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I. INTRODUCTION

In recent years, rare isotope beams have become a major focus of the experimental nuclear physics community. Using
such beams, more and more exotic nuclei become accessible experimentally, which exhibit novel structural features
and excitations modes like neutron-skin vibrations, and allow studies of sensitive details of the nuclear interactions
and the theoretical models which are used to describe them. Over the past few decades, nuclear structure calculations
for medium- and heavy-mass nuclei were almost exclusively carried out in the framework of Density Functional Theory
(DFT), using phenomenological energy density functionals (EDFs) of the Skyrme or Gogny type [1], or in Relativistic
Mean Field Theory [2]. While phenomenological EDFs uniformly describe the bulk properties of nuclei near the valley
of stability very well, there is a significant model dependence and deterioration of quality for results in exotic nuclei
and spectroscopic observables in general. While DFT formally resembles the Hartree-Fock (HF) and Hartree-Fock-
Bogoliubov (HFB) methods, the EDF parametrization contain correlation effects beyond the mean field; on the one
hand, this allows for a better description of experimental data in a comparatively simple framework, but on the other
hand, there is no clear connection to the underlying NN (and 3N, 4N , . . . ) interactions, and, therefore, no way to
improve the EDFs in a systematic fashion, e.g., by many-body perturbation theory (MBPT).

One way to overcome these problems is to use realistic NN interactions like Argonne V18 [3] or the potentials
from next-to-next-to-next-to-leading order (N3LO) of chiral effective field theory (EFT) [4, 5], which accurately
describe NN scattering data. The latter are particularly appealing because chiral EFT provides a consistent set
of accompanying 3N interactions, although the 3N interaction has thus far only been derived to order N2LO [4].
Since realistic interactions induce strong short-range correlations in the NN system, one needs to tame their short-
range behavior, preferably by means of a unitary transformation which automatically preserves the NN observables.
Examples of such unitary transformation techniques are the Unitary Correlation Operator Method (UCOM) [6], and
the Similarity Renormalization Group (SRG) approach [7], which will be the method explored in the following. The
SRG evolution drives the two-body interaction to band-diagonality in momentum space, thereby decoupling low and
high momenta. This decoupling results in soft interactions with greatly improved convergence properties in (quasi-
)exact many-body methods. In addition, SRG-evolved interactions yield bound nuclei already at the mean-field level,
and are suitable for low-order MBPT treatments (see [7] and references therein).

Soft NN interactions have been discussed in nuclear theory for many decades, but were originally discarded due to
their inability to produce the proper saturation behavior in nuclear matter [8]. From the modern point of view, this
merely shows that for each NN interaction, consistent 3N forces are required to properly describe nuclear systems.
According to general EFT principles, up to A-body interactions must be considered in the A-nucleon system, for
which chiral EFT guarantees a natural hierarchy with NN > 3N > 4N etc.: the leading 3N force appears at N2LO,
the leading 4N force at N3LO, and so on. The SRG evolution beautifully illustrates the inseparability of the nuclear
interactions, because many-nucleon forces are naturally induced during the SRG flow [7]. In the case of SRG-evolved
NN interactions, the inclusion of repulsive 3N interactions is essential to prevent overbinding in heavier nuclei.
Formally, the 3N interaction must then be evolved consistently along with the NN interaction, which has recently
been accomplished by Jurgenson et al. [9].

With realistic interactions and similarity transformation techniques, significant progress has been made towards
a comprehensive description of nuclear structure all across the nuclear chart. Ab initio calculations for light nuclei
(see [6, 7] and references therein) are complemented by mean-field based approaches in heavy nuclei. In recent years,
we have developed a framework for using effective interactions, given in terms of their harmonic-oscillator matrix
elements, in a wide-range of mean-field based approaches, from HF and HFB to the Random Phase Approximation
(RPA) and its extensions [6, 10–12].

The purpose of this article is twofold. First, we extend the description of excitations to open-shell nuclei by means of
a fully consistent Quasiparticle RPA [13, 14]: the QRPA is built on the ground states obtained from the HFB method,
and the same intrinsic Hamiltonian, including the exact Coulomb interaction, is used in both the HFB and QRPA
calculations. Second, we perform a survey of the response of isotopic chains using SRG-evolved NN interactions.
While work is under way to include SRG-evolved chiral 3N interactions in our overall framework, a 3N contact
force (or equivalent density-dependent interaction) is implemented as an intermediate step, allowing us to carry out
preparatory studies and identify issues in anticipation of the full 3N interaction. Our nuclear structure results based
on SRG-evolved NN (and eventually 3N) interactions will provide important guidance for ab initio DFT efforts in
the framework of the Universal Nuclear Energy Density Functional (UNEDF) project [15].

This article is organized as follows. In Sect. II we review the QRPA formalism and provide details and tests of
our implementation. In Sect. III, we fix the free parameter of the density-dependent interaction and discuss some
open issues pertaining to 3N forces and proceed to summarize HFB results for the calcium isotopic chain in Sect. IV.
This sets the stage for the QRPA results, which are presented in Sect. V. Explicit expressions for the QRPA matrix
elements are collected in the appendices.
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II. QRPA FORMALISM AND IMPLEMENTATION

A. Quasi-Particle Random Phase Approximation

Our starting point is the intrinsic Hamiltonian

H = Tint + V , (1)

where the intrinsic kinetic energy is defined as [13, 16]

Tint = T − Tcm =

(
1− 1

A

)∑

i

p2
i

2m
− 1

mA

∑

i<j

pi · pj . (2)

We formulate the QRPA in the canonical basis of the Hartree-Fock Bogoliubov (HFB) ground state [13, 17, 18].
Normal-ordering the Hamiltonian w.r.t. the HFB vacuum, we obtain

H = E0 +
∑

kk′

H11
kk′α

†
kαk′ + Vres (3)

where E0 is the energy expectation value in the HFB vacuum, and {αk, α
†
k} are quasiparticle operators in the canonical

basis. The residual interaction is given by

Vres =
1

4

∑

kk′ll′

v̄kk′ll′ : c
†
kc

†
k′cl′cl : , (4)

where c†k are the creation operators of the canonical basis in particle representation, and v̄kk′ll′ denotes an antisym-
metrized but not normalized two-body matrix element. Details on how to obtain the quasiparticle representation of
Vres can be found in Refs. [13, 14].
Assuming spherical symmetry, the canonical basis states come in pairs { |µ,mµ〉, |µ,mµ〉} which are related by time

reversal:

|µm〉 = (−1)l+j−m |µ−m〉 , (5)

where µ = (nljτ) is a collective index for the radial, angular momentum, and isospin quantum numbers. In the
canonical basis, the Bogoliubov transformation between the particle and quasiparticle representation reduces to the
BCS-like form [19, 20]

α†
µm = uµc

†
µm + vµc̃µm , (6a)

α̃µm = uµc̃µm − vµc
†
µm , (6b)

where we have expressed the annihilation operators as spherical tensors [21],

α̃µm = (−1)j+mαµ−m = −(−1)lαµm , (7)

and absorbed a factor (−1)l into the coefficients vµ to simplify the formulae.
The QRPA phonon creation operator in the canonical basis has the general form [22]

O†
k =

∑

(µm)<(µ′m′)

Xk
µm,µ′m′α†

µmα†
µ′m′ − Y k

µm,µ′m′αµ′m′αµm , (8)

where the sum over quasiparticle states must be restricted to avoid double counting. Since we assume spherical
symmetry, it is convenient to switch to an angular-momentum coupled representation [14]:

O†
kJM =

∑

µ≤µ′

XkJ
µµ′A†

µµ′JM − Y kJ
µµ′Ãµµ′JM , (9)

where the coupled quasiparticle-pair creation operator is defined as

A†
µµ′JM ≡ 1√

1 + δµµ′

∑

m,m′

〈jmj′m′|JM〉α†
µmα†

µ′m′ (10)
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and Ãµµ′JM is its spherical adjoint (cf. Eq. (7)).
Using the Equations-of-Motion method [14, 22], one can define the QRPA matrices A and B via the commutators

(µ ≤ µ′, ν ≤ ν′)

AJM
µµ′,νν′ ≡ 〈Ψ| [Ãµµ′JM , [H,A†

νν′JM ]] |Ψ〉 , (11a)

BJM
µµ′,νν′ ≡ 〈Ψ| [Ãµµ′JM , [H, Ãνν′JM ]] |Ψ〉 , (11b)

where we resort to the usual quasi-boson approximation by assuming that the many-body state |Ψ〉 is the HFB
vacuum. For spherically symmetric systems, the QRPA matrices and the amplitudes X and Y are independent of the
angular momentum projection, and one obtains the following reduced set of QRPA equations:

(
AJ BJ

−BJ∗ −AJ∗

)(
XkJ

Y kJ

)
= ~ωk

(
XkJ

Y kJ

)
, (12)

where ~ωk is the excitation energy of the kth QRPA state w.r.t. the ground state. Explicit expressions for the matrices
A and B can be found in Appendix A.

