the asym-
metry dependence of the imaginary potentials. However,
the magnitude of the effect is significantly larger for the
data from knockout reactions. The most extreme case is

for 0d5/2 proton level in 32Ar where the measured spec-
troscopic factor from the knockout reactions is ∼16% of
the IPM value.
The spectroscopic factors obtained in this work for the

Z=20, 28 and N=28 fits are plotted versus Esep and
∆Esep in Figs. 27(a) and 27(b), respectively. We have
chosen not to include the heavier systems as the Gade
work is confined to lighter masses. Because we studied
only stable nuclei, we do not cover as large a range of
either ESep or ∆Esep as Gade et al. Even so, our results
show no significant trends with either Esep and ∆Esep.
In fact the expected trends associated with the asym-
metry dependence of the imaginary potential shown in
Fig. 18 have been partly obscured by the fluctuations
due to the different ℓ values of the various valence levels
and by the chosen abscissa coordinates. Our results are
consistent with the much weaker ∆Esep trend obtained
recently by Lee et al. using transfer reactions [12]. Micro-
scopic calculations based on the Faddeev random phase
approximation also do not generate a very pronounced
separation-energy dependence when neutron-rich nuclei
are considered [18]. This approach may shed some light
on the extracted increase of the imaginary part of the
surface potential obtained in the present work, since it
explicitly calculates the influence of long-range correla-
tions on the nucleon self-energy or optical-model poten-
tial. The assumed symmetry around the Fermi energy of
the imaginary DOM surface potential can also be inves-
tigated using this method.

VI. OCCUPATION PROBABILITIES

The occupation probability characterizes the total
strength of a single-particle orbit below the Fermi en-
ergy. The discussion of occupation probabilities requires
consideration of the recent work reported in Ref. [15]. A
nonlocal version of the real HF potential was employed in
that work to replace the local but energy-dependent po-
tential of the traditional DOM approach and the Dyson
equation is solved to give the single-particle propagator
Gℓj for a given ℓj combination. The advantage of this
strategy is that it becomes possible to interpret the DOM
potential directly as a nucleon self-energy. The calcula-
tion of the propagator below the Fermi energy with the
correct normalization is then possible, yielding access to
such properties as the (charge) density distribution and
momentum distribution, provided the appropriate cor-
rection of the dispersive part of the DOM potential is
made [14]. For details we refer to Ref. [15]. To obtain the
occupation numbers of valence orbits, it is necessary to
interpret the wave functions in Eq. (13) as overlap func-
tions normalized to 1. Multiplying the one-body density
matrix

nℓj(r
′, r) =

1

π

∫ EF

−∞

dE ImGℓj(r, r
′;E)

= 〈ΨA
0 |a†r′ℓjarℓj |ΨA

0 〉, (54)
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FIG. 27. (Color online) Spectroscopic factors (relative to the
independent-particle-model value) for valence hole levels de-
termined from the fitted potentials. Results are shown for
the Z=20, 28 and N=28 and the square and circular points
represent neutrons and protons respectively. In (a) these are
plotted versus the separation energy of the level, while in (b)
they are plotted versus the difference in proton and neutron
separation energies.

with a wave function at r and one at r′ and integrating
over these variables, yields the occupation number for
such an orbit [15]. One observation of this recent work
for levels in 40Ca is that the conventional DOM expres-
sions for the occupation numbers given in Eqs. (16) and
(17) may not be sufficiently accurate for levels near the
Fermi energy. While this statement involves deviations
of a few percent in the 40Ca isotope, it is expected to be a
more serious problem when the role of the increased sur-
face imaginary part in Sn isotopes on proton occupation
numbers is investigated.

We have therefore constructed nonlocal HF potentials
for the protons in Sn isotopes, while keeping the disper-
sive part from the DOM fits fixed, apart from the well-
defined nonlocality enhancement [14]. The nonlocality of
the potential is of the standard Gaussian form [33] used
in Ref. [15] for 40Ca. The nonlocal potentials were re-
quired to reproduce the position of the 0g9/2 proton level
and where known, to reproduce the mean square radius
of the charge distribution [58]. It is well known that HF
calculations only succeed in reproducing the trend of the
mean square radius of the charge distribution for Sn iso-
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FIG. 28. (Color online) Strength functions of the g9/2 proton
orbit in different Sn isotopes obtained with the non-local cal-
culations. The curves represent the continuum contribution of
the strength function and are labeled by the appropriate mass
number. Also indicated is the location of the 0g9/2 quasihole
level in the different isotopes. The height of the correspond-
ing vertical lines identifies the spectroscopic factor for each
isotope.

topes when an A1/6 instead of a conventional A1/3 radius
dependence is employed [59]. Employing this dependence
for the nonlocal HF potential we are able to reproduce
the mean square charge radius for 112Sn and 124Sn. It
was then only necessary to adjust the depth of the po-
tential for each isotope in order to generate the required
fit to the position of the g9/2 levels and the charge radii.
The resulting depths exhibit an essentially linear N − Z
dependence.

