
This is the accepted manuscript made available via CHORUS. The article has been
published as:

What can be learned from binding energy differences about
nuclear structure: The example of δV_{pn}

M. Bender and P.-H. Heenen
Phys. Rev. C 83, 064319 — Published 17 June 2011

DOI: 10.1103/PhysRevC.83.064319

http://dx.doi.org/10.1103/PhysRevC.83.064319


CB10252

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

What can be learned from binding energy differences about nuclear structure:

the example of δVpn

M. Bender1, 2 and P.-H. Heenen3
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2CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan, France
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We perform an analysis of a binding energy difference called δVpn(N,Z) ≡ −
1

4

[

E(Z,N)−E(Z,N−

2)−E(Z−2, N)+E(Z−2, N−2)
]

in the framework of a realistic nuclear model. It has been suggested
that δVpn values provide a sensitive probe of nuclear structure, and it has been put forward as a
primary motivation for the measurement of specific nuclear masses. Using the angular-momentum
and particle-number projected generator coordinate method and the Skyrme interaction SLy4, we
analyze the contribution brought to δVpn by static deformation and dynamic fluctuations around
the mean-field ground state. Our method gives a good overall description of δVpn throughout the
chart of nuclei with the exception of the anomaly related to the Wigner energy along the N = Z line.
The main conclusions of our analysis of δVpn, which are at variance with its standard interpretation,
are that (i) the structures seen in the systematics of δVpn throughout the chart of nuclei can be
easily explained combining a smooth background related to the symmetry energy and correlation
energies due to deformation and collective fluctuations; (ii) the characteristic pattern of δVpn having
a much larger size for nuclei that add only particles or only holes to a doubly-magic nucleus than
for nuclei that add particles for one nucleon species and holes for the other is a trivial consequence
of the asymmetric definition of δVpn, and not due to a the different structure of these nuclei; (iii)
δVpn does not provide a very reliable indicator for structural changes; (iv) δVpn does not provide
a reliable measure of the proton-neutron interaction in the nuclear EDF, neither of that between
the last filled orbits, nor of the one summed over all orbits; (v) δVpn does not provide a conclusive
benchmark for nuclear EDF methods that is superior or complementary to other mass filters such
as two-nucleon separation energies or Q values.

PACS numbers: 21.30.Fe; 21.10.Dr; 21.10.Pc; 21.60.Jz

I. INTRODUCTION

Nuclear masses are measured today with an unprece-
dented accuracy [1–4], in many cases better than a few
keV. Such an accuracy is obtained not only for nuclei
close to the stability line, but also for exotic ones with
very short lifetimes. A recurrent question is how to take
advantage of this major advance and how to use it to im-
prove the theoretical description of nuclear ground states.

The first possibility is to compare directly masses, or
better binding energies, to theoretical predictions. Unfor-
tunately, ab-initio methods based on a realistic nucleon-
nucleon interaction are not available for systematic stud-
ies of heavy nuclei. If they were, any disagreement with
the experimental data would point to a deficiency of the
interaction. When the many-body problem is not solved
exactly (or, to be more precise, with a controlled numeri-
cal accuracy), but with an effective model using effective
degrees of freedom and an effective interaction, the link
between data and nucleon-nucleon interaction is broken
and a discrepancy between calculation and experiment
can have its source in any ingredient of the model.

The best available theoretical descriptions of masses
[1, 5–8] are not based on ab-initio methods. The three
main models rely on very different ingredients. The mass
formula of Duflo and Zuker [5] does not make an explicit
reference to a nucleon-nucleon interaction. Nevertheless,
it assumes that there exist effective interactions smooth

enough for Hartree-Fock calculations to be possible. The
corresponding Hamiltonian is separated into monopole
and multipole terms that are parameterized through scal-
ing and symmetry arguments [1]. The macroscopic-
microscopic approaches of Möller et al. [6] combine a
finite-range liquid-drop or droplet model and shell ef-
fects introduced through the Strutinsky shell correction
method and a parameterized one-body potential. The
main ingredient of the Hartree-Fock-Bogoliubov (HFB)
mass formulae of Goriely et al. is an energy density func-
tional (EDF) as widely used in self-consistent mean-field
calculations. In a first variant, a Skyrme EDF is sup-
plemented by empirical corrections for correlations that
cannot be included in a mean field [7]. In a second vari-
ant, the same Gogny interaction is used to determine the
mean field and quadrupole correlation effects beyond the
mean field through a microscopic Bohr Hamiltonian [8].
The comparison of any of these models with data can
hardly allow to extract general information about the
nucleon-nucleon interaction. Comparison with results
obtained using ab-initio methods and realistic interac-
tions can be made through the idealized model of infinite
nuclear matter. From such calculations, one can extract
specific parameters, such as volume and symmetry energy
coefficients for instance, corresponding to a liquid-drop
formula (LDM) fitted to masses. Here also, the connec-
tion between theory and experiment is ambiguous. The
liquid-drop model is justified by a leptodermous expan-
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sion of the energy that cannot be expected to converge
quickly even for the heaviest nuclei [9, 10].
An apparently more appealing way to proceed is to re-

late differences between binding energies of neighboring
nuclei to specific features of nuclear models, in partic-
ular to effective single-particle energies or effective two-
body matrix elements [11]. Models that fail to reproduce
masses with a good accuracy are often more reliable for
mass differences. The reason of this success is that mass
residuals Mth − Mexpt for adjacent nuclei are not inde-
pendent in a given mass model [12, 13].
This property has been used for a long time to asso-

ciate one-nucleon separation energies with single-particle
energies, or higher-order differences with pairing gaps.
In particular, two-particle separation energies are impor-
tant indicators of shell closures. One has to distinguish,
however, between the use of mass filters as measures of
specific model ingredients, and their use as signatures of
structural changes. In particular, a mass filter cannot be
expected to provide both simultaneously. One can test
a model ingredient only when all nuclei entering a mass
filter have the same structure, which becomes increas-
ingly improbable with the number of nuclei involved. By
contrast, the indication of a structural change (such as
onset of deformation) by a mass filter often means that
the fundamental assumptions made for its direct associ-
ation with a feature of a model are violated.
In a previous paper [14], we discussed the difficulties

encountered when trying to relate structures seen in the
systematics of energy differences to features of the single-
particle levels. The changes in the large gaps observed
in data for two-neutron or two-proton separation energies
are often interpreted as due to the evolution of shell struc-
ture with N and Z, and associated with the presence of
strong residual tensor interactions [15] or a weakening of
the spin-orbit interaction in neutron-rich nuclei [16, 17].
We showed that experimental data can be explained in a
coherent way within mean-field-based models as due to a
combination of the slow modification of spherical single-
particle spectra and the often rapid variation of collective
correlation effects.
In this paper, we perform a similar analysis for a mass

filter that has become fashionable and has been identi-
fied with the proton-neutron interaction in nuclei. Many
recent experimental data have been used to interpret a
difference between the (negative) binding energies of four
even-even nuclei defined as

δVpn(N,Z) = − 1
4

[

E(Z,N)− E(Z,N − 2)

−E(Z − 2, N) + E(Z − 2, N − 2)
]

(1)

in terms of the effective interaction between the last oc-
cupied neutron and proton orbits [18–25]. A similar
quantity has been analyzed in great detail by Jänecke et

al. [26], but for nuclei differing by one neutron and/or
one proton only, which makes its interpretation more
difficult. Indeed, the breaking of a pair in an nucleus

with an odd number of particles modifies pairing correla-
tions deeply and makes the structure of its wave function
significantly different from that of its even neighbors.By
comparing only nuclei with an even number of neutrons
and protons, one can hope that the assumption of a com-
mon mean field is better justified. Differences between
two consecutive δVpn values have also been proposed as a
measure for the Wigner energy that leads to an anomaly
of binding energies around the N = Z line [27, 28].