B. Transition Operators

For electric multipole transitions, the reduced transition probabilities are defined as

B(EJ, Ji → Jf ) ≡
1

2Ji + 1

∣∣〈 fJf
∣∣∣∣QJ

∣∣∣∣iJi
〉∣∣2 . (13)

In the QRPA, we consider transitions from the 0+ ground state of an even-even nucleus to an excited state described
by the QRPA phonon operator (9), and the reduced matrix element can be evaluated to (see e.g. [14])

〈
kJ

∣∣∣∣QJ

∣∣∣∣0
〉

=
∑

µ≤µ′

1√
1 + δµµ′

(
uµvµ′ + (−1)Jvµuµ′

)

×
(
XkJ∗

µµ′

〈
µ
∣∣∣∣QJ

∣∣∣∣µ′
〉
+(−1)JY kJ∗

µµ′

〈
µ
∣∣∣∣QJ

∣∣∣∣µ′
〉∗)

. (14)

In the limit of small momentum transfer, the multipole transition operator is defined as the sum of the isoscalar
and isovector operators

QIS
JM = 1

2e

A∑

i=1

rJi YJM (r̂i) (15)

and

QIV
JM = 1

2e

A∑

i=1

τ
(i)
3 rJi YJM (r̂i) . (16)

Exceptions are the monopole operator, which would be a constant unable to cause transitions, and therefore needs to
be defined as

Q00 = e

A∑

i=1

1
2 (1 + τ

(i)
3 )r2i Y00(r̂i) , (17)

and the isoscalar and isovector dipole operators, which are corrected for center-of-mass effects [13]:

QIS
1M = e

A∑

i=1

(
r3i −

5

3
〈Rms〉ri

)
Y1M (r̂i) , (18)

and

QIV
1M = e

N

A

Z∑

p=1

rpY1M (r̂p)− e
Z

A

N∑

n=1

rnY1M (r̂n) , (19)
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where Rms is the intrinsic mean-square radius operator [23].

Since the NN interactions used in this work are obtained by means of an SRG evolution, we need to address
the issue of evolving observables in a consistent fashion. However, it has been demonstrated in related approaches
like the UCOM [10] and the Lee-Suzuki transformation in the No-Core Shell Model [24] that the absolute values
of the transition operator matrix elements entering (13) hardly change. The reason for this is the long-range, low-
momentum character of the rJ operator, while the SRG, UCOM, and Lee-Suzuki transformation modify the short-
range, high-momentum matrix elements [25]. Since there are more significant uncertainties due to the λ-dependence
of the interaction and the simple nature of the phenomenological 3N interaction, we content ourselves with using the
unevolved transition operators in the following.

C. Calculation Details

Our QRPA implementation is suitable for use with NN Hamiltonians with or without a density-dependent NN
(or contact 3N) term. In the present study we use an SRG-evolved Argonne V18 interaction supplemented with a
phenomenological density-dependent two-body term to take into account missing genuine and induced three-nucleon
interactions. The matrix elements of this potential, which we will denote as VSRG, and the two-body part of the intrinsic
kinetic energy (2) are evaluated in a relative spherical HO basis and transformed to the jj-coupled single-particle
basis by using Talmi-Moshinsky brackets, as described in Ref. [26]. The matrix elements of the density-dependent
interaction, which is described in Sec. III, can be evaluated directly in the jj-coupled basis (see, e.g., [27] and also
App. B).

The input ground states for our QRPA calculations are obtained using the spherical HFB implementation described
in Ref. [27]: single-particle states are expanded in a spherical HO basis of 15 major oscillator shells, ensuring
converged ground-state energies. In calcium isotopes, the typical ground-state energy gains from increasing the size
of the single-particle basis from 11 to 13 major shells are about 200 keV, and from 13 to 15 major shells 100 keV or
less, corresponding to less than 0.1% of the total energy. In the tin region, the absolute gains are roughly twice as
large, but the relative accuracy is similar. The ground-state energies are minimized w.r.t. the oscillator length aHO

by considering a mesh of values ranging from 1.5 to 2.40 fm with a spacing of 0.05 fm. For 15 oscillator shells, the
ground-state energies of the adjacent aHO mesh points differ from those at the minima by 5 keV or less in the calcium
chain, and 40 keV or less in the tin chain.

After constructing the canonical basis of the HFB ground state, we determine all possible two-quasiparticle (2qp)
configurations for a given Jπ. We stress that the 2qp basis is not truncated in any way, which leads to an excellent
decoupling of spurious states in our calculations (see Sect. II D). To estimate uncertainties due to the discrete aHO

mesh, we perform QRPA calculations for the HFB solutions at the neighboring points as well. The variation of both
individual excited state and centroid energies is about 50 keV or less in the results presented in the following.

D. Spurious States

In a QRPA calculation, spurious states emerge as a consequence of the breaking of the symmetries of the nuclear
Hamiltonian by the ground-state wavefunction. In the 0+ channel, non-vanishing neutron and/or proton pairing
break the U(1) symmetries associated with neutron and proton number (or, alternatively, nucleon number and charge)
conservation. The use of the same interaction in the particle-hole and particle-particle channels in both the HFB and
QRPA calculation ensures that the corresponding spurious state(s) are well-decoupled from the excitation spectrum
[17, 18].

As a typical example, we show the number operator response for the non-spurious 0+ states of 56Ca in Fig. 1, which
is less than 10−4/MeV in magnitude overall, and less than 10−6/MeV in the energy range up to 40 MeV, which is
relevant for the giant monopole resonance. The number operator response vanishes to machine accuracy if the pairing
collapses (i.e., in the HF + RPA limit). The spurious 0+ state in 56Ca is found at 0.1 keV, and the largest energies
we found in our calculations are approximately 20 keV, which still indicates excellent consistency.

The decoupling is realized just as well for the spurious 1− state associated with the breaking of translational
invariance. To verify that our QRPA solutions are free of center-of-mass contamination, we compare the isoscalar 1−

strength distribution obtained with (18) and the uncorrected operator

QIS
1M = e

A∑

i

r3Y1M (r̂) . (20)
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If translational invariance is properly restored for the QRPA solutions, the strength distributions must agree for the
non-spurious states, so that the only effect of the correction term in (18) is the removal of the spurious state associated
with the translation of the whole nucleus.
In the isovector case, the corrected dipole operator (19) is used, which is equivalent to

D′ =
Z∑

p

e (rp −R) =
N

A
e
∑

p

rp −
Z

A
e
∑

n

rn . (21)

If translational symmetry is properly restored, the c.o.m. operator R cannot cause transitions, and thus for intrinsic
excitations the matrix elements of D′ must be identical to those of

D =
∑

p

erp . (22)

Fig. 2 demonstrates that isoscalar and isovector strength distributions of the corrected operators are practically
identical to those of the operators (20) and (22), respectively. This confirms our previous findings for closed-shell
nuclei [10] in the more general HFB+QRPA framework for open-shell nuclei.
As in the monopole case, the spurious 1− state itself lies at very low energies, independent of the mass. It is

found between 1− 5 keV in closed-shell nuclei, and below 20 keV for open-shell nuclei in all cases. These energies are
considerably lower than the spurious 1− energies of several hundred keV which are reported for other consistent QRPA
approaches in the literature [18, 28–30]. The reason is the use of the intrinsic kinetic energy (2) in our HFB+QRPA
calculations. If we do not subtract Tcm, the spurious state energies increase to the sizes reported by other groups, but
the quality of the translational-symmetry restoration is not affected.