In Fig. 28 the strength function [Eq. (53)] of the g9/2
orbit is shown for a relevant selection of Sn isotopes.
Again, the linear extrapolation ofW sur

max is used for 102Sn,
106Sn, 130Sn and 132Sn. For these valence levels, the
strength function consist of a delta function at the IPM
level energy plus continuum contributions at higher and
lower energies. Only the negative continuum contribu-
tion is shown in the figure.

The locations of the delta functions are indicated by
the vertical lines, the height gives the spectroscopic fac-
tor (the integral of delta function). The curves represent
the continuum and are labeled with the corresponding
mass number. These curves representing the strength in
the continuum below the Fermi energy, clearly reflect the
increase in the surface absorption derived from the pro-
ton elastic-scattering data under the standard DOM as-
sumption that surface imaginary potentials exhibit sim-
ilar behavior above and below the Fermi energy [14]. In
the energy domain below the Fermi energy correspond-
ing to the imaginary surface potential, a distinct increase
in the strength can be observed with increasing neutron
number. Accompanying this increased strength, is a re-
duction of the corresponding 0g9/2 spectroscopic factor
(triangles in Fig. 28). Quantitative results are reported
in Table III for the spectroscopic factors (Snl), strength



26

TABLE III. Spectroscopic factors S (relative to the IPM pre-
dictions) and occupation numbers n for the 0g9/2 proton orbit
in Sn isotopes using the nonlocal (nl) and local (l) versions
of the DOM.

Isotope Snl nc
nl nnl nl Sl

102 0.80 0.11 0.91 0.86 0.79
106 0.68 0.17 0.85 0.81 0.68
112 0.63 0.20 0.83 0.74 0.63
124 0.50 0.28 0.78 0.62 0.51
130 0.48 0.30 0.78 0.60 0.49
132 0.56 0.25 0.81 0.65 0.56

in the continuum (nc
nl), total occupation number (nnl),

where nl refers to the nonlocal version of the DOM for
this series of isotopes. In addition, the occupation num-
ber (nl) and spectroscopic factor (Sl) from Eqs. (14,16,
and 17) are listed for the local DOM using parameters
from the refits where the 0g9/2 level energies are exactly
reproduced. The increase in the continuum contribution
of the occupation number ends with 130Sn, on account
of the larger gap between particle and hole states for
the double-closed shell nucleus 132Sn as discussed earlier.
We note that the reduction of the g9/2 spectroscopic fac-
tor with increasing neutron number is accompanied by
a weaker reduction of the occupation number. This fea-
ture is consistent with the notion that increased surface
absorption leads to removal of strength to both sides of
the Fermi energy so that the reduction in the occupation
should be less (and approximately half of the reduction
of the spectroscopic factor for each isotope for a level
very near the Fermi energy). While the spectroscopic
factors for the 0g9/2 level in the local DOM are consistent
with the nonlocal results, there is a clear disagreement
between the occupation numbers obtained by the differ-
ent versions. This confirms the conclusion of Ref. [15]
that occupation numbers obtained from the approximate
expressions in Eqs. (16) and (17) may not always be ac-
curate. This is particularly true for a nominally empty
level like the g7/2, where the nonlocal version generated

an occupation number of 0.15 in 130Sn, whereas the local
result is 0.33.