In Sect. II, we show how, in the framework of the
Hartree-Fock (HF) method, δVpn can be related to the
interaction between the last filled neutron and proton or-
bits when making the same assumptions as those used to
derive Koopman’s theorem [29]. We show that the intro-
duction of pairing correlations and density dependencies
complicate the relation even when making oversimplify-
ing assumptions about the evolution of wave functions
with N and Z. We discuss the main effects that make
any direct identification of δVpn with a proton-neutron
interaction doubtful. In Sect. IV, we present results
obtained from calculations using a realistic microscopic
model using the Skyrme energy density functional SLy4.
We demonstrate how the successive inclusion of correla-
tions from spherical to deformed mean-field calculations
and further to symmetry restoration and configuration
mixing permits to improve at each step the agreement
with the experimental data, while, at the same time, los-
ing in an ever increasing manner the simple interpreta-
tion of δVpn. Section V summarizes our findings.

II. ANALYSIS OF δVpn

Surprisingly, the abundant literature discussing the
relevance of δVpn contains only very few analyses of
its relation with the proton-neutron interaction in non-
schematic models. Exceptions are the shell-model study
of Heyde et al. [30], who underline that a simple interpre-
tation of δVpn can only be given when there is just one
dominant orbital for protons and neutrons each, and the
nuclear DFT study by Stoitsov et al. [24], who, however,
focus their analysis on the overall excellent reproduction
of data for δVpn with their model, rather than on the
ingredients of the model that contribute to it. Below,
we review the assumptions to be made to relate δVpn to
the effective proton-neutron interaction in finite nuclei,
and discuss their validity in the context of realistic nu-
clear models based on the self-consistent mean field and
taking the entire space of occupied single-particle orbits
into account. We start with a simple two-body Hamilto-
nian and discuss the corresponding energy in the context
of HF (without pairing) and HFB (with pairing). Then,
we generalize the discussion to a more realistic effective
interaction that includes three-body forces or density de-
pendencies.
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A. Frozen HF with two-body interaction

Let us start from a Hamiltonian consisting of a kinetic
energy term and an antisymmetrized two-body interac-
tion:

Ĥ =
∑

i,j

tija
†
iaj +

1

4

∑

i,j,m,n

v̄ijmn a†ia
†
janam . (2)

When limiting the N -body wave function to a single
Slater determinant, the minimum value of the energy is
obtained by solving Hartree-Fock (HF) equations [29]. In
this case the energy for a nucleus consisting of N neu-
trons and Z protons is given by

EHF(N,Z) =

N
∑

n=1

tN,Z
nn +

Z
∑

p=1

tN,Z
pp

+
1

2

N
∑

n,n′=1

v̄N,Z
nn′nn′ +

1

2

Z
∑

p,p′=1

v̄N,Z
pp′pp′

+

N
∑

n=1

Z
∑

p=1

v̄N,Z
npnp , (3)

where tN,Z
nn are the matrix elements of the kinetic en-

ergy operator and v̄N,Z
nn′nn′ of the two-body interaction

calculated in the single-particle basis that solves the HF
equations. We have added superscripts N,Z to these ma-
trix elements to recall that the HF equations are solved
self-consistently and that, in general, the wave functions
differ for each combination of N and Z values.
Let us assume for the moment that the HF single-

particle basis is identical for the four nuclei with (N,Z),
(N − 2, Z), (N,Z − 2), and (N − 2, Z − 2). This “frozen
HF” approximation leads to

δV HFfrozen
pn (N,Z)

= − 1
4

(

v̄N−1,Z−1,N−1,Z−1 + v̄N−1,Z,N−1,Z

+v̄N,Z−1,N,Z−1 + v̄N,Z,N,Z

)

. (4)

The superscripts have been dropped, as the mean field is
supposed to be the same for the four nuclei. 1

A further simplification can be obtained by noting
that, for even N and Z, the two valence neutrons (in-
dices N − 1 and N) and protons (indices Z − 1 and Z)
occupy time-reversed orbits in the HF solution, and that
the matrix elements are equal two by two

δV HFfrozen

pn (N,Z) = −
1

2

(

v̄N,Z−1,N,Z−1 + v̄N,Z,N,Z

)

. (5)

1 This assumption, however, cannot be expected to be valid for
all nuclei. Each nucleus enters the expression for δVpn for four
different nuclei, such that ultimately all nuclei had to have the
same mean field for this assumption to be fulfilled.

Even in this simple case, the final result is not a single
matrix element, but a combination of matrix elements
between the valence particles.
This derivation requires the same assumptions as those

made to derive Koopman’s theorem [29] which relates
single-particle energies and one-nucleon separation ener-
gies. Koopman’s theorem, however, is known to have a
very limited validity in nuclear physics, cf. the discussion
in Ref. [14] and references therein.

B. Frozen HF+BCS and HFB with two-body

interaction

It is obvious that the assumptions made in the previous
section will rarely be justified, even approximately. Let
us first examine the consequence the partial occupation of
single-particle levels due to pairing correlations. We con-
sider only pure proton-proton and neutron-neutron pair-
ing, which can be justified for nuclei with N sufficiently
different from Z. In the presence of proton-neutron pair-
ing, the many-body state could not be written as the
direct product of a proton and a neutron BCS state, and
the energy would not be separable into proton and neu-
tron components anymore.
The HF+BCS or HFB expectation value of a two-body

Hamiltonian (2) for a nucleus with N neutrons and Z
protons evaluated in the canonical basis is given by

EHFB(N,Z) =
∑

n

tN,Z
nn v2n,N +

∑

p

tN,Z
pp v2p,Z

+
1

2

∑

n,n′

v̄N,Z
nn′nn′ v

2
n,N v2n′,N

+
∑

n

∑

p

v̄N,Z
npnp v

2
n,N v2p,Z

+
1

2

∑

p,p′

v̄N,Z
pp′pp′ v

2
p,Z v2p′,Z

+
∑

n,n′>0

v̄N,Z
nn̄n′n̄′ un,N vn,N vn′,N vn′,N

+
∑

p,p′>0

v̄N,Z
pp̄p′p̄′ up,Z vp,Z vp′,Z vp′,Z . (6)

The uk and vk are real occupation amplitudes with
uk = uk̄ > 0, vk = −vk̄ and u2

k + v2k = 1. Indices k and k̄
refer to conjugate states, which for the ground states of
even-even nuclei are connected by the time-reversal oper-
ator. We use the usual convention where summation over
all indices indicates summation over all k and k̄, whereas
summation over “positive” indices means that the sums
are over all k, but not their conjugate levels k̄. The sec-
ond index of the occupation amplitudes recalls that these
are occupation numbers for a nucleus with

∑

n v
2
n,N = N

neutrons and
∑

p v
2
p,Z = Z protons. Except for the last

two terms, the summation runs over positive and nega-
tive values of n and p.
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To derive a simple expression for δVpn, a similar as-
sumption as in the frozen HF case has to be made, namely
that the canonical single-particle basis is the same for all
four nuclei entering a given δVpn(N,Z). In this case, the
matrix elements tkk and v̄kk′kk′ do not depend on N and
Z. In addition, one has to assume that the solution of
the HFB equations for neutron states does not depend
on the number of protons and conversely. This leads to

δV HFBfrozen

pn (N,Z) = −
1

4

∑

n

∑

p

v̄npnp ∆v2n,N ∆v2p,Z ,

(7)
where we introduced the shorthand ∆v2n,N ≡ v2n,N −

v2n,N−2 for the change of neutron occupation numbers

when removing two neutrons,
∑

n ∆v2n,N = 2, and its

homologue ∆v2p,Z ≡ v2p,Z − v2p,Z−2 for protons.