III. THE DENSITY-DEPENDENT INTERACTION

In the present study, we supplement an SRG-evolved Argonne V18 NN interaction by a phenomenological density-
dependent two-body term to account for missing genuine and induced 3N interactions. As discussed in [31], the
linearly density-dependent interaction (DDI)

v[ρ] =
C3N

6
(1 + Pσ) ρ

(
r1 + r2

2

)
δ3 (r1 − r2) , (23)

where Pσ is the spin-exchange operator, gives the same contribution to the ground-state energy as the 3N contact
interaction

v3 = C3Nδ3 (r1 − r2) δ
3 (r2 − r3) (24)

in systems with time-reversal invariance. Such a contact force was recently used in conjunction with similarity-
transformed interactions in Hartree-Fock and MBPT calculations [32].
Since the QRPA is the limit of low-amplitude motion of time-dependent HFB, the QRPA matrix in Eq. (12) is (up

to the metric) the stability matrix of the ground-state energy functional [13], and the replacement of the 3N contact
term with the DDI (23) is meaningful in this context, provided one properly takes rearrangement terms due to the
density-dependence into account (see [33] and Appendix B).
In the present work, we treat the strength of the density-dependent term as a running coupling constant which

depends on the SRG parameter λ, since it is an effective parametrization of initial 3N interactions, which should
be present in the “bare” nuclear Hamiltonian, as well as induced 3N interactions, which are generated during the
SRG flow (see [7] and references therein). We fix C3N (λ) in Hartree-Fock calculations by fitting the experimental
charge radii of a set of closed-shell nuclei, because the radii are much less sensitive to many-body corrections than the
ground-state energy.
In Tab. I, we list the C3N (λ) values for three λ’s used in the following; Fig. 3 shows the corresponding ground-state

energies (per nucleon) and charge radii for the fit nuclei. We find that for these nuclei, the λ-dependence of the
charge radii can be absorbed into C3N (λ) at the HF(B) level, while a many-body approach beyond the mean-field
and a complete treatment of the 3N interaction is required to reduce or remove the λ-dependence of the ground-state
energies.
The strength of our DDI is notably lower than the strength of the density-dependent term of past and current

Skyrme functionals (see [36] and Refs. therein). In part, such a strong repulsive DD term is required to counteract



7

the attractive terms in the Skyrme functional which are necessary to fit binding energies and radii at the same time
in a mean-field calculation, which is different from our fit strategy.
We also note that we do not need to use fractional density dependencies for the DDI to obtain reasonable GMR

energies in Sect. II A. Modern Skyrme functionals use fractional density dependencies because the strong linear
density-dependent terms tend to overestimate the GMR energy, i.e., the incompressibility of nuclear matter. Since
phenomenological Skyrme functionals with constant coefficients correspond to nuclear contact interactions, non-integer
density dependencies parametrize physical effects from finite-range NN interactions in addition to the 3N contact
term [37].
Inspecting Fig. 3, we note that the quality of the fit to the charge radii varies with A: the charge radius of 16O

is slightly too large, while the charge radii of heavier nuclei are underestimated. This is evidence that the limited
spin-isospin dependence of the DDI (23), which only acts in the (S, T ) = (1, 0) channel, is insufficient. Explicit spin
and isospin degrees of freedom in the 3N interaction — as in the chiral 3N interaction, for instance — would lead
to non-vanishing DDI matrix elements in the other (S, T )-channels [38], and allow for a different scaling with the
particle number. Since we will be focusing on the calcium isotopic chain and selected tin isotopes in the remainder of
this work, we list two sets of DDI parameters in Tab. I which were optimized for the corresponding mass regions by
fitting the charge radii of 40Ca and 114Sn, respectively.
A serious issue emerges for the spin-orbit splittings, which are listed for various nuclei in Tab. II. Using just a

two-body SRG-evolved NN interaction with λ = 2.40 fm−1, the spin-orbit splittings are about 2–3 times as large
as values extracted from experiment. HF calculations for VSRG with λ = 1.78 and 2.02 fm−1 collapse and are not
included. The repulsive DDI stabilizes the HF(B) calculations and leads to a compression of the single-particle spectra,
but it results in a significant underestimation of the spin-orbit splittings. As a consequence, there is a shift in the
major shell closures: 48Ca, for instance, has a small non-vanishing neutron pairing energy because the 0f7/2 level lies

close to the pf major shell, while 120Sn is essentially a closed-shell nucleus because the 0h11/2 level is not shifted to
sufficiently low energies to produce the N = 82 major shell closure.
The resulting proximity of levels with ∆j = ∆l = 2 in the region of the Fermi surface favors strong quadrupole

interactions, and causes the nucleus to develop a deformation. In our spherical QRPA calculations, this instability
w.r.t. to quadrupole deformations is signaled by the lowest 2+ energy becoming purely imaginary, and we have to
discard results based on the unstable spherical ground-state configuration. The calcium isotopic chain is free of this
pathology, hence we focus on these isotopes in the following, and defer calculations for heavier isotopic chains to
a future publication. Since the present work sets the stage for the use of the chiral 3N interaction (or a density-
dependent variant), which contains additional spin-orbit and tensor terms (see e.g.[38, 41, 42]), we expect a significant
impact on the spin-orbit physics, but it remains to be seen whether the discussed problem can be resolved.

IV. GROUND-STATE PROPERTIES

Before we present results from our QRPA calculations, we briefly discuss the properties of the calcium ground
states upon which the QRPA is built. All results have been obtained with SRG-evolved Argonne V18 interactions,
supplemented by the adjusted DDI discussed in Sect. III. Odd nuclei have been treated in a self-consistent Equal
Filling Approximation (EFA) [43].
In Fig. 4, we summarize the HFB ground-state properties of the studied calcium isotopes. While the elimination

of short-range correlations via the SRG evolution yields bound nuclei for VSRG+DDI at the HFB level, ground-state
energies shown in Fig. 4a are underestimated by 4-6 MeV per nucleon, depending on the chosen λ. As discussed,
e.g., in [6], this is due to long-range correlations which are not taken into account by HFB, but can be recovered to a
large extent by low-order MBPT due to the perturbative character of the SRG-evolved NN interaction [7].
Figure 4b displays the charge radii, which are reasonably close to experimental values due to the fit of the DDI

discussed in Sect. III. Overall, our calculations fail to reproduce the pattern of the experimental charge radii between
40Ca and 48Ca, whose proper description requires the inclusion of effects beyond the mean-field (see, e.g., [44] and
references therein). For 40Ca and 48Ca, though, they are not far off.
In Figs. 4c and 4d, we show the experimental odd-even binding energy differences

∆(3) =
(−1)N

2
(E(N + 1)− 2E(N) + E(N − 1)) (25)

and the pairing energies (expressed in the canonical basis) [13]