The N−Z behavior of the proton correlations obtained
for Sn isotopes invites consideration of possible future ex-
periments to confirm the trend predicted in Table III. A
consistent analysis of the (d, 3He) reaction employing a
finite-range DWBA approach as in Ref. [57] might be able
to shed light on the behavior of the proton g9/2 spectro-
scopic factors by employing light and heavy radioactive
Sn isotopes in inverse kinematics. A serious difficulty will
be the construction of appropriate optical potentials for
these exotic reactions. An alternative experimental ap-
proach might be to employ the (d, n) reaction in inverse
kinematics for these exotic isotopes and study the be-
havior of the g7/2 spectroscopic factor for the addition of
a proton. The spectroscopic factor for this particle level
tracks the one for the g9/2 hole level reported in Table III

to within a few percent.
We note that the predicted behavior of the proton

g9/2 spectroscopic factor as a function of N − Z is still
mild compared to the deduced behavior of the removal
strength using Heavy-Ion knockout reactions [10, 11] in
sd-shell nuclei. The spectroscopic factors implied by
these experiments are much smaller (or larger) far off sta-
bility than generated here for protons in Sn isotopes. An
unambiguous test of such small (or large) spectroscopic
factors could be provided by performing the correspond-
ing elastic scattering experiments, at least for protons,
in inverse kinematics. Indeed, since the implied physics
is associated with surface phenomena [60], one would ex-
pect that the remaining sp strength occurs in the domain
where surface absorption takes place.
As for the spectroscopic factors, it should be kept in

mind that relative occupancies are better defined than
the absolute values. In Fig. 29, we compare the occu-
pancies for proton levels in 208Pb found in the present
work (lines) using Eqs. (16) and (17), with those from
van Batenburg [54] (data points). The latter results were
derived from (e, e′p) data by assuming a reasonable static
Woods-Saxon potential well and spectral shape for each
occupied proton level exhibiting an increased width with
increasing distance from the Fermi energy. The remain-
ing unknowns are the integrals over these spectral dis-
tribution, in other words the corresponding occupation
numbers. The latter are fitted to the data and this pro-
cedure generates the data points of Fig 29 while capable
of accurately describing the (e, e′p) cross sections for all
mean-field momenta (< 270 MeV/c) and binding ener-
gies including the lowest s1/2 level. We note that the
single-particle levels used in Ref. [54] have slightly dif-
ferent energies than the solutions of the fitted DOM po-
tential which is reflected in Fig. 29. For the deep hole
states, our occupancies are slightly larger, however, the
relative dependence on the single-particle energy is quite
similar. We note again that Eq. (16) is an approximate
result, as explained earlier in this section, but we find the
agreement with the numbers extracted from experiment
encouraging nevertheless.

VII. CONCLUSIONS

The neutron-proton asymmetry dependence of correla-
tions in nuclei has been studied via a dispersive-optical-
model analysis giving information on the neutron and
proton self-energies or optical-model potentials. Elastic-
scattering data for a wide range of masses were obtained
from previously published studies and, in addition, the
neutron elastic-scattering differential cross sections on
48Ca were measured at incident energies of 11.9 and
16.9 MeV. These data were supplemented with published
measurements of reaction and total cross sections, the en-
ergies of single-particle levels, and some (e, e′p) measure-
ments of rms radii and spectroscopic factors of valence
hole states.
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FIG. 29. (Color online) Comparison of proton occupation
probabilities in 208Pb. The data points are from van Baten-
burg [54] and the lines are from the present work.

In the dispersive optical model, long and short-range
correlations are described by surface and volume imagi-
nary potentials (self-energies), respectively. From a com-
parison of proton and neutron data on 208Pb, a small
asymmetry dependence of the imaginary volume poten-
tial was deduced. The imaginary volume potential was
10% higher for protons. The surface imaginary compo-
nent showed quite different asymmetry dependencies be-
tween protons and neutrons. The magnitude of neutron
imaginary surface potential was almost independent of
mass and asymmetry. The extracted values were within
24% of each other from A=40 to 208. Protons displayed
much stronger dependence though a universal behavior
was not found. Stable Sn isotopes displayed a large in-
crease (65%) in the imaginary surface potential with in-
creasing neutron number. The lighter Z=20, 28, N=28
closed-shell nuclei showed an initial increase, but subse-
quent saturation with increasing neutron number. These
results are only forN ≥ Z and for nuclei close to stability.
For N < Z one would expect from isospin symmetry that
the roles of the protons and neutrons would be reversed,
i.e., the neutron surface imaginary potential would have
an important asymmetry dependence where as for proton
there would be little asymmetry dependence.

