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The change in the structure of the collective levels with spin angular momentum in atomic nuclei 
is often expressed in terms of the classical concepts of the kinematic and the dynamic moments of 
inertia varying with spin. For the well deformed even-even nuclei, the kinematic moment of inertia 
increases with spin up to 10-20%, at say Iπ=12+.  However, for the shape transitional nuclei, or 
almost spherical nuclei, it increases with spin much faster. The pitfalls of using the rotor model 
form of kinematic moment of inertia in such cases are pointed out here. Alternative methods of 
extracting the nuclear structure information are explored. The important role of the ground state 
deformation is illustrated. The use of the power index formula for evaluating the effective moment 
of inertia, free from the assumption of the rotor model, is described.  
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I. INTRODUCTION  

      In the geometric approach of the Bohr collective Hamiltonian, nuclei are classified as 
spherical vibrators or axially symmetric deformed rotors [1]. Small deviations from the 
two limiting symmetries are treated by perturbation methods. However, there are many 
nuclei that lie far from these two symmetry limits with 2.0<R4/2<10/3, for which a 
perturbation treatment is not valid. Various microscopic methods have evolved to treat 
these nuclei [2-4].  Also algebraic models such as various versions of the Interacting 
Boson Model [5] have been developed to understand the nuclear structure of these nuclei. 

      The work with heavy ion beams enabled the excitation of the medium mass nuclei to 
very high angular momentum. With the advent of large gamma-detector arrays in fission 
work [6], detailed studies of the high spin states of medium-mass, neutron-rich nuclei 
have become possible. The level energies of the ground band of even-even deformed 
nuclei are expressed through the quantum mechanical rotor formula.  

E(I)= ℏ2 I(I+1)/2J,              (1)  
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I=0, 2, 4, 6, … and J is the moment of inertia (MoI) of the nucleus. If the deformation of 
the nucleus stays constant with spin (for brevity here we use spin to mean spin angular 
momentum), one would obtain a horizontal line for J versus spin I. The MoIs as obtained 
from Eq. (1) for the ground band of even-even nuclei, are smaller by a factor of 2 to 3 as 
compared to the rigid body value [1]   

Jrigid = (2/5) AMR2 (1 + (1/3)β).           (2)  

Here M is the nucleon mass, A is the mass number, R is the nuclear radius, and β is the 
quadrupole deformation (see Fig 4.12 p. 74 [1]). The reduction in the value of J is due to 
the pairing correlations among the identical nucleons, especially near the Fermi surface. 
Using the cranking formalism with pairing included, one can reproduce the experimental 
MoIs of the ground states [1]. 

      For β-soft nuclei, there is some increase in the deformation with spin due to 
centrifugal stretching (CS). The coriolis anti-pairing (CAP) effect also increases the MoI 
with spin.  For a good rotor, at Iπ=10+ there may be a 10-15% change in β for a nucleus 
of A = 160 [7].  

      This deviation from the rotor formula (1) may be expressed by I(I+1) term 
expansion:  

E(I) = AI(I+1) + B[I(I+1)]2.            (3)  

Even in a well-deformed nucleus like 172Hf, a failure of the two-term expression for Iπ 
>10+ was noted (see Fig.4.11 in Ref. [1]). In Fig. 4.11(b), a plot of 2J versus (ħω)2, a fast 
increase in the MoI beyond 10+ was observed [1]. 

 

II. VARIATION OF MoI AT HIGH SPIN 
A. The kinematic and dynamic moments of inertia 

      For the ground band of well-deformed even-even nuclei, one can express the MoI, 
also called the kinematic (or kinetic) MoI, directly in terms of Eγ (I→I-2):  

      J(1) = ℏ (2I-1)/Eγ (I→I-2).           (4)  

In the γ-spectrum, one expects to observe a series of equi-spaced lines that form a 
rotational spectrum. Slight deviations from this rule commonly occur which is due to the 
slight compression of the energy levels. In the spectrum of cascade γ-rays, the spacing 
between the consecutive γ-ray peaks, is used to define the dynamic moment of inertia J(2) 
through the expression  
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J (2) = 4/(Eγ1 - Eγ2).              (5)  

Here Eγ1=E(I)-E(I-2), and Eγ2=E(I-2)-E(I-4). Thus the kinetic and dynamic moments of 
inertia are used to study the dependence of nuclear structure on the spin I or the rotational 
frequency ω or ω2. 

      In some nuclei, at high spin a break in the smooth curve of J versus spin I was 
observed. This was ascribed to the occurrence of a band crossing [8] of the ground-band 
by a S-band, which had a different moment of inertia J [8]. When the MoI was plotted 
against the rotational frequency ω, or ω2, where ħω=[E(I→I-2)]/2, a back bending was 
exhibited at this point. This may also be due to the collapse of pairing [9].  The 
phenomenon of rotation alignment (RAL) may also occur, giving rise to the back bending 

[10]. 