C. Frozen HF with three-body or

density-dependent interactions

The forms derived in the previous sections were based
on a two-body Hamiltonian. However, interactions de-
rived from first principles contain at least three-body
forces [32], which are crucial to perform ab-initio calcu-
lations with some predictive power. In a similar manner,
the more phenomenological EDF-based methods must
include terms of higher order than a two-body interac-
tion, which is usually done by the inclusion in the EDF
of terms with density dependencies. In particular, the
saturation of nuclear matter cannot be satisfactorily de-
scribed without taking into account these terms [38].
A three-body force adds a term

1
36

∑

i,j,k,l,m,n vijklmna
†
ia

†
ja

†
kanamal to the Hamilto-

nian (2). In the HF approximation, its contribution to
the binding energy is given by:

EHF
3b (N,Z) =

1

6

N
∑

n,n′,n′′=1

v̄N,Z
nn′n′′nn′n′′

+
1

2

N
∑

n,n′=1

Z
∑

p=1

v̄N,Z
nn′pnn′p

+
1

2

N
∑

n=1

Z
∑

p,p′=1

v̄N,Z
npp′np′′

+
1

6

Z
∑

p,p′,p′′=1

v̄N,Z
pp′p′′pp′p′′ , (8)

using a notation analogous to that of Eq. (3). In the
frozen HF approximation, a Hamiltonian including two-
body and three-body forces leads to

δV HFfrozen

pn (N,Z)

= −
1

4

[

N
∑

n=N−1

Z
∑

p=Z−1

v̄npnp

+
1

2

N
∑

n,n′=N−1

Z
∑

p=Z−1

v̄nn′pnn′p

+
1

2

N
∑

n=N−1

Z
∑

p,p′=Z−1

v̄npp′npp′

+
N−2
∑

n=1

N
∑

n′=N−1

Z
∑

p=Z−1

v̄nn′pnn′p

+

Z−2
∑

p=1

N
∑

n=N−1

Z−2
∑

p′=Z

v̄npp′n′p′

]

. (9)

The first three lines represent the two-body and three-
body interactions between the last two neutrons and the
last two protons. The last two lines of Eq. (9), how-
ever, contain a sum over all other nucleons, which is in-
compatible with the interpretation of δVpn(N,Z) as the
interaction between the last two neutrons and protons.
Most energy density functionals constructed for

self-consistent mean-field calculations include a non-
linear density-dependent two-body term of the form
1
4

∑

i,j,m,n vijkl f(ρn+ρp) a
†
ia

†
janam, where ρn and ρp are

the local densities of neutrons and protons. Popular ex-
amples for f(ρn + ρp) range from the simple non-integer
powers of the total density f(x) = xα, such as used with
most Skyrme and Gogny interactions, to the very elabo-
rate density dependencies f(x) ∼ [1+b(x+d)2]/[1+c(x+
d)2] used in modern density-dependent relativistic mean-
field models [36, 37]. Any density dependence that is not
a simple polynomial of the total density gives rise to δVpn

values that cannot be separated into neutron and proton
contributions, even within the frozen HF approximation.
We will not give explicit expressions for the HFB case

with three-body forces or density-dependent terms. It
should be obvious by now that even making the assump-
tion of a frozen common canonical basis will lead to a
lengthy and complicated expression for δVpn(N,Z) that
does not allow for an intuitive interpretation.

D. Discussion

Even when making the drastic approximation that the
four nuclei entering the calculation of δVpn(N,Z) can be
described by the same mean field, the expression that is
obtained for realistic models includes a summation over
all single-particle levels. 2 Furthermore, the occupation
of the levels around the Fermi energy is affected by the
addition or the removal of nucleons and the contribu-
tion of each single-particle level to δV HFBfrozen

pn (N,Z) is
weighted with the difference of its occupation between

2 A similar observation has been made by Van Isacker et al. [27]
who quote that ”δVpn(N,Z) is an average np interaction over
the last few nucleons”, but without giving any reference.
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the nuclei. It is therefore doubtful that δVpn allows to
isolate an empirical interaction between the last neutron
and proton orbitals, as claimed in Ref. [22].
Moreover, one might wonder whether the approxi-

mation of a frozen canonical basis necessary to derive
Eqns. (5) and (7) is ever satisfied. To change the num-
ber of neutrons or protons by two induces rearrangement
and polarization effects that modify the single-particle
wave functions for both kinds of nucleons. Even if these
effects are most often small, it should not be forgotten
that δVpn(N,Z) is a tiny fraction of the total binding
energy only, ranging from 10−2 in light nuclei to 10−5

in heavy ones. Therefore, even small rearrangement ef-
fects can have a large impact on the values obtained for
δVpn(N,Z). We will analyze the validity of the frozen
basis assumption for a few selected cases in Sect. IVC
below. Finally, a self-consistent mean-field description of
a nucleus provides a reasonable first approximation but it
neglects correlations beyond the mean field that also con-
tribute to the binding energy on the MeV scale [39, 40].
These correlations cannot be cast in a simple form in-
volving only the interaction between a few particles, and
they also destroy the simple relation between δVpn and
proton-neutron matrix elements.
In the remaining part of this article, we investigate

the importance of self-consistency, deformation, pairing,
and configuration mixing for the description of data for
δVpn We also analyze to which extend δVpn values can be
identified with the effective proton-neutron interaction.

III. THE MODELS

A. The beyond-mean-field model

Our method used to calculate binding energies for the
ground states of even-even nuclei is described in detail
in Refs. [39, 40]. In our analysis, we use the energies
as tabulated in [41], and we added a few nuclei in the
vicinity of 208Pb. As effective interaction, we employ
the SLy4 parameterization of the Skyrme energy density
functional [31] for the mean-field channel in connection
with a density-dependent zero-range pairing interaction.
Starting from a set of mean-field calculations includ-

ing a constraint on the axial quadrupole moment, two
kinds of correlations beyond the mean-field are intro-
duced. First, the deformed wave functions are projected
on both fixed particle numbers and on angular momen-
tum J = 0. In a collective model terminology, these
correlations would be called rotational correlations. A
second step of our method consists in the mixing of
projected wave functions with different intrinsic axial
quadrupole moment of the underlying mean-field state in
a generator coordinate method (GCM). In the language
of collective models, this corresponds to a vibrational cor-
rection. The final wave function has the form

|JMν〉 =
∑

q

fJ,ν(q)P̂
J
M0P̂N P̂Z |q〉 . (10)

The ket |q〉 is a (paired) self-consistent mean-field state of

axial quadrupole deformation q. The operators P̂N , P̂Z

and P̂ J
M0 project out the component with the particle

numbers and angular momentum quantum number we
are interested in. The weights fJ,ν(q) defining the mixing
of the projected wave functions with respect to q are
obtained by variation of the total energy.
We stress that there are no assumptions made in the

model about the amplitude of the quadrupole fluctua-
tions introduced into the calculations. Depending on the
structure of a nucleus, this amplitude either corresponds
to a small vibration around a pronounced minimum, to
a large-amplitude motion in a soft and wide potential
well, or to the mixing of several states around coexisting
minima in the deformation energy surface.
In the following, we will compare results obtained from

the energies determined using three wave functions that
successively add quadrupole correlations:

1. self-consistent spherical mean-field states |q = 0〉;

2. the self-consistent mean-field minimum in the space
of axial reflection-symmetric deformations |qmin〉,
which might be spherical;

3. the ground state obtained after configuration mix-
ing of J = 0 projected axial quadrupole. We refer
to these wave functions in the following as projected
GCM. The energy gained through these correla-
tions will be called beyond-mean-field correlation
energy in what follows.

In each of these cases, the wave functions are projected
on particle number.

B. Liquid drop model

The Strutinsky theorem [49, 50] allows to decompose
the binding energy into a “macroscopic” liquid drop part
and a microscopic “shell correction”. In this picture,
the macroscopic energy defined through the liquid drop
model varies smoothly with N and Z, without any cor-
relation energies from deformation, shell effects, or fluc-
tuations in collective degrees of freedom. It constitutes a
reference with respect to which one can put into evidence
all quantum effects.
In some of the figures below we show macroscopic ener-

gies calculated from a liquid-drop model whose parame-
ters have been adjusted to reproduce the average binding
energies of spherical nuclei calculated with the Skyrme
interaction SLy4 [10]. Besides the standard volume, vol-
ume symmetry, surface and (direct) Coulomb terms, the
macroscopic model comprises surface symmetry, curva-
ture and Coulomb exchange terms

Emac(N,Z) = (avol + asym I2)A

+(asurf + asurf,sym I2)A2/3

+acurfA
1/3
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FIG. 1: (Color online) Maps of δVpn; (a) calculated with a
spherical liquid drop formula having the average properties of
the SLy4 interaction, (b) by self-consistent calculations with
SLy4 obtained assuming spherical nuclei, (c) allowing for (ax-
ially) deformed shapes, (d) derived from J = 0 projected con-
figuration mixing calculations. The bottom panel (e) shows
the experimental data.