The large observed asymmetry dependence for protons
gives rise to only a modest asymmetry dependence of
spectroscopic factors. The differences in spectroscopic
factors produced by this effect are of a similar magni-
tude to that between levels with high and low ℓ val-
ues. The asymmetry dependence of spectroscopic factors
predicted by the dispersive-optical-model analysis is con-
sistent with recent transfer reaction measurements [12],
but significantly smaller than that suggested by knock-
out reactions [10, 11]. However, we caution that our re-
sults are only for stable nuclei and additional phyics may
be relavent for the more exotic nuclei probed with the
knockout reactions, possibly related to the encroaching
continuum [61]. However, we note that extrapolating
the present DOM framework to more exotic nuclei will

provide a banchmark for gauging the magnitude of any
additional physics.
The dispersive optical model calculations are local.

The effect of non-locality was examined by replacing the
energy-dependent real potential by a energy-independent
non-local version and solving the Dyson equation for the
single-particle propagator. For levels near the Fermi en-
ergy, the resulting spectroscopic factors are consistent
with the values obtained using the fitted local potential
and Mahaux’s approximations. However for the occu-
pation probabilities in Sn isotopes, this is not the case.
Nonlocal calculations are necessary for these quantities.
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Appendix A: Data references

The elastic-scattering data sets for both protons and
neutrons used in the fitting are listed in Tables IV to X
along with the appropriate references. Data sets with
energies up to 200 MeV were included and only nuclei
for which there are measurements near 20 MeV, where
the imaginary surface potential peaks, were considered.
For the Z=20, 28, N=28 systems there are 200 sets of
elastic-scattering differential cross sections and 17 sets
of analyzing power measurements. For the N=50, Sn
and 208Pb systems we found 37, 55, and 49 data sets of
differential cross section and 15, 22, and 22 data sets of
analyzing power measurements, respectively.
Single-particle energies Enℓj were obtained from

Refs. [62–68]. For the Sn isotopes andN=50 nuclei where
no extensive list of single-particle energies could be found,
we only fitted the first valence particle and last hole levels
(E+

F and E−
F [Eqs. (7) and (8)]).

Reaction and total cross section data used are listed in
Table XI and (e, e′p) extractions of spectroscopic factors
and rms radii are listed in Table XII.
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TABLE IV. Elastic-scattering data for p + Ca reactions used
in the fits.

E [MeV] dσ
dΩ

Ay reference
p+40Ca

17.57 x [69]
19.57 x [39]
21.0 x x [43, 70]
25.0 x [43]
26.3 x x [43, 71]
30.0 x [43]
30.3 x [72]
35.0 x [43]
40.0 x x [43, 73]
45.0 x [43]
48.0 x [43]
49.0 x [74]
61.4 x [75]
65.0 x x [76]
80.2 x x [34, 77]
100.6 x x [78]
135.1 x [34]
152.0 x x [79]
160.0 x x [34, 77]
181.0 x x [34, 77]
200.0 x x [80]

p+42Ca
9 x [81]
12 x [81]
21.0 x [43]
25.0 x [43]
30.0 x [43]
35.0 x [43]
40.0 x [43]
45.0 x [43]
48.4 x [43]
65.0 x x [76]

p+44Ca
9.0 x [81]

10.75 x [82]
12.0 x [81]
14.15 x [82]
15.61 x [82]
21.0 x [43]
25.0 x [43]
30.0 x [43]
40.0 x [43]
45.0 x [43]
48.4 x [43]
65.0 x x [76]

p+48Ca
8.0 x x [83]
10.0 x x [83]
12.0 x x [83]
14.03 x x [82]
15.05 x x [82]
15.65 x x [82]
21.0 x [43]
25.0 x [43]
30.0 x [43]
35.0 x [43]
40.0 x [43]
45.0 x [43]
48.4 x [43]
65.0 x x [76]
200.0 x x [80]

TABLE V. Elastic-scattering data for n + Ca and p+ N=20
isotone reactions used in the fits.

E [MeV] dσ
dΩ

Ay reference
n+40Ca

9.9 x x [29]
11.0 x [84]
11.9 x x [29]
13.9 x x [29, 30]
16.9 x x [30]
19.0 x [85]
20.0 x [84]
21.7 x [85]
25.5 x [85]
26.0 x [84]
30.0 x [86]
40.0 x [86]
65.0 x [87]
75.0 x [87]
85.0 x [87]
95.0 x [87]
107.5 x [87]
127.5 x [87]
155.0 x [87]
185.0 x [87]

n+48Ca
7.97 x [88]
11.9 x x this work
16.9 x x this work

p+50Ti
6. x [89]
11. x x [90]

14.15 x x [82, 91]
15.35 x x [82, 91]
16. x x [20, 92]
18. x x [90]
18.6 x x [93]
18.6 x [94]
39.9 x [95]
65 x x [96]

p+52Cr
10.77 x x [82, 91]
14. x [97]

15.35 x x [82, 91]
16.5 x [93]
17.5 x [98]
18.6 x x [93]
39.9 x [95]

p+54Fe
9.69 x x [99]
12. x [100]
16. x x [20, 92]
17.2 x x [101]
18.6 x [93]
19.6 x [102]
20.4 x x [101]
24.6 x [101]
30.4 x x [103]
35.2 x [104, 105]
39.8 x [106]
65 x x [96]
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TABLE VI. Elastic-scattering data for n+54Fe and p+58Ni
reactions used in the fits.