Epair =
1

2

∑

µ

(2jµ + 1)∆µµuµvµ , (26)
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respectively. ∆(3), in particular, is sensitive to the single-particle structure of the HFB vacuum state near the Fermi
surface.
We find that the agreement with experimental values is reasonable in the range 16 ≤ N < 28, although the

staggering is less pronounced in our calculation, which is at least in part due to the lack of time-reversal symmetry
breaking in our EFA treatment of odd nuclei. The sharp jump in the ∆(3) at N = 20 is a signal of the major shell
closure, which leads to the expected collapse of HFB pairing in 40Ca. A similar jump is expected at the N = 28 shell
closure, but here the experimental data are not reproduced, and we note that the pairing energy does not vanish in
48Ca. A look at the canonical single-neutron energies shown in Fig. 5 helps to clarify this issue. In our calculation,
the spin-orbit splitting of the 0f levels in 48Ca is about half the experimental splitting. Consequently, the 0f7/2 level
lies close to the main pf -shell, and the density of unoccupied levels is sufficiently high to produce pairing. We also
note that the underestimation of the spin-orbit splittings is strongly isospin dependent, because the splittings in he
N = Z nucleus 40Ca are reproduced fairly well by comparison (also cf. Tab. II). As indicated in Sect. III, the issue
of missing spin-orbit strength is not limited to the calcium isotopic chain or specific sets of interaction parameters λ
and C3N , and it becomes an obstacle for QRPA calculations in heavier nuclei.
We conclude this section by mentioning that the present results for the odd-even binding energy differences are

compatible with those of “hybrid” studies where VSRG or Vlow-k are used as pairing interactions in conjunction with
phenomenological energy density functionals like SLy4 [46] or Gogny D1S [27]. The inclusion of the DDI overcomes the
low level density which obstructs pairing in HFB calculations when only similarity-transformed two-body interactions
are used [27], and brings the single-particle energies closer to EDF results. Since the DDI (23) vanishes in the pairing
channel by construction, the ∆(3) and pairing energies shown in Figs. 4c and 4d only probe the pairing properties of
VSRG, and we obtain magnitudes which are similar to the hybrid approaches, aside from issues with the systematics
due to the missing spin-orbit strength. It will be interesting to see how the situation changes once a consistent set
of SRG-evolved NN and 3N interactions is used in the calculation, because the latter will directly affect the pairing
channel.

V. NUCLEAR RESPONSE

A. General effects of the SRG Evolution

We first discuss the general effects of the SRG evolution on the nuclear response, using the isoscalar 0+ response
of 120Sn as an example. 120Sn is chosen because it has a richer single-particle structure around the Fermi surface
than the calcium isotopes, which facilitates the discussion, and because its ground state is stable against quadrupole
deformation in our calculations (cf. Sect. III).
In Fig. 6, we show the canonical single-neutron energies and the isoscalar monopole response function for VSRG+DDI

with the three parameter sets which have been optimized for the tin isotopic chain (cf. Tab. I). We note that the
shell structure of the single-neutron energies becomes more pronounced as λ is lowered. There are two distinct effects:
During the SRG evolution, sub-shells move closer together, while the gaps between major shells increase as the
SRG evolution renders the interaction increasingly non-local and thereby reduces the effective mass [6, 23, 27]. For
comparison, we have also calculated the single-neutron spectrum of 120Sn using the Gogny D1S functional. Except for
the underestimation of the 0g, 0h, and 0i spin-orbit splittings, the single-neutron spectra of the three VSRG+DDI and
D1S are rather similar for the levels around the Fermi surface. The similar level density for VSRG+DDI and for Gogny
D1S, which corresponds to an effective mass of about 0.7 times the bare nucleon mass, suggests that the inclusion
of the repulsive DDI compensates for the extremely low effective mass which is a common feature of low-momentum
interactions.
The isoscalar monopole (ISM) response functions displayed in Fig. 6 reflect the evolution of the single-particle

spectra with the λ. The significant fragmentation of the ISM strength distribution for λ = 2.40 fm−1 is reduced
notably due to the bunching of levels within the major shells as λ is lowered. At the same time, the gap between
major shells increases, leading to a shift of the strength distribution to higher energies. This shift to higher energies
competes with the attractive isoscalar residual interaction, which aims to shift the response to lower energies. To get
some insight into how the two effects depend on λ, we list the centroid energies for the unperturbed HF response
without the residual interaction, and the QRPA response in Tab. III. The integration intervals for the moments m0/1

have been chosen by inspecting plots of the response functions. In the HF case (not shown), the bulk of the ISM
strength lies between 10 and 30 MeV, with a tail containing a few percent of the energy-weighted sum rule extending
up to roughly 45 MeV. In the full QRPA calculation, the ISM strength is concentrated in a much smaller range from
10 to ∼ 25 MeV due to the attractive residual interaction (see Fig. 6), and the centroid lies 8.3 to 8.4 MeV below the
centroid of the unperturbed HF response for the three considered parameter sets. The uniformity of this difference in
the centroid energies suggests that there is only little change in the isoscalar residual interaction in the studied range
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of λ’s, and the positive shift due to the increase of the major shell gap is the dominant effect.
The ISM response for VSRG+DDI with λ = 1.78 fm−1 and Gogny D1S is rather similar. This can be seen as

confirmation of the effective low-momentum nature of the Gogny functionals. Furthermore, the similarity of the
response also shows that there is a decoupling between the static and collective dynamical properties of the nucleus,
because the HFB ground-state energies obtained with Gogny D1S are very close to experimental ground-state energies
in the tin isotopes, whereas VSRG+DDI underestimates the ground-state energies by several MeV per nucleon, strongly
depending on the SRG parameter λ. The ground-state energy is an absolute quantity, while excitations are relative
quantities that primarily depend on energy differences, and consequently, a simultaneous global shift of the levels
involved in any single-particle transition will not alter the excitation energy. Such a shift seems to account for the
bulk of the ground-state energy differences between VSRG+DDI and Gogny D1S.
The present findings are in concordance with previous RPA studies of closed-shell nuclei with UCOM interactions.

In Ref. [11], in particular, the RPA was formulated using the exact RPA ground state, and it was shown that the RPA
ground-state correlations have little impact on the response. The RPA ground-state energy, however, contains many-
body corrections [47], including second-order MBPT diagrams which recover much of the missing ground-state energy
due to the perturbative nature of SRG and UCOM interactions [6, 32]. These observations are further indications
that higher-order many-body corrections to the ground state are indeed small if SRG or UCOM interactions are used,
but a more detailed and quantitative study of this subject would be of great interest.
We conclude this section by investigating the effect of the SRG evolution on the energy-weighted sum rules (EWSRs).

For the isoscalar monopole and quadrupole channels, there are the well-known classical expressions (see e.g. [13])

SIS(E0) =
2~2e2

m

(
N〈r2n〉+ Z〈r2p〉

)
, (27)

SIS(E2) =
25~2e2

4πm

(
N〈r2n〉+ Z〈r2p〉

)
, (28)

where 〈r2n/p〉 are the intrinsic neutron and proton mean-square radii of the HFB solution, and for the dipole strength,

we have the Thomas-Reiche-Kuhn sum rule [13]

S(E1) =
~
2e2

2m

9

4π

NZ

A
. (29)

Eqs. (27) to (29) are derived by assuming that the interaction commutes with the transition operators, which is only
the case for local interactions without isospin exchange contributions. Thus, the deviation of the calculated energy-
weighted sum from the classical expressions is a measure for the size of momentum-dependent and isospin exchange
contributions in the employed VSRG+DDI.
In Fig. 7, we show the running energy-weighted sum in the isoscalar monopole and quadrupole (ISQ), and the

isovector dipole (IVD) channels. As discussed in Sect. II B, the latter also corresponds to the running energy-
weighted E1 strength at low momentum transfer. The running sums exhibit general features which reflect the findings
for the ISM response function shown in Fig. 6, i.e., as λ is lowered, the strength becomes less fragmented, causing
fewer jumps in Fig. 7, and the running starts at a higher excitation energy.
At excitation energies of ∼ 30 MeV, the isoscalar sum rules saturate, and Eqs. (27) and (28) are almost completely

exhausted. In general, the quadrupole response exhibits a much weaker λ-dependence than the monopole and dipole
response, which is presumably due to the surface excitation character of the former, while the latter are volume modes.
The total IVD sum exhibits the most pronounced λ-dependence of the three investigated cases. For λ = 2.40 fm−1,

the dipole EWSR is enhanced by 60% over the TRK value obtained from Eq. (29), and since strength is shifted to
momentum-dependent terms as λ is lowered, the enhancement increases to 70% for λ = 1.78 fm−1. While enhance-
ment factors vary strongly among the available Skyrme and Gogny functionals [1, 48–50], our less phenomenological
approach consistently favors a limited range of values close to the enhancement factors extracted from experimental
photoabsorption cross section data, which are 70-75% for A & 100 [51].