+
3

5

Z2e2

r0A1/3
−

3

4

(

3

2π

)2/3
Z4/3e2

r0A1/3

(11)

where A = N + Z and I = N−Z
N+Z . The radius constant

r0 entering the Coulomb energies is determined from the
nuclear matter saturation density ρ0 of SLy4 as r30 =
3/(4πρ0).
The by far dominating contribution to δVpn comes

from the volume and surface symmetry energies [24]

δVpn ≈ 2
(

asym + asurf,symA
−1/3

)

A−1 . (12)

The globalA−1 scaling factor in this expression originates

from the denominator of the I2 A = (N−Z)2

N+Z factor in the
symmetry and surface symmetry energy terms which do
not cancel out in δVpn.
There are two contributions to this term which have

the same scaling [51]: the first one is the difference in ki-
netic energy between protons and neutrons that fill sep-
arate potential wells, and the other the isovector part of
the nucleon-nucleon interaction. The latter has a shorter
range than the average distance between nucleons, such
that in a semiclassical approximation it acts between
nearest neighbors only, leading to the characteristic A
and A1/3 scaling of terms in Eq. (12). The contribution
of all other terms in Eq. (11) to δVpn is not exactly zero,
but it is too small to be resolved in the plots shown be-
low. A standard liquid-drop model obtained with a “best
fit” to experimental masses gives δVpn values that are
systematically larger than those obtained from Eq. (11),
mainly because the volume symmetry coefficient asym has
a slightly larger value than the one determined from the
SLy4 interaction.

IV. RESULTS

A. Global behavior of δVpn

The binding energies of Refs. [39, 40] and tabulated
in [41] cover the region of even-even nuclei heavier than
16O for which experimental data are available, plus a few
additional nuclei around doubly-magic systems. For the
present study, we calculated a few extra nuclei around
208Pb. Values obtained for δVpn with this sample of nu-
clei are plotted as maps in Fig. 1. For a better resolution
of the local fluctuations, the same data are plotted for
isotopic chains as a function of the number of neutrons
in Fig. 2, and for isotonic chains as a function of proton
number in Fig. 3.
The spherical macroscopic values are given each time

in the top panel (a). All nuclei between the drip lines
are represented for the LDM results in Fig. 1, whereas
in Figs. 2 and 3 results are restricted to the same set of
nuclei shown in the other panels. The macroscopic δVpn

values exhibit a regular smooth pattern and fall off with
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∼ 1/A. The slope of the decrease is related to the symme-
try and surface symmetry energy coefficients of the EDF,
Eq. (12). This smooth systematic decrease of the δVpn

values with increasing A has been sometimes interpreted
as a result of “the gradual decrease in valence proton and
neutron orbital overlaps due to the occupancy of shells
of different average radii” [19, 22]. This is, at best, a
model-dependent statement that cannot be translated to
methods that calculate the energy from the interaction
between all occupied particles. In particular, at no point
in the derivation of the LDM expression (12) has one to
consider the form of the single-particle wave functions
and their overlaps. Instead, it is only assumed that all
occupied single-particle wave functions add up to the sat-
uration density inside the nucleus.

The smooth trend of the macroscopic calculation is
still apparent in the spherical self-consistent mean-field
results. Some deviations appear, however, which are re-
lated to the magic numbers at 20, 28, 50, 82 and 126.
For nuclides just below these shell closures, the spherical
mean-field results are slightly larger than the LDM ones,
whereas they take slightly smaller values for nuclei just
above. As a consequence, δVpn values do not fall off con-
tinuously with A, but form sheets separated by the shell
closures.

Relaxing the constraint of spherical symmetry strongly
modifies the behavior of δVpn by giving rise to rapid fluc-
tuations around the smooth trend, with an amplitude of
up to 200 keV. This change can be directly related to the
effect of deformations on binding energies. The variation
of quadrupole deformation and of the associated energy
gain with N and Z over the entire nuclear chart have
been presented in Figs. 9 and 16 of Ref. [40]. The energy
gain due to deformation can reach more than 20 MeV
and can vary rapidly from one nucleus to the other. Any
mismatch in the evolution of deformation energy between
the four nuclei entering δVpn can dramatically change its
value.

To illustrate the impact of deformation and correla-
tions on δVpn, the quadrupole deformation β2, deforma-
tion and correlation energies for nuclei heavier than 132Sn
are presented in Fig. 4. As expected, the absolute value of
the deformation energy increases first slowly when mov-
ing away from the proton and neutron shell closures and
then more rapidly until it peaks at almost 18 MeV in
the rare-earth region and above 20 MeV for actinides.
As indicated in the inset of the figure, δVpn is defined
as the sum of the energies of the nuclei on the diagonal
minus the sum of the energies of the nuclei on the anti-
diagonal. Figure 4 gives an intuitive illustration of how
the deformation and beyond-mean-field correlation ener-
gies contribute to δVpn. Along a line going from 132Sn to
208Pb and beyond, the deformation energy varies rapidly
and nonlinearly and brings a very large contribution to
δVpn(N,Z). On the contrary, for nuclei located close to
a spherical shell closure for one nucleon species and mid-
shell for the other, the lines of equal deformation and
correlation energy are nearly parallel to the N or Z axis,
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FIG. 2: (Color online) Same data as Fig. 1, but plotted for
isotopic chains as a function of neutron number.

leading to a pairwise cancelation of similar deformation
energies. The fine structure of this cancelation depends
of course on the deformed shell structure of the four nu-
clei entering a given δVpn(N,Z) value and leads to an
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FIG. 3: (Color online) Same data as Fig. 1, but plotted for
isotonic chains as a function of proton number.

erratic behavior of δVpn, particularly visible when drawn
for isotopic or isotonic chains as in Figs. 2 and 3. The
same behavior is also seen in the experimental data. It
is worthwhile to mention that there is no direct relation

δVpn = 1
4

( )

FIG. 4: Effect of deformation and correlation energies on δVpn

values for heavy nuclei. Top to bottom: (a) map of the dimen-
sionless quadrupole deformation β2 of the mean-field ground
state, (b) contour plot of the static deformation energy, (c)
contour plot of the sum of the static deformation and dy-
namical beyond-mean-field correlation energies, and (d) map
of the contribution of deformation and dynamical correlation
energy to δVpn. The total δVpn value is then obtained adding
the spherical mean-field value. The inset gives a reminder of
the relative signs of the four contributions to δVpn, their dis-
tance being drawn on the same scale as the one used in the
contour plot.
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between the size of the deformation and the deformation
energy, nor between the sign of the deformation, prolate
or oblate, and the deformation energy. In particular, the
transition between oblate and prolate shapes in a region
of shape coexistence around the neutron deficient Pb iso-
topes does not leave obvious traces in the ground-state
deformation energy, hence, in the calculated δVpn val-
ues. As one may expect, introducing beyond-mean-field
correlations evens out the effect of static deformation.
The effect of configuration mixing is, indeed, a spread-
ing of the ground-state wave function around the mean-
field minimum and a mixing of coexisting shapes. The
beyond-mean-field correlation energy varies rapidly only
around shell closures and has its largest impact on the
δVpn(N,Z) values in these regions. We will analyze its
impact in more detail for selected nuclei below.