E [MeV] dσ
dΩ

Ay reference
n+54Fe

5.5 x [107]
7. x [107]

7.96 x [26]
8.5 x [107]
9.94 x x [107]
11 x [108]

11.93 x [26]
13.9 x x [26, 109, 110]
14.7 x [111]
16.9 x x [110]
20. x [108]
22. x [108]
24 x [108]
26 x [108]

p+58Ni
7. x [100]
8. x [100]
9. x [100]

9.51 x x [99]
10. x [100]
11. x [100]
12. x [100]
14. x [97]
16. x x [20, 92]
18.6 x x [93]
21. x x [112]
22.2 x [113]
24.6 x [101]
26.3 x [71]
29. x [114]
30.3 x [115]
35.2 x [104, 105]
40 x [73, 116]
49. x [114]
60.2 x [117]
61.4 x [75]
65 x x [96]
100 x [118]
160 x [119]
172 x [120]
178 x x [121]
192 x x [122]

TABLE VII. Elastic-scattering data for p+60,62,64Ni and
n+58Ni reactions used in the fits.

E [MeV] dσ
dΩ

Ay reference
p+60Ni

7. x [100]
8. x [100]
9. x [100]
10. x [100]
11. x [100, 123]
12. x [100]
14. x [97]
14.4 x x [124]
15.4 x x [124]
16. x x [20, 92]
17.8 x [125]
18.6 x x [93]
20.4 x x [42]
24.6 x [101]
29. x [114]
30. x [71]
30.3 x [115]
40 x [116]
49. x [114]
55 x [126]
65 x x [96]
178 x x [121]

p+62Ni
8.02 x [127]
11. x x [123]
12. x [100]
14. x [97]
16. x [128]
16.5 x [93]
18.6 x x [93]
20.4 x x [101]
24.6 x [101]
39.6 x x [129]
65 x x [96]
156 x [130]

p+64Ni
9.69 x x [99]
11. x [123]
12. x [100]
16. x [128]
20.4 x x [42]
39.6 x x [129]
65 x x [96]

n+58Ni
4.5 x [131]
5.5 x [131]
6.5 x [131]
7.5 x [131]
8.4 x [131]
9.92 x [132]
9.99 x [131]

11.952 x [132]
13.91 x [132]
14.0 x [131]

16.934 x x [110]
21.5 x [131]
24. x [133]
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TABLE VIII. Elastic-scattering data for n+60Ni reactions
and reactions with N=50 isotones used in the fits.

E [MeV] dσ
dΩ

Ay reference
n+60Ni

5. x [134]
6. x [134]
7. x [134]

7.904 x [132]
9.943 x [110]
9.958 x x [132]
11.952 x [132]
13.91 x [132]
14.7 x [111]
24. x [133]

p+90Zr
5.57 x [135]
6.57 x [135]
7.97 x [135]
8.6 x [135]
9.6 x x [99]
12.7 x [136]
14.7 x [137]
16 x x [92]
18.8 x [138]
20.25 x [139]
22.5 x [140]
25.05 x [141]
30 x x [142]
40 x [143]
40. x x [73]
49.4 x x [144]
61.4 x [75]
65. x x [96]
79.6 x [77]
80. x [34]
98.7 x [77]
100 x [118]
134.8 x [77]
135. x [34]
160. x x [34, 77]
185 x [145]

p+92Mo
12.5 x [146]
15. x [147]
19.8 x [148]
20.25 x [139]
22.27 x [149]
30. x x [142]
30.3 x x [148]
49.45 x [148]

n+92Mo
7 x [150]
9 x [150]
11 x [150]
20 x [150]
26 x [150]

TABLE IX. Elastic-scattering data for Sn reactions used in
the fits.