B. 0+ Channel

Having established the general effects of the SRG evolution on our QRPA results in the previous section, we now
discuss the response of the calcium isotopic chain to the transition operators defined in Sec. II B. Figure 8 shows the
isoscalar and isovector monopole response for selected calcium isotopes. Since the results for the three SRG parameters
are qualitatively similar, we only display the response for VSRG+DDI with λ = 2.02 fm−1 and C3N = 3.87 GeV fm6

(cf. Tab. I).
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The response exhibits the well-defined isoscalar giant resonance, which is found in the energy interval from 10 −
20 MeV in the light calcium isotopes, and shifted to slightly lower energies as N increases. In the isovector channel,
we observe a distinct giant resonance peak around 32 MeV in 40Ca, which fragments into a broad distribution with
growing neutron excess. Beyond the major shell closure in 40Ca, pronounced peaks start to emerge in a region around
10 MeV. For the lowest peak, in particular, the isoscalar and isovector response match closely in all isotopes up
to 60Ca, indicating that the response is strongly dominated by neutron transitions. As an illustrative example, we
show the proton and neutron transition densities of the three major isoscalar peaks in 50Ca in Fig. 9. For the
state at E = 9.352 MeV, the proton transition density δρp is negligibly small compared to the neutron transition
density δρn, and δρn extends far into the nuclear exterior. The state at E = 12.204 MeV is of transitory character
between the neutron-dominated low-lying state and the almost completely isoscalar Giant Monopole Resonance state
at E = 17.303, where δρp and δρn have similar extensions.
While the low-lying strength emerges naturally and becomes enhanced as we move towards the neutron drip line,

the existence of low-lying strength in 48Ca in our calculations is a result of the insufficient spin-orbit splitting of the
neutron 0f levels, which creates a major shell for 20 < N ≤ 40 and turns 48Ca into an open-shell nucleus (cf. Sect.
IV). The otherwise qualitatively similar results of the recent Skyrme QRPA survey by Terasaki and Engel [52] do not
exhibit a low-lying peak in 48Ca since the EDFs used in their approach produce the correct major shell closures at
N = 20 and 28. Furthermore, we observe an overall enhancement of the the low-lying excitations compared to Skyrme
QRPA, likely due to differences in the single-particle spectra. In the Skyrme QRPA calculations, roughly 10-15% of
the the isoscalar monopole EWSR are exhausted by states below 10 MeV for isotopes with N ≥ 30 (cf. Fig. 5 of Ref.
[52]), while we obtain a growing exhaustion between 10% in 50Ca and 20% in 60Ca in our calculations. Keep in mind,
however, that the details of the running energy-weighted sum depend on the SRG parameter λ, as discussed in Sect.
VA.
The upper panel of Fig. 10 shows the centroids of the ISM response for the three different sets of λ’s and C3N ’s.

The behavior of the centroid energies as a function of the neutron number is identical for all three VSRG+DDI, only
the energies themselves increase as λ is lowered, as discussed in Sect. VA. The centroids clearly reflect the shift of
the ISM strength to lower energies as the neutron excess grows. The trend from 36Ca to 40Ca indicates a similar shift
in proton-rich calcium isotopes.
In the lower panel of Fig. 10 we display the energies of the first excited 0+ states. We use the criterion introduced

by Terasaki et al. in [57] and discard states for which

∆A = 2
∑

ij

(
X2

ij − Y 2
ij

) (
u2
i − v2j

)
& 2 , (30)

because these states have pair-transfer character, and carry negligible strength from particle-hole excitations due to
the consistency of our QRPA framework. In the closed-shell nuclei 40Ca and 60Ca (which has a closed-shell structure
in our calculations), we find no low-lying 0+ state. In the case of 40Ca, experimental data suggest that this state is
intrinsically deformed [58] and can therefore not be described by the present spherical QRPA approach.
The degree of λ-dependence of the 0+ states varies with the considered isotopes, and appears to be connected to

the collectivity of each state. For the isotopes with 26 ≤ N ≤ 36, the collectivity of the 0+ states is enhanced by
pairing correlations, and their energies depend only weakly on λ in the studied parameter range. The weak variation
of the calculated 0+ energies with the neutron number is qualitatively compatible with the experimental 0+ energies
in the open-shell calcium isotopes between the physical major shell closures at N = 20 and N = 28. Thus, we expect
to reproduce the experimental trends with a realistic interaction which yields the correct spin-orbit splittings.

C. 1− Channel

In Fig. 11, we show the isoscalar and isovector dipole response of selected calcium isotopes for VSRG+DDI with
λ = 2.02 fm−1 and C3N = 3.87 GeV fm6. The isoscalar response has two major components which correspond to 1~ω
and 3~ω excitations, respectively. For N ≥ 20, these components are well-separated energetically by the isovector
giant dipole resonance (IVGDR), i.e., states lying between 15 and 20 MeV carry significant isovector dipole strength,
but only little isoscalar dipole strength. In 36Ca, however, the two states at 15.397 MeV and 20.414 MeV carry both.
Their proton and neutron transition densities are displayed in Fig. 12. We immediately note that the roles of protons
and neutrons are roughly reversed in the two states, while the densities of the states are structurally similar: one
density exhibits a pronounced peak near the surface, while the other is wide and flat. Due to the mismatched shapes
of δρn and δρp in the surface region, both states contribute significantly to the isoscalar and isovector response.
Returning to Fig. 11, we note that the isoscalar response is further split into two components in the two previously

identified regions. A low-lying peak around 10 MeV is almost completely produced by proton transitions in 36Ca and
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38Ca (not shown). In 40Ca, neutron transitions start to contribute about 30% of the state’s norm, making this mode
largely isoscalar [59], while beyond the N = 20 shell closure, neutrons completely dominate this lower portion of the
low-lying strength. The second peak at ∼ 13 MeV which emerges beyond N = 20 also contains proton contributions,
starting around 30−35% in 42Ca, and decreasing below 10% in 60Ca. The peaks grow more pronounced and eventually
overlap with growing neutron excess, and the centroid of their strength is shifted to lower energies.
In the high-lying region from 20 to 35 MeV, there is a very broad structure corresponding to the isoscalar giant

dipole resonance (ISGDR). While Fig. 11 suggests that there are two distinct groups of peaks, the states of both
groups contain balanced contributions from proton and neutron transitions, as expected for the ISGDR, and there
are no indications of major structural differences.
As already mentioned above, the isovector dipole response of all calcium isotopes exhibits the pronounced giant

dipole resonance (GDR) between 15 and 20 MeV, and the energies of the main resonance peaks agree reasonably
well with experimental values extracted from photoabsorption data [56]. The corresponding GDR centroid energies,
which are shown in Fig. 13, vary only weakly with N . The centroids exhibit the λ-dependence we expect from our
discussion in Sect. VA, i.e., the centroid energy increases as λ is lowered from 2.40 fm−1 to 1.78 fm−1.
With increasing neutron excess, the IVD response develops a pronounced low-lying peak structure below 10 MeV.