The very rapidly varying behavior of δVpn around the
N = Z line that sticks out in the experimental data for
light nuclei in Figs. 1, 2 and 3 is not reproduced by any
of our calculations. This anomaly is due to the Wigner
energy [27, 28, 58, 59], whose origin is not described by
present-day EDF models, see Refs. [28, 60] for further
discussion of this deficiency.

In the literature one cannot find, however, a unique
definition of the Wigner energy. Sometimes this notion
is used for an anomalous additional contribution to the
binding energy of the T = 0 ⇔ N = Z member of an iso-
baric multiplet compared to the (N − Z)2 extrapolation
from the other isobars [61], but more often the Wigner
energy denotes a contribution to the binding energy that
is linear in |Tz| = |N −Z|. Such a term arises, for exam-
ple, from a Hamiltonian that is invariant under Wigner’s
SU(4) symmetry, E ∼ T (T + 4) = Esym + EWigner.
When using this second concept of a Wigner energy, the
anomaly of binding energies at N = Z is the consequence
of the Wigner energy EWigner having a discontinuity in
its derivative at Tz = 0, and not of an additional binding
of N = Z nuclei. There are many reasons why Wigner’s
SU(4) symmetry is not realized in nuclei [27, 28, 57–59],
which suppresses the linear term in |N − Z| compared
to the quadratic one. Still, traces of such a linear term
are implicitly contained in all realistic shell-model calcu-
lations [28, 35, 58, 61] and explicitly in the Duflo-Zuker
mass formula [5]. It is noteworthy that the macroscopic-
microscopic mass models [6] and the Skyrme-HFB mass
formulae [7] also contain explicit phenomenological cor-
rections for the Wigner energy that, in fact, combine both
of the concepts of Wigner energy mentioned above, see
also the discussion in Ref. [1]. Several mass differences
have been put forward as indicators or even measures
of the Wigner energy, most prominently double-β-decay
Q values [58, 59] or a difference between three different
δVpn values [28]. It has to be stressed, however, that δVpn

itself is not a measure of the Wigner energy.

. . . . . . . . . . . . . . . . . . .
.

. . . . . . . . . . . . . . . . . . .
.

. . . . . . . . . . . . . . . . . . ..

.
. . . . . . . . . . . . . .

.

.

1 4

1 4

FIG. 5: (Color online) Top to bottom: (a) Intrinsic deforma-
tion of the mean-field ground state, (b) 1/4 of the deformation
energy, (c) 1/4 of the beyond-mean-field correlation energy,
and (d) δVpn values obtained from spherical mean-field cal-
culations, deformed mean-field calculations, J = 0 projected
GCM calculations and experimental data for the chain of Sn
(Z = 50) isotopes. For the deformation, deformation energy
and correlation energy the values for Cd (Z = 48) isotopes
are also shown.

B. Selected chains of nuclei

1. Isotopic chains of magic nuclei

To demonstrate how δVpn is build up from different
types of correlations, let us examine now its evolution
along cuts through the N–Z plane. We first look at the
two isotopic chains of Sn and Pb, corresponding to closed
proton shells, in Figs. 5 and 6. We showed in Ref. [14]
for the Z = 50 Sn isotopic chain that static deformation
and dynamical correlation energies are key ingredients
in reproducing the two-proton separation energies across
the Z = 50 shell and in explaining in an intuitive way
the mutually enhanced magicity around 132Sn.
The results for Sn isotopes are displayed in Fig. 5 and

those for Pb in Fig. 6. The dimensionless deformation pa-
rameter βcalc

2 is related to the intrinsic mass quadrupole
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FIG. 6: (Color online) The same as Fig. 5, but for the chain of
Pb (Z = 82) isotopes. The oblate ground-state deformation
found for Hg isotopes is confirmed by experiment below N =
122.

moment of the self-consistent mean-field wave functions
〈q|(2z2 − x2 − y2)|q〉 as

βcalc
2 ≡

√

5

16π

4π

3R2
0A

〈q|(2z2 − x2 − y2)|q〉 (13)

with R0 ≡ 1.2A1/3 fm. In the three upper panels of the
figures, the results for isotopic chains with two protons
less are also displayed, such that the values for all four
nuclei entering δVpn are given in the same plot. The
contribution of deformation and correlation energy to a
given δVpn(N,Z) value can be extracted from the plot by
first taking the difference between the energies for N and
N − 2 on the curves for Z and Z − 2, and then subtract-
ing the value for Z − 2 from the one for Z. To facilitate
this comparison, the deformation and correlation ener-
gies have been multiplied by a factor 1/4, so that the
quantity entering δVpn, Eq. (1) is plotted on the figure.
The magnitude of the contributions of deformation and
correlations to δVpn(Z,N) is directly related to the dif-
ference in slopes of the curves for Z or Z − 2 for a given
N . The largest contributions are obtained when one of

the slopes is much steeper than the other.
The ground-state configurations obtained for most Sn

and Pb isotopes are spherical; some mid-shell isotopes are
slightly deformed. However, the energy gain due to de-
formation in those cases is small, smaller than 200 keV,
and it originates from a deformed minimum nearly de-
generate with the spherical configuration. By contrast,
the deformation and gain in deformation energy for the
ground states of the non-magic Z − 2 isotopic chains can
be large and vary rapidly for some neutron numbers. For
those cases, the contribution of the deformation energy
to δVpn is large. This clearly indicates that one cannot
assume to describe all the four nuclei entering δVpn by a
common mean-field, even for closed-shell nuclei.
The correlation energy is larger for all Cd and Hg iso-

topes than for Sn and Pb nuclei with same N . However,
the slopes of the Z and Z − 2 curves differ significantly
for a few isotopes only, and its contribution to δVpn is
large only for these neutron numbers. Nevertheless, the
beyond-mean-field correlations level out the rapidly fluc-
tuating effect of static deformations. Their contribution
to the binding energy plays also a key role in the de-
scription of the two-proton separation energies across the
Z = 50 and Z = 82 shell [14, 40].
The agreement between the experimental data and the

results of the beyond-mean-field calculation is very satis-
factory for the Sn and Pb isotopic chains, as can be seen
in panel (d) of the Figs. 5 and 6. In particular, only the
latter calculation is able to describe the rise of δVpn up
to N = 126 and its sudden drop beyond. The rapid vari-
ation of δVpn around 132Sn and 208Pb is mainly due to
the onset of substantial beyond-mean-field correlations
around doubly-magic nuclei. This scenario is much more
involved than the proton-neutron interaction between the
valence orbitals invoked in Ref. [45]. A detailed analysis
of the contributions to the δVpn value of 208Pb is given
in Sect. IVC.

2. Onset of deformation in rare-earth nuclei

Let us now analyze the isotopic chains of Ba (Z = 56),
Nd (Z = 60), and Gd (Z = 64), which cover a region
of nuclei with a large variation of deformation on both
sides of the spherical N = 82 shell closure. Results of our
calculations are compared with the experimental data in
Figs. 7, 8 and 9. Intrinsic deformations calculated with
Eq. (13) are compared to values taken from Refs. [46,
47] that are determined from experimental B(E2) values
making the assumption of a rigid axial rotor

βexpt
2 ≡

4π

3ZR2
0

[

B(E2, 0+1 → 2+1 )
]1/2

(14)

with R0 ≡ 1.2A1/3 fm. For well-deformed nuclei, theo-
retical (13) and experimental (14) values are in excellent
agreement. Around spherical shell closures, however, the
lowest 2+ state is dominated either by non-collective two-
quasiparticle configurations or by fluctuations in collec-
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FIG. 7: (Color online) (a) Intrinsic deformation of the mean-
field ground state compared with experimental data taken
from [47], (b) 1/4 of the deformation energy, (c) 1/4 of the
beyond-mean-field correlation energy, and (d) δVpn values ob-
tained from the macroscopic model, spherical mean-field cal-
culations, deformed mean-field calculations, J = 0 projected
GCM calculations and experimental data for the chain of Ba
(Z = 56) isotopes. For the deformation, deformation energy
and correlation energy the values for Xe (Z = 54) isotopes
are shown as well (see text).

tive degrees of freedom, neither of which can be described
by the mean-field ground state.