E [MeV] dσ
dΩ

Ay reference
p+112Sn

16. x [151]
30.4 x [152]

p+114Sn
30.4 x [152]

p+116Sn
16. x x [153]
21. x x [112]
30.4 x x [152]
39.6 x [154]
61.4 x [75]

p+118Sn
16. x [151]
20.4 x x [42]
30.4 x [152]
39.6 x x [154]
49.35 x [144]

p+120Sn
9.8 x x [99]
16. x x [153]
20.4 x x [42]
24.6 x x [42]
30. x x [155, 156]
39.6 x x [154]
49.35 x [144]
100 x x [77, 118]
104 x x [157]
156 x [130]

p+122Sn
16. x [151]
20.4 x x [42]
30.4 x [152]
39.6 x x [154]
49.35 x [144]

p+124Sn
16. x x [153]
20.4 x x [42]
30.4 x [152]
39.6 x x [154]
49.35 x [144]

n+116Sn
9.95. x x [132]
11. x [158]

13.94 x x [132]
24 x [158]

n+118Sn
11. x [158]
24 x [158]

n+120Sn
9.94 x x [132]
11 x [158]

13.92 x x [132]
16.91 x [132]

n+124Sn
11 x [158]
24 x [158]
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TABLE X. Elastic-scattering data for reactions on 208Pb used
in the fits.

E [MeV] dσ
dΩ

Ay reference
p+208Pb

9 x [159]
11 x [160]

12.98 x x [161]
16 x x [20, 92]
21. x [162]
24.1 x [162]
26.3 x x [71, 162]
29.1 x [114]
30.3 x x [162, 163]
35. x [162]
40. x x [73]
45. x [162]
47.3 x [162]
49.3 x x [144]
61. x [75]
65. x x [96]
79.8 x [77]
80. x [34]
98. x [77]

101.4 x [118]
121. x [34]
155. x x [164]
160. x x [34, 77]
182. x x [34, 77]
185. x x [162]
200. x x [165]

n+208Pb
4 x [166]
5 x [166]

5.97 x [167]
6. x [166]

6.97 x [167]
7 x [166]

7.97 x x [167]
8.5 x [107]
8.96 x [167]
9. x [168]

9.97 x x [169]
11 x [168]
13.9 x x [170]
14.6 x [171]
16.9 x [172]
20 x [173]
22 x [173]
24 x [173]
26 x [168]
30.3 x [174]
40. x [174]
65. x [87]
75. x [87]
85. x [87]
95. x [87]
96. x [175]

107.5 x [87]
127.5 x [87]
155. x [87]
185. x [87]

TABLE XI. References for total and reaction cross sections
used in this work.

reaction reference reaction reference
p+40Ca [176–178] n+60Ni [179–182]
n+40Ca [25, 183–187] p+62Ni [188, 189]
p+42Ca [45] p+64Ni [188, 189]
p+44Ca [45] p+90Zr [188–191]
p+44Ca [192] p+112Sn [44, 193]
p+48Ca [45] p+114Sn [44]
n+48Ca [25] p+116Sn [44, 188, 189, 193]
p+50Ti [189] p+118Sn [44, 188, 193]
p+52Cr [189] p+120Sn [44, 188, 189, 193]
p+54Fe [43, 188] p+122Sn [44]
p+58Ni [178, 188, 191, 193–195] p+124Sn [44, 193]
n+58Ni [131, 179, 180] p+208Pb [177, 178, 189]
p+60Ni [178, 188, 193–195] n+208Pb [196, 197]

TABLE XII. Spectroscopic factors (relative to the
independent-particle-model value) Snℓj and rms radii
Rrms

nℓj extracted for the listed single-particle levels from
referenced (e, e′p) data that were used in the fits.

Nucleus s.p. level Snℓj Rrms
nℓj reference
[fm]

40Ca 0d5/2 3.53±0.11 [56, 57]
1s1/2 3.72±0.10
0d3/2 0.645±0.048 3.69±0.10

48Ca 0d5/2 3.47±0.13 [56, 57]
0d3/2 0.565±0.040 3.53±0.10
1s1/2 0.535±0.035 3.58±0.10

90Zr 1p1/2 0.72±0.07 4.57±0.02 [198]
208Pb 2s1/2 0.65±0.05 5.22±0.05 [199, 200]

1d3/2 0.80±0.05 5.47±0.04
0h11/2 0.61±0.04 6.09±0.03
1d5/2 0.73± 0.05 5.39±0.03
0g7/2 0.64±0.04 5.56±0.05
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