A similar but less pronounced peak is observed in the proton-rich nuclei 36Ca (cf. Fig. 11) and 38Ca (not shown).
The emergence of low-lying E1 strength, or pygmy dipole strength as it is usually called, is highlighted in Fig. 13 by
including the centroid energy for the total IVD strength up to 40 MeV rather than just the region of the GDR. It is a
robust feature under variations of the SRG parameter λ, but the details may differ because strength is shifted beyond
10 MeV as λ decreases.
For the low-lying E1 strength of 40Ca, 44Ca, and 48Ca, experimental data are available frommeasurements conducted

at the S-DALINAC [60]. In general our calculations overestimate the energy of the PDRs and tend to underestimate
the strength below 10 MeV. The overestimation of the states’ energy is ultimately in line with the conclusions from
other studies in the literature, namely that in order to properly describe the low-lying E1 strength one needs to go
beyond (Q)RPA and include particle-phonon coupling, as in, e.g., [60].
From 42Ca to 60Ca, states below 10 MeV carry between 2% and 4% of the E1 EWSR, corresponding to 4%-7% of

the TRK sum rule. The percentage of the sum rule increases smoothly with growing neutron excess, as expected at
the QRPA level [60]. Almost all of the low-lying states carry both isoscalar and isovector dipole strength. As indicated
in the discussion above, 70-80% of the norm of the low-lying states in 40Ca is made up of proton transitions, while
the low-lying states of the nuclei with N > 20 are completely dominated by neutrons, which contribute 95-99% of the
individual states’ norms. Further analysis also shows that typically 10-20 different transitions contribute 1% or more
each to the norm of each low-lying state, which confirms their collective nature, and supports their interpretation as
pygmy dipole modes. The proton and neutron transition densities of the strongest low-lying state in 44Ca which are
shown in Fig. 14 exhibit the pygmy mode characteristics: δρp and δρn are in phase at short ranges, and out of phase
just beyond the surface region of the nucleus, where δρn also has a pronounced neutron tail, in agreement with other
studies [61–63].

D. 2+ Channel

In Fig. 15, we show the isoscalar and isovector quadrupole response of selected calcium isotopes for VSRG+DDI
with λ = 2.02 fm−1 and C3N = 3.87 GeV fm6. We find the pronounced isoscalar giant quadrupole resonance (ISGQR)
between 15 and 20 MeV, which exhibits moderate fragmentation. The isovector response is very broad in comparison,
with the bulk of the strength residing in the IVGQR above 25 MeV.
In the upper panel of Fig. 16, we show the centroid energies of the ISGQR for the three studied SRG parameters.

While the centroids exhibit the same trends under variation of λ as the ISM and IVD centroids, we note that the
resulting change in energies is smaller, covering an interval of roughly 1 MeV compared to the ∼ 2 MeV range in the
other cases. This observation matches the reduced sensitivity of the ISQ EWSR to variations of λ discussed in Sect.
VA. We also note that contrary to the ISGMR and IVGDR cases, where we typically approach the experimental
centroid or peak energies from below as λ is lowered, we overestimate the experimental centroid energy of the ISGQR
in 40Ca already for λ = 2.40 fm−1.
Figure 15 exhibits prominent peaks at low energies, corresponding to the lowest 2+ states of the respective nuclei.

In the lower panel of Fig. 16 we show the energies of these states, which have been distinguished from states with
pair-transfer character using the criterion (30) (cf. Sect. VB). A recent survey using a spherical Skyrme QRPA
approach can be found in [57]. Similar to the first excited 0+ states, the lowest 2+ states are insensitive to variations
in the SRG parameter λ, but for the latter, this also holds in the isotopes next to the major shell closures (cf. Fig.
10). In 40Ca and 60Ca, we do not find 2+ states below 10 MeV. The absence of the experimentally observed level in
40Ca suggests that this state has a structure which cannot be described properly by our spherical QRPA.
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We find reasonable agreement between our results and the experimental 2+ energies in the open-shell calcium
isotopes. In semi-magic spherical open-shell nuclei, the 2+ states lie at nearly constant energies along isotopic chains
due to pairing correlations [64]. In our calculations, all isotopes from 42Ca to 58Ca exhibit this characteristic behavior
because the insufficient spin-orbit splitting of the 0f levels creates a major shell with 20 < N ≤ 40. Consequently,
we do not reproduce the increased experimental 2+ energies in 40Ca and 48Ca, which signal the natural major shell
closures, nor the experimentally observed level at E = 2.563 MeV in 52Ca, which has been tentatively identified as a
2+ state and whose increased energy is interpreted as a sign of an enhanced 1p3/2 sub-shell closure [65].
We conclude our discussion of the quadrupole response by focusing on the peak near 10 MeV, which emerges in the

quadrupole strength distributions of neutron-rich calcium isotopes (cf. Fig. 15). All of the discrete states between 8
and 12 MeV contributing to this peak carry isoscalar and isovector strength in almost equal amounts because they are
dominated by neutron transitions. They are also collective, receiving significant contributions from about 10 different
transitions each, suggesting that they can be interpreted as pygmy quadrupole modes, whose existence was recently
proposed in [66].
In Fig. 17, we compare the transition densities of the strongest 2+ state from the peak region to those of the

main ISGQR state in 54Ca. The transition densities of the ISGQR are in phase up to ∼ 7.5 fm, and have a similar
magnitude. Their extrema are located within 1 fm of the calculated point-nucleon radius of 54Ca. The proton
transition density of the pygmy mode has a very small amplitude but similar extension to that of the ISGQR. The
neutron transition density on the other hand, extends much further, and the bulk of its contribution to the transition
operator is generated at much larger distances than for the ISGQR state, which supports its interpretation as a
neutron-skin excitation.

VI. CONCLUSIONS

We have developed a fully consistent QRPA framework for arbitrary NN interactions, represented by their two-
body matrix elements, as well as 3N contact interactions via equivalent linearly density-dependent interactions. We
use an intrinsic Hamiltonian and treat the Coulomb interaction exactly. The QRPA is built on the HFB ground states
obtained with the code described in [27]. Since we do not truncate the QRPA configuration space and use the same
Hamiltonian in the HFB and QRPA calculations, we achieve an excellent decoupling of the spurious strength.
In the present work, we have employed our QRPA framework to study the nuclear response using NN interactions

derived from Argonne V18 by means of the Similarity Renormalization Group, supplemented by a density-dependent
interaction whose strength C3N is fit to the charge radii of closed-shell nuclei. By refitting C3N for each value of the
SRG parameter λ, we have been able to absorb the effect of the SRG evolution on the charge radii at the HFB level.
Although the HFB ground-state energy strongly depends on λ, and binding energy on the order of 4 − 6 MeV

per nucleon is missing, the theoretical single-particle spectra around the Fermi surface are reasonable, aside from
the underestimation of the spin-orbit splittings, which indicates the need for additional spin-orbit strength from the
3N interaction. Experimental odd-even binding energy differences, the analogs of pairing gaps in finite nuclei, are
reasonably close to experimental values. Likewise, we obtain reasonable properties for the collective dynamics of the
studied nuclei.
In the nuclear response, we have identified two basic effects of the SRG evolution: the response is shifted to slightly

higher energies as λ is lowered, plausibly because interaction strength is shifted to momentum-dependent terms in
the interaction, resulting in a reduction of the effective mass, and an increased spreading of the major shells in the
single-particle spectrum. At the same time, the levels within a major shell are bunched closer together, resulting
in less fragmentation at the (Q)RPA level. The important energy-weighted sum rules are satisfied for the studied
SRG interactions, and exhibit only weak dependence on the SRG parameter λ. Interestingly, we found that the
enhancement of the isovector dipole EWSR over the classical Thomas-Reiche-Kuhn value seems to be consistently
close to experimental data, whereas the theoretical values strongly depend on the used EDF in Skyrme of Gogny
(Q)RPA studies.
Our results for the monopole, dipole, and quadrupole response of the calcium isotopes are comparable to existing

studies based on phenomenological EDFs. We have obtained reasonable centroid energies for the important giant reso-
nances, and identified multiple low-lying states in the dipole and quadrupole response which exhibit the characteristics
of Pygmy modes. In accordance with other studies in the literature, the energies of these states are overestimated at
the (Q)RPA level, illustrating the need to include many-body effects like quasiparticle-phonon coupling to achieve a
proper description of low-lying strength.
The next major development stage of our QRPA framework will be the switch to SRG-evolved chiral NN and 3N

interactions. Since the latter contain spin-orbit and tensor structures, we expect an impact on the the issue of the
underestimated spin-orbit splittings, although it remains to be seen whether the problem will be fixed. Realistic spin-
orbit splittings are essential to allow studies of heavier isotopic chains, where the ground states develop a deformation