For none of these three isotopic chains, the spherical
mean-field result for δVpn does show any structure except
for a tiny drop at the N = 82 shell closure that becomes
rapidly smaller with increasing proton number. Besides
that, the spherical mean-field values remain very close to
the macroscopic ones for all three chains of nuclei. The
only isotopes to remain spherical when deformations are
allowed, are those with N = 82. All heavier isotopes are
prolate, with a very similar variation of deformation as a
function of N for all of the three isotopic chains. Lighter
isotopes are prolate for Ba and Nd, and oblate for Gd. Al-
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FIG. 8: (Color online) The same as Fig. 7, but for the chain
of Nd (Z = 60) isotopes.

though the deformation varies with N in a rather similar
way for the three chains, the effects of deformation and
beyond-mean-field correlations on δVpn are different. De-
formation and correlations do not bring very large contri-
butions, but they induce a significant change of behavior
of δVpn for Ba and Nd. Note also that the changes with
respect to the spherical case bring theory closer to exper-
iment with a very few exceptions. The contribution from
deformation energy overcorrects the spherical result for
δVpn, in particular by making δVpn smaller below N = 82
and larger above this value. The beyond-mean-field cor-
relations straighten the curve and bring it very close to
the data.
Comparing the three isotopic chains, the largest devia-

tion between the experimental and the macroscopic δVpn

values is observed for the Ba (Z = 56) isotopes. For the
isotopes below N = 82 (with the possible exception of
the lightest one N = 66), the experimental values are
smaller, whereas above N = 82 they are larger. The
same overall behavior is also found for Nd (Z = 60), but
with a smaller deviation from the macroscopic results.
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FIG. 9: (Color online) The same as Fig. 7, but for the chain
of Gd (Z = 64) isotopes.

For Gd (Z = 64), the experimental data lie almost on a
straight line, very close to the macroscopic results.
The EDF models provide a simple explanation of these

different behaviors. The three chains present a similar
evolution as a function of N , going from deformed to
spherical to deformed shapes again. However, looking to
Fig. 4, one can see that the chains are located differently
with respect to the center of the deformed region. The
Ba (Z = 56) isotopes are situated at the lower end, where
the deformation energy grows with N at a very different
rate for Z and Z − 2 and brings a large contribution to
δVpn. The Gd (Z = 64) chain is close to the center of the
deformed region where the deformation energy of adja-
cent isotones grows synchronously. The δVpn values are
not only unaffected by deformation in the Gd isotopes, it
is also remarkable that the shape transition from a pro-
late shape for Z = 62 to an oblate one for Z = 64 at
N = 78 does not visibly affect the δVpn value obtained
from the deformed mean-field calculation. These exam-
ples indicate that δVpn cannot always be expected to be
a sensitive indicator for changes in deformation.
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FIG. 10: (Color online) The same as Fig. 7, but for the chain
of constant N − Z = 32. The nuclei for which data exist are
expected to be prolate, whereas the systematics of rotational
bands and radii in the Hg isotopic chain suggests that 194Hg is
oblate in its ground state, in agreement with the calculation.

3. δVpn along lines of constant N + Z or N − Z

Let us now examine the evolution of δVpn along other
cuts through the chart of nuclei. In Fig. 10, results for
nuclei on a line of constant Tz = N−Z = 32 are provided
as a function of A = N + Z. Available data start at the
doubly-magic nucleus 132Sn, cover the entire rare-earth
region, and extend beyond Z = 82. Most of the nuclei
along this chain are deformed, except for Z = 50 and
82. The deformation energy takes its largest absolute
value of around 16.8 MeV for 168Er at Z = 68. However,
it is not the magnitude of the deformation energy that
governs the size of its contribution to δVpn, but how the
curve for Tz = 32 diverges from those for Tz = 30 and
34. Indeed, the contribution of the deformation energy to
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FIG. 11: (Color online) The same as Fig. 7, but for the iso-
baric chains with A = N + Z = 132 and A = 168.

δVpn is obtained as the sum of the energies of two succes-
sive points on the Tz = 32 line from which one subtracts
the sum of the values on the Tz = 30 and Tz = 34 lines
corresponding to the intermediateA value. The contribu-
tions of deformation and beyond-mean-field correlations
reinforce themselves for the lightest nuclei, leading to a
rather irregular pattern, significantly different from the
structureless spherical results. It is remarkable that δVpn

values obtained from the beyond-mean-field calculation
follow very closely the many irregularities of the experi-
mental data.

Results obtained for two nuclear chains correspond-
ing to fixed values of A, which are perpendicular to the
N − Z = 32 chain, are plotted in Fig. 11. The first
one corresponds to A = 132 and extends from the very
deformed neutron-deficient 132Nd to the doubly magic
132Sn. As in the case of the Ba and Nd isotopic chains,
the different onset of deformation and correlation energy

for Z and Z − 2 lowers δVpn relative to the macroscopic
values below the N = 82 shell closure, whereas it is en-
hanced for 132Sn. Note for this nucleus the significant
differences between the deformed and the beyond-mean-
field calculations. The change of behavior for N−Z = 32
of δVpn with respect to the spherical and macroscopic
values is very nicely described by the beyond-mean-field
calculation.
The second isobaric chain in Fig. 11, A = 168, almost

follows the diagonal in Fig. 4. All isobars are deformed
and the deformation increases gradually when going from
the very neutron-deficient 168Pt to 168Er, a nucleus lo-
cated in the center of the deformed rare-earth region.
The deformed mean-field and beyond-mean-field calcula-
tions give very similar δVpn values and agree well with the
data. For the lighter isobars, the δVpn values are smaller
than the macroscopic ones, whereas for 168Er they sud-
denly increase to values above. For the chains that we
discussed up to now, the sudden increase of δVpn from be-
low to above macroscopic values took place when crossing
a spherical shell closure, i.e. with decreasing deformation.
In the case of the A = 168 chain, the sudden increase of
δVpn has its origin in the saturation of deformation en-
ergy with increasing asymmetry.
Again, the deviation of δVpn from the macroscopic

value depends on the difference of increase in deformation
energy in adjacent nuclei.

4. Doubly-magic nuclei and mutually enhanced magicity

In Figs. 5, 10, and 11, the δVpn value of 132Sn sticks out
as being larger than that of all surrounding nuclei. The
same result is obtained for 208Pb. In both cases, these
δVpn values are also much larger than the macroscopic
trend. A similar singular behavior for doubly-magic nu-
clei is also found with other mass filters, such as two-
particle separation energies or Qα values: the value ob-
tained for a doubly-magic nucleus is much larger than
those of adjacent nuclei, including the semi-magic ones.
This gives the impression that the shell closure of one
nucleon species reinforces the magicity of the other, an
effect sometimes called “mutually enhanced magicity” in
the literature [1, 52, 53]. This effect is not described
by pure mean-field models for which two-nucleon sepa-
ration energies or Qα values across a shell closure usu-
ally show very little variation with the number of parti-
cles of the other species, in stark contrast to the data.
In Refs. [14, 40, 54], it was shown that these filters are
much better described when beyond-mean-field correla-
tions are taken into account. The same result is found
here for δVpn. The beyond-mean-field correlation energy
is much smaller in a doubly-magic nucleus than in its
neighbors. Its rapid variation gives a contribution to
δVpn that pushes it to very large values in doubly-magic
nuclei, up to twice as large as the average trend.
At the same time, the pattern of the δVpn values

changes for doubly-magic nuclei. For nuclei located ei-
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ther below or above the shell closures for both nucleon
species, the experimental δVpn tends to be larger than
the average trend. In contrast, for nuclei where one nu-
cleon species is below and the other above the respective
shell closure, the experimental δVpn value tends to be
smaller than the average trend. This behavior is very
well illustrated in Figs. 7, 8 and 9 for the shell closures
at Z = 50 and N = 82.