 

B. Moment of inertia anomaly 
      In the present work we point out the possible anomalies, if such rotational expressions 
of J(1) and J(2) are used for the shape transitional nuclei. For example, take the extreme 
case of a nearly spherical nucleus. Its energy levels in the ground band would be almost 
equi-spaced. For the intra-band transition γ-rays, this would yield the Eγ (I→I-2) of 
almost equal value and ΔEγ would be almost zero. 

      Then with increasing spin, the numerator in Eq. (4) would go on increasing with spin 
I, to give an ever-increasing moment of inertia J(1). Obviously with a uniform level 
structure, such increasing moment of inertia has no physical sense. Also this would yield 
a very large dynamic moment of inertia, which again leads us away from a realistic 
understanding. 

      A similar problem arises with the use of rotational frequency, which is ≈ half of Eγ, 
while for vibrational levels it is just equal to Eγ itself. Obviously, this situation arises 
purely because of the use of a pure rotor expression for the transitional nuclei. 

      In general, the anomaly in the use of the kinematic MoI expression (4) is that the 
numerator is from the pure rotor expression while the denominator comes from the 
experiment which may increase slowly for the transitional nuclei, so that J(1) increases 
continuously, even when there is no change in the structure of the nucleus. The increase 
in J(1) is merely arithmetic. The slope of J(1) expresses the sphericity of the nuclear core, 
and so also the magnitude of the dynamic moment of inertia. The slope is zero for a pure 
rotor and 90° for a vibrator. No other parameter, such as quadrupole deformation β or 
absolute E2 matrix elements, exhibit such an increase with spin of this magnitude. 

      The problem is really complex, since one does not have a sharp dividing line between 
the two limiting symmetries, the spherical harmonic vibration and the pure rotor. The 
value of E(2+) varies continuously from a certain maximum to a certain minimum of 70-
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80 keV for rare-earths. The energy ratio R4/2=E(4)/E(2) also varies from 2.0 to 3.33 
continuously. Casten et al. [11] have noted that the ratio 0.70 x B(E2, 4-2)/B(E2,2-0) 
varies between 1.0 for the Rotor Model to 1.40 in the Vibration Model and it varies 
smoothly over the rigid to the soft rotor path.  

      On the spherical-deformed path, for R4/2≥2.2 the nuclear structure may change from 
the particle like character to the collective anharmonic vibrator. Recently, Iachello [12] 
suggested an X(5) critical symmetry point on this path which has an analytical solution 
and for which R4/2 ≅3.0. Above this, the nucleus may be considered as a good rotor and 
below this as a shape transitional soft rotor. Based on this division, we shall illustrate that 
the validity of expressions (4) and (5) is reasonable only above the X(5) limit. But for the 
shape transitional nuclei below X(5), the herein stated anomaly arises. Here we discuss 
only the axially symmetric deformed nuclei.  

      Regan et al. [13] also recognized the pitfalls (as discussed above) in the use of Eq. 4. 
They suggested the use of an alternative formula, called E-GOS defined as Eγ (I→I-2)/I 
and illustrated its use to distinguish between a vibrational and a rotational band. This 
expression was claimed to be free from the assumption of a shape model. But in effect it 
is essentially just the inverse of the expression in (4). Here we suggest two different 
approaches to resolve this anomaly in Sec. III and IV 

.  

III. ROLE OF THE SHAPE OF THE GROUND STATE 

A. The Mallmann plots 

      Mallmann [14] noted that the ratios RI/2=E(I)/E(2) are related to R4/2, so that if one 
knows R4/2 for a given nucleus, one can determine other energy ratios RI/2 of higher 
levels. If one writes a composite expression of rotor energy and vibrational energy:  

      E(I) = a I(I+1) + b I             (6)  

for the total energy, it yields a linear relation of RI/2 versus R4/2.:  

   RI/2=(R4/2) I(I-2)/8 - I(I-4)/4.           (7)   

In Fig. 1, the ratio of the two sides of the two similar triangles also yields this. The Eq. 7 
can be used [15] to derive the kinematic MoI for each I from the given R4/2. We may call 
it the linear kinetic MoI. Based on the linear Mallmann plot, the variation of E(I), Eγ, JI

(1) 
and JI

(2), with R4/2 can be evaluated. For a few R4/2 values, these values are illustrated in 
Table I. 

      Here we note that the slope of variation of the kinetic moment of inertia JI
(1) versus 

spin I based on the linear Mallmann plot is dependent on the energy ratio R4/2. With 
increasing spherical content and the decreasing R4/2 the slope of the kinetic MoI versus 
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spin increases. For R4/2=3.0, 2.5 and 2.25, the linear MoI rises from 3.0 to 4, 7 and 12 
respectively at 18+ (see Fig. 2).  

TABLE I. The values of RI/2 or E(I),  relative to E(2), given by Eq. 7. 

_____________________________________________________________- 

R