13

for the currently used VSRG+DDI, causing the breakdown of the spherical QRPA.
The extension of our HFB+QRPA framework to deformed nuclei is an obvious direction for further research, but

the treatment of realistic NN and 3N interactions in deformed bases will require significant work, particularly on the
transformation between relative partial waves and uncoupled deformed single-particle states. Besides the treatment
of deformation, we are looking into extensions towards more complicated configurations like 4qp excitations, i.e., a
Second QRPA analogous to the Second RPA described in [12], and quasiparticle-phonon coupling.
Our initial QRPA survey of the calcium isotopes has indicated interesting structural features like low-lying modes,

including the prominent 1~ω peak in the isoscalar dipole response, which was studied for closed-shell nuclei in [59].
More detailed studies of the physics of these modes in open-shell nuclei will be the subject of research in the near
future.
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Appendix A: Explicit Form of the QRPA Matrices

The matrices A and B are given by (µ = (nµlµjµτµ))

AJ
µµ′,νν′ =

1√
1 + δµµ′

1√
1 + δνν′

{
H11

µνδµ′ν′ +H11
µ′ν′δµν

− (−1)jµ+j
µ′−J

(
H11

µ′νδµν′ +H11
µν′δµ′ν

)

+ F (µµ′νν′; J) (uµvµ′uνvν′ + (u ↔ v))

− (−1)jν+j
ν′−JF (µµ′ν′ν; J) (uµvµ′vνuν′ + (u ↔ v))

+G(µµ′νν′; J) (uµuµ′uνuν′ + (u ↔ v))
}

(A1)

and

BJ
µµ′,νν′ =

1√
1 + δµµ′

1√
1 + δνν′

×
{
F (µµ′νν′; J) (vµuµ′uνvν′ + (u ↔ v))

− (−1)jν+j
ν′−JF (µµ′ν′ν; J) (uµvµ′uνvν′ + (u ↔ v))

−G(µµ′νν′; J) (uµuµ′vνvν′ + (u ↔ v))
}
. (A2)

The single-quasiparticle term H11
µµ′ reads

H11
µν = (uµuν − vµvν)(hµν − λδµν) + (uµvν + vµuν)∆µν , (A3)

where λ is the chemical potential (separate for neutrons and protons),

hµµ′ =

(
1− 1

A

)
tµµ′ +

∑

ν

(2jν + 1)v̄µνµ′νv
2
ν (A4)

is the particle-hole field, and

∆µµ′ =
1

2

∑

ν

(2jν + 1)v̄µµ′ννuνvν (A5)
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the pairing field in the canonical basis representation. Note that both h and ∆ are diagonal in l and j and independent
of magnetic quantum numbers due to parity and spherical symmetry, and the two-body matrix elements v̄µµ′νν′

contain all two-body terms of the Hamiltonian, i.e., nuclear and electromagnetic interactions, as well as the two-body
center-of-mass correction [16, 27].
We adopt the notation of [18] for the particle-hole and particle-particle channel matrix elements, which are given

by

F (µµ′νν′; J) =
∑

J′

(−1)jµ′+jν+J′

(2J ′ + 1)

{
jµ jµ′ J
jν jν′ J ′

}

× 〈µν′; J ′| v |µ′ν; J ′〉 (A6)

and

G(µµ′νν′; J) = 〈µµ′; J | v |νν′; J〉 . (A7)

As stated in Sect. II A, the two-body matrix elements are antisymmetrized but not normalized.

Appendix B: Density-Dependent Interaction & Rearrangement Terms

The contribution of the density-dependent interaction (23) to the energy is given by

Eρ =
〈Ψ|V [ρ] |Ψ〉

〈Ψ|Ψ〉 =
〈Ψ|

∑
i<j vij [ρ] |Ψ〉
〈Ψ|Ψ〉

= C3Nπ

∫
dr r2ρ(r)ρn(r)ρp(r) (B1)

where

ρτ (r) =

τ=τµ∑

µ

2jµ + 1

4π
v2µ|Rµ(r)|2 , (B2)

Rµ(r) are the canonical wavefunctions, and the total density is

ρ(r) = ρn(r) + ρp(r) . (B3)

Note that there is no contribution to the pairing energy, since the interaction only acts in the (S, T ) = (1, 0) channel,
i.e., like-particle matrix elements vanish.
Variation of Eq. (B1) w.r.t. to the density matrix yields the particle-hole field which has to be added to hµµ′ (Eq.

(A4)):

Γµµ′ =
C3N

4

∫
dr r2R∗

µ(r)ρ(r)
[
ρ(r) − ρτµ(r)

]
Rµ′(r)

+
C3N

4

∫
dr r2R∗

µ(r)ρp(r)ρn(r)Rµ′ (r) , (B4)

where the second line is the rearrangement term.
In the QRPA matrices, the DDI contributes the matrix elements

〈µmµνmν | vph[ρ] |µ′mµ′ν′mν′〉 = ∂2Eρ

∂ρµ′m
µ′µmµ

∂ρν′m
ν′νmν

(B5)

to the particle-hole interaction [33], which can be plugged into Eq. (A6). Denoting the normal and rearrangement
matrix elements F0 and F1, respectively, one obtains for identical isospins (τ ≡ τµ = τµ′ = τν = τν′ )

F0(µµ
′νν′; J) = 0 , (B6)
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and

F1(µµ
′νν′)

= C3N
ĵµĵµ′ ĵν ĵν′

32πĴ2
〈jµ 1

2jµ′ − 1
2 |J0〉〈jν 1

2jν′ − 1
2 |J0〉

× (−1)jµ−jν
(
1 + (−1)lµ+l

µ′+J
) (

1 + (−1)lν+l
ν′+J

)

×
∫

dr r2Rµ(r)Rµ′ (r)Rν(r)Rν′ (r)
[
ρ(r) − ρτ (r)

]
. (B7)

If the isospins are only pairwise identical (τµ = τµ′ 6= τν = τν′),

F0(µµ
′νν′; J)

=
C3N

12
K(µµ′νν′; J)(−1)jµ+jν+j

µ′+j
ν′

×
{
〈jµ 1

2jµ′ − 1
2 |J0〉〈jν 1

2jν′ − 1
2 |J0〉

× (−1)jµ′−j
ν′

(
(−1)J+lν+l

ν′ + 2
)

+ 〈jµ 1
2jµ′

1
2 |J1〉〈jν 1

2jν′
1
2 |J1〉(−1)lµ′+l

ν′

}
, (B8)

and

F1(µµ
′νν′)

=
C3N

16
〈jµ 1

2jµ′ − 1
2 |J0〉〈jν 1

2jν′ − 1
2 |J0〉

× (−1)jµ−jν
(
1 + (−1)lµ+l

µ′+J
) (

1 + (−1)lν+l
ν′+J

)

×K(µµ′νν′; J) , (B9)

where the radial integral is given by

K(µµ′νν′; J)

=
ĵµĵµ′ ĵν ĵν′

4πĴ2

∫
dr r2Rµ(r)Rµ′ (r)Rν (r)Rν′ (r)ρ(r) . (B10)

We have confirmed that these matrix elements match the more general versions derived in [33] analytically and
numerically.
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FIGURES

FIG. 1. (Color online) Number operator response for non-spurious monopole states in 56Ca (see text). (VSRG+DDI with
λ = 2.02 fm−1, C3N = 3.87 GeV fm6.)