In the literature, qualitative explanations have been
proposed for this effect, based on the nature of the or-
bitals filled by neutrons and protons. If the energies of
both orbitals are larger or smaller (p-p and h-h cases)
than that of the Fermi level, they are supposed to have
a large overlap. On the contrary, if one of the energies
is larger and the other smaller, (p-h and h-p case), this
overlap is supposed to be small. The behavior of δVpn

is then attributed to the differences between the over-
laps [21]. EDF calculations offer a different and more
straightforward explanation. This effect results from the
combination of a smooth macroscopic background and
the contributions from deformation and beyond-mean-
field correlation energies. As can be seen in Fig. 4, their
combined absolute value increases in all directions around
a doubly-magic nucleus. Moreover, looking for instance
at Figs. 5 and 6, one sees that this increase is nonlinear.
The pattern that is observed for δVpn around doubly-
magic nuclei is then a trivial consequence of the asym-
metry of the relative signs of the four energies entering
its definition. For example, for N = 118, the Z = 74 nu-
cleus is located in such a way that the nonlinear increase
of these contributions is pointing toward N − 2, Z − 2.
For the same value of N but Z = 78 the iso-energy lines
are nearly parallel to the N -axis and the contributions
for a given Z-value nearly cancel out.

Looking once more at Fig. 4, the picture on how δVpn

is build up emerges clearly. Let us divide the map into
rectangles delimited by the proton and neutron magic
numbers. In any of these rectangles, deformation and
correlation energies grow nonlinearly from small values
along all borders to large ones in the middle. The result-
ing map of deformation and correlation energies is highly
symmetric and centered around the middle of the region.
The definition of δVpn, Eq. (1), however, is asymmetric.
It is designed to probe the increase of the energy when
going from the lower left to the upper right in the nu-
clear chart under the assumption that it is superimposed
on a background of like-particle interactions independent
on the number of the other particle. The combined de-
formation and dynamical correlation energy does rarely
follow this anticipated pattern. As a consequence, one
always obtains positive contributions to δVpn around the
so-called p − p and h − h corners of the rectangle and
negative values in the p − h and h − p corners. Close
to the center of such a major-shell region, this trend is
inverted when the deformation and correlation energies
reach their maximum. This explanation of the pattern of
δVpn around shell closures does not invoke any knowledge
about the spatial structure of the single-particle orbits

and their overlaps, and indicates also that the observed
pattern of δVpn does not necessarily signal stronger or
weaker proton-neutron interactions in the four corners of
a region of the nuclear chart between major shells.
The observation that the appearance of enhanced δVpn

values in the rare-earth region when going from 132Sn to
208Pb and beyond, is correlated to the line of Nvalence ≈
Zvalence has led the authors of Ref. [25] to the speculation
that this phenomenon might be due to a “mini-Wigner
energy” of origin similar to the Wigner energy that leads
to enhanced δVpn values along the N = Z nuclei. Our
analysis makes this scenario very unlikely and offers a
simpler explanation. First, we underline that our model
does not give any trace of the Wigner energy and its con-
tribution to δVpn at the N = Z line, as is the case for all
present-day self-consistent mean-field models [24, 28, 60],
meaning that the relevant physics is not contained in it.
In contrast, our model does reproduce very well the en-
hanced δVpn values along the Nvalence ≈ Zvalence line in
the rare-earth region. As explained above, their enhance-
ment is a consequence of the onset of deformation and
beyond-mean-field correlations when going away from a
doubly-magic nucleus, which gives a positive contribution
to δVpn in some direction and negative in other directions
due to the asymmetric definition of δVpn.

C. Detailed analysis of δVpn for selected nuclei

1. General comments

The discussion above demonstrates that the rapid
variation of the deformation energy and the beyond-
mean-field correlation energy from symmetry restora-
tion and shape mixing often gives large contributions to
δVpn(N,Z). For nuclei away from the N = Z line, this
variation is at the origin of almost all structures seen in
the data. This also indicates that the assumption of a
common single-particle basis made in Sect. II to obtain
a simple expression for δVpn in terms of proton-neutron
matrix elements is rarely justified. When the structure of
the four nuclei entering Eq. (1) is different, the question
arises whether there are other terms in the energy func-
tional than the proton-neutron interaction energy that
contribute to δVpn.
We have selected three representative nuclei for which

we will decompose δVpn(N,Z) into contributions from
the proton-proton, neutron-neutron and proton-neutron
terms in the EDF.

2. 208Pb

The first nucleus 208Pb has been chosen for two rea-
sons. First, we have seen in Fig. 6 that the contribution
of the beyond-mean-field correlation energy to the δVpn

value of this doubly-magic nucleus is particularly large.
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TABLE I: Decomposition of δVpn into contributions com-
ing from the different terms of the energy density func-
tional for 208Pb, namely kinetic energy of neutrons and pro-
tons, the neutron-neutron, proton-proton and proton-neutron
parts of the Skyrme EDF, the neutron-neutron and proton-
proton parts of the pairing functional and the proton-proton
Coulomb EDF. We also give the sum of all terms and the
experimental value. All energies are in MeV.

208Pb

term frozen HF HF HF+BCS+LN J = 0 GCM

kinetic n 0.000 -0.056 -0.010 -0.105

kinetic p 0.000 0.012 -0.044 -0.132

Skyrme nn 0.025 0.076 -0.005 0.160

Skyrme pp 0.017 -0.008 0.025 0.275

Skyrme pn 0.162 0.211 0.218 0.382

pairing nn - - 0.027 -0.057

pairing pp - - -0.005 -0.081

Coulomb 0.000 0.010 0.020 0.012

total 0.204 0.245 0.225 0.457

δV exp
pn - - 0.427

Second, the spherical 208Pb presents a very favorable sit-
uation to numerically test the frozen HF approximation,
where the same set of single-particle wave functions is
used to compute the energy of all four nuclei involved
in the computation of δVpn. As discussed in Sect. II A,
this approximation has to be made to establish the direct
relation between δVpn and the two-body proton-neutron
interaction. In fact, 208Pb is one of the very few spherical
nuclei for which such calculations can be performed. It
requires that four neighboring nuclei have a closed shell
configuration, which is possible only for N and Z values
for which the orbitals below the Fermi level are p1/2−
or s1/2+ levels for both protons and neutrons. These

conditions are met for 208Pb, with a ν s1/2+ level below
N = 126 and a π p1/2− level below Z = 82.
The results are presented in Table I. In the first

column, the four nuclei entering δVpn have been cal-
culated with the single-particle basis of 208Pb (”frozen
HF” approximation), without readjustment of the basis
for each nucleus and without pairing correlations. Self-
consistency for 206Pb, 206Hg and 204Hg has been consid-
ered for the results given in the second column (”HF”),
and self consistency and pairing correlations treated with
the BCS+LN prescription have been taken into account
for the values of the third column. Finally, the fourth
column corresponds to the J = 0 projected GCM calcu-
lation.
We decompose the energy density functional into the

kinetic energies of neutrons and protons (including the
centre-of-mass correction), the neutron-neutron, proton-
proton and proton-neutron parts of the Skyrme EDF that
models the particle-hole part of the effective strong inter-

FIG. 12: (Color online) Difference between the values of the
terms of the energy functional listed in Table I for 206Pb,
206Hg and 204Hg and their value for 208Pb. The same four
sets of calculations as in Table I are considered. All energies
are in MeV.

action, the neutron-neutron and proton-proton parts of
the pairing functional and the proton-proton Coulomb
energy. The Skyrme and pairing functionals contain
density-dependent terms. We interpret them as a
density-dependence of the respective neutron-neutron,
proton-proton and proton-neutron terms. This choice of
decomposition is not unique, however. For further details
about the functional, we refer to Refs. [38, 48].