FIG. 2. (Color online) Isoscalar (left) and isovector (right) dipole strength distributions in 56Ca with ( ) and without
( ) c.o.m. correction. The discrete strength distributions have been folded with a Lorentzian of width Γ = 1.0MeV. In
the isoscalar channel, the spurious state has been removed explicitly from the response of the uncorrected operator (see text).
(VSRG+DDI with λ = 2.02 fm−1, C3N = 3.87 GeV fm6.)

FIG. 3. (Color online) Ground-state energy per nucleon and charge radii of closed shell nuclei for VSRG+DDI with
(λ[ fm−1], C3N [ GeV fm6])= (2.40, 2.94) (●), (2.02, 3.87) (�), and (1.78, 4.41) (�). Experimental values [34, 35] are indicated
by black bars.

FIG. 4. (Color online) Ground-state properties of the calcium isotopes for VSRG+DDI with (λ[ fm−1], C3N [ GeV fm6])= (2.40,
2.94) (●), (2.02, 3.87) (�), and (1.78, 4.41) (�): (a) ground-state energies per nucleon, (b) charge radii, (c) odd-even mass
differences, and (d) pairing energies. Experimental values [34, 35] are indicated by black bars or crosses.

FIG. 5. (Color online) Canonical neutron single-particle energies in 40Ca and 48Ca for VSRG+DDI with λ = 2.02 fm−1, C3N =
3.87GeV fm6. Experimental values have been taken from [39, 40].

FIG. 6. (Color online) Canonical single-neutron energies (left) and isoscalar monopole response (right) of 120Sn for VSRG+DDI
with (λ[ fm−1], C3N [ GeV fm6])= (2.40, 3.42) ( ), (2.02, 4.35) ( ), and (1.78, 4.95) ( ). Results obtained with
Gogny D1S are included for comparison ( ), and the arrow marks the experimental centroid energy [45]. The discrete ISM
strength distributions have been folded with a Lorentzian of width Γ = 1 MeV.

FIG. 7. (Color online) Running energy-weighted sums of 120Sn for VSRG+DDI with (λ[ fm−1], C3N [ GeV fm6])= (2.40, 3.42)
( ), (2.02, 4.35) ( ), and (1.78, 4.95) ( ). The light gray dashed lines indicate the values of the classical sum rules
(see text).

FIG. 8. (Color online) Isoscalar ( ) and isovector monopole response ( ) of selected calcium isotopes for VSRG+DDI
with (λ[ fm−1], C3N [ GeV fm6])= (2.02, 3.87). The discrete strength distributions have been folded with a Lorentzian of width
Γ = 1 MeV.
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FIG. 9. (Color online) Proton ( ) and neutron ( ) transition densities for the major monopole peaks in 50Ca. The
light gray dashed lines indicate the calculated point-nucleon root-mean square radius.

FIG. 10. (Color online) ISM centroids (top) and energies of the first excited 0+ states (bottom) in the calcium isotopic chain,
for VSRG+DDI with (λ[ fm−1], C3N [ GeV fm6])= (2.40, 2.94) (●), (2.02, 3.87) (�), and (1.78, 4.41) (�). Moments of the strength
distribution were calculated in the energy interval 5 − 40 MeV. Experimental data are indicated by black symbols: centroids
for the 40Ca giant monopole resonance were taken from the two analyses in [53], 0+ energies from [54].

FIG. 11. (Color online) Isoscalar ( ) and isovector dipole response ( ) of selected calcium isotopes for VSRG+DDI
with (λ[ fm−1], C3N [ GeV fm6])= (2.02, 3.87). The discrete strength distributions have been folded with a Lorentzian of width
Γ = 1 MeV, and the isovector strength distribution has been scaled by a factor 250 for visibility. The arrows indicate the main
giant dipole resonance peaks from photo-absorption cross section data [55, 56].

FIG. 12. (Color online) Proton ( ) and neutron ( ) dipole transition densities for selected states in 36Ca (see text).
The light gray dashed lines indicate the calculated point-nucleon root-mean square radius.

FIG. 13. (Color online) Centroids of the IVD response in calcium isotopes for VSRG+DDI with (λ[ fm−1], C3N [ GeV fm6])=
(2.40, 2.94) (●), (2.02, 3.87) (�), and (1.78, 4.41) (�). Moments mi were calculated in the energy intervals 10 − 40 MeV
( ) and 0 − 40 MeV( ), respectively. Experimental GDR peaks from photoabsorption data [55, 56] are indicated by
(✚).

FIG. 14. (Color online) Proton ( ) and neutron ( ) dipole transition densities for the low-lying state at E = 7.787 MeV
in 44Ca. The light gray dashed line indicates the calculated point-nucleon root-mean square radius.

FIG. 15. (Color online) Isoscalar ( ) and isovector quadrupole response ( ) of selected calcium isotopes for VSRG+DDI
with (λ[ fm−1], C3N [ GeV fm6])= (2.02, 3.87). The discrete strength distributions have been folded with a Lorentzian of width
Γ = 1 MeV. The arrow indicates the experimental centroid from [53].

FIG. 16. (Color online) ISQ centroids (top), and energies of the first 2+ states (bottom) in the calcium isotopic chain, for
VSRG+DDI with (λ[ fm−1], C3N [ GeV fm6])= (2.40, 2.94) (●), (2.02, 3.87) (�), and (1.78, 4.41) (�). Moments of the strength
distribution were calculated in the energy interval 8−30 MeV. Experimental data are indicated by black symbols: the centroid
for the 40Ca giant quadrupole resonance was taken from [53], 2+ energies from [54]. The 2+ assignment is still tentative for
the level in 52Ca.

FIG. 17. (Color online) Proton ( ) and neutron ( ) quadrupole transition densities for a Pygmy (top) and a GQR
mode (bottom) in 54Ca. The light gray dashed lines indicate the calculated point-nucleon root-mean square radius.

TABLES

λ[ fm−1] C3N (λ)[GeV fm6]

1.78 4.41

Ca 2.02 3.87

2.40 2.94

1.78 4.95

Sn 2.02 4.35

2.40 3.42
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TABLE I. Running coupling strength C3N (λ) for various values λ used in this work (see text).

Level (λ[ fm−1], C3N [ GeV fm6]) Exp.

(2.4, -) (2.4, 2.94) (2.02, 3.87) (1.78, 4.41)
16O π 0p 9.61 3.15 3.12 3.02 6.32

ν 0p 10.04 3.18 3.14 3.05 6.18
40Ca π 0d 15.19 4.21 4.14 4.04 6.00

π 0f 12.07 3.78 4.10 4.18 4.95

ν 0d 15.95 4.27 4.19 4.08 6.00

ν 0f 14.90 4.39 4.54 4.53 4.88
48Ca ν 0f 15.96 3.51 3.46 3.36 8.97
100Sn π 0g 16.46 2.45 2.43 2.39 6.82

ν 0g 17.63 2.03 1.99 1.96 7.00
132Sn π 0g 15.61 1.82 1.71 1.67 6.08

ν 0h 20.12 2.98 2.89 2.48 6.53

TABLE II. Proton (π) and neutron (ν) spin-orbit splittings in MeV for different interaction parameters (λ,C3N ), compared to
experimental values [39, 40].

m1/m0 [MeV]

λ[ fm−1] C3N (λ)[GeV fm6] HF QRPA

1.78 4.95 23.5 15.2

2.02 4.35 22.5 14.2

2.40 3.42 21.3 12.9

TABLE III. Centroid energies of the isoscalar monopole strength distribution in 120Sn for different VSRG+DDI. The energy
integration intervals for m0/1 were 5− 50 MeV for the unperturbed HF response and 5− 25 MeV for QRPA (see text).
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