In the frozen HF calculation, the sole contribution
to δVpn comes from the Skyrme EDF. The neutron-
proton terms give the largest contribution, although the
neutron-neutron and proton-proton terms contribute by
about 20% through their density-dependence. As soon
as self-consistent wave functions are used, the one-body
contribution from the kinetic energy becomes large. This
is not surprising, as the kinetic energy provides a large
contribution to the symmetry energy coefficient asym of
the EDF [48, 55], which in turn dominates the global
trend of δVpn, Eq. (12). All other terms in the functional
are modified and can bring sizable contributions to δVpn.
Pairing correlations change all contributions even further.
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The final value of δVpn from a self-consistent calculation
results from a partial cancelation of several terms. The
proton-neutron terms in the Skyrme functional are of the
right order of magnitude cand approach the final value
of δVpn within a given model, but even for 208Pb, which
is probably one of the most favorable cases for the frozen
approximation, one can hardly conclude that δVpn is a
valuable measure of proton-neutron interactions.
More importantly, the spherical mean-field values are

far from the experimental data and the correlations
brought by symmetry restoration and configuration mix-
ing are large and crucial to obtain the correct value, as
they increase δVpn by 0.232 MeV to almost twice the
mean-field value. The decomposition of the J = 0 pro-
jected GCM results is listed in the fourth column of Ta-
ble I. All terms become large in absolute value, but par-
tially cancel each other. Their sum gives a value for δVpn

close to the data. This is not entirely surprising as cor-
relation energy is always gained from the compensation
between a loss in kinetic energy and a gain in interaction
energy. Table I indicates that there are large contribu-
tions to δVpn from proton-proton, neutron-neutron and
neutron-proton terms and that none of them is dominant.
Fig. 12 illustrates how the δVpn is build up from can-

celations between the contributions of the four nuclei en-
tering its definition. It shows the differences between
the EDF terms defined in Table I for 206Pb, 206Hg and
204Hg and their value in 208Pb. The contribution of
a given term to δVpn(

208Pb) is the sum of the values
for 206Pb (red) and 206Hg (green) minus the value for
204Hg (blue), divided by four. While in the frozen HF
approximation (panel a), most terms cancel out, exactly
self-consistency (b), pairing (c) and collective quadrupole
correlations (d) lead to a much more complex situation.
One can conclude from this analysis that each contribu-
tion to δVpn itself is the result of a partial compensation
between changes in all four nuclei entering its definition.

3. Deformed rare-earth nuclei

Let us now consider two nuclei in a deformed region
of the nuclear chart. The four nuclei entering the calcu-
lation of δVpn for 168Er have similar deformations. By
contrast, they differ significantly for 152Nd, as can be
seen in Fig. 8. In both cases, the spherical mean-field
results are of no interest and will not be discussed here.
The contribution of correlations brought by configuration
mixing and symmetry restoration is also small and the
analysis of δVpn can be performed for the deformed calcu-
lations only. The value of δVpn results from contributions
coming from all terms in the functional. The kinetic en-
ergy brings a large negative contribution, even for 168Er
for which the four nuclei have very similar deformations.
This demonstrates that the frozen approximation is not
valid and that the use of a unique single-particle basis is
not justified. The largest positive contribution to δVpn

comes from the Skyrme EDF. Other terms are small for

TABLE II: Decomposition of δVpn values for 168Er and 152Nd
into contributions coming from the different terms in the
energy density functional in deformed self-consistent mean-
field calculations, namely kinetic energy, the neutron-neutron,
proton-proton and proton-neutron parts of the Skyrme EDF,
pairing energy and the proton-proton Coulomb EDF. We also
give the total contribution from beyond-mean-field correla-
tions, the sum of all these terms and the experimental value.
All energies are in MeV.

term 168Er 152Nd

kinetic -0.252 -0.334

Skyrme nn 0.164 0.304

Skyrme pp 0.065 -0.016

Skyrme np 0.372 0.676

Coulomb 0.005 -0.161

pairing -0.020 0.081

total mean field 0.334 0.550

correlation energy -0.006 -0.051

δV theo
pn 0.328 0.490

δV exp
pn 0.362 0.509

168Er, but there is a large negative contribution of the
Coulomb term in 152Nd. Note also that, although the
contribution of correlations is small for this nucleus, it
has the right sign to bring the theoretical δVpn in good
agreement with the data.
Altogether, these examples indicate that, in a realistic

model, δVpn is not determined by the interaction between
the last two valence nucleons, but has contributions from
the modifications of all single-particle wave functions on
the one hand, and from all terms in the energy functional
on the other.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have analyzed in details the relevance
of a difference between the binding energy of four nuclei,
called δVpn, as a measure of the proton-neutron inter-
action between valence particles and as an indicator for
structural changes in nuclei.
We have first investigated whether one can derive a

relation between δVpn and a proton-neutron matrix el-
ement in simple models, where analytic formula can be
derived. Even in the oversimplified case where the four
nuclei entering δVpn can be described by HF wave func-
tions generated by the same mean field and a two-body
interaction, one obtains only a relation between δVpn and
a combination of two matrix elements. Any higher-order
term in the interaction, such as a density-dependence
or a three-body interaction, complicates the relation, as
do self-consistency and any correlation such as pairing,
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deformation, or any configuration mixing. This formal
analysis already indicates that it can hardly relate δVpn

to any specific proton-neutron interaction in a realistic
model. This formal analysis is confirmed by the de-
composition of calculated δVpn values for the doubly-
magic spherical 208Pb nucleus and the deformed 152Nd
and 168Er, for which we find indeed that all terms in the
energy functional contribute, not just the proton-neutron
interaction, and that self-consistency and correlations be-
yond the mean field play a substantial role.
We have then shown that our beyond-mean-field

method has all the necessary ingredients to reproduce
the global trends of δVpn. As has been pointed out ear-
lier [24], the global trend of δVpn is determined by the
symmetry and surface symmetry energy coefficients that
can be deduced from an energy functional. With a de-
tailed analysis of a few representative regions in the nu-
clear chart, we have illustrated how the fine structure
of δVpn builds up from the successive introduction of
deformation and correlations due to symmetry restora-
tions and configuration mixing. Both are crucial ingre-
dients for the reproduction of data. As found earlier for
two-nucleon separation energies [14, 39, 40], within our
model it is essential to take into account beyond-mean-
field correlations for the description of data in the vicin-
ity of magic numbers. We have checked that the large-
scale calculation of even-even nuclei using a mapped five-
dimensional microscopic Bohr-Hamiltonian based on the
Gogny-force [56] gives qualitatively the same results as
ours.
Our model provides a satisfactory description of the

data, except at the N = Z line where the Wigner ef-
fect is absent from our results. Within the framework
of our model, however, δVpn does neither provide a reli-
able measure of the proton-neutron interaction terms in
the energy functional used, nor a reliable indicator for
structural changes. Certainly, in some instances struc-
tural changes such as the onset of deformation lead to
anomalies in the δVpn values, but in many other instances
they do not, and there is no one-to-one correspondence
between a structural change and the resulting modifica-
tion of δVpn. In turn, a local increase or decrease of

δVpn can have many different origins. One of the main
limiting factors for the use of δVpn as an indicator for
structural change is its asymmetric definition, which re-
sults in the fact that additional binding from a change in
nuclear structure contributes differently to δVpn in sign
and size depending on the direction in the nuclear chart
in which the structure changes. In particular the charac-
teristic pattern of δVpn having a significantly larger size
for nuclei where only particles or only holes are added
to a doubly-magic nucleus as compared to systems with
particles added for one nucleon species and holes for the
other (a pattern recently interpreted as a “mini-Wigner
energy” [25]), is a trivial consequence of the asymmetric
definition of δVpn, and not an indicator for a qualitative
difference in either the proton-neutron interaction or a
difference of their structure.
The usefulness of δVpn is compromised by being a mass

filter of very high order that is thereby prone to unpre-
dictable cancelations when the nuclei entering δVpn have
different structure. Lower-order mass filters such as two-
nucleon separation energies or Q values are usually more
reliable indicators of structural changes than δVpn, al-
though these may fail as well. This also means that δVpn

does not provide a conclusive benchmark for nuclear EDF
methods that would be superior or complementary to
other mass filters such as two-nucleon separation ener-
gies and Q values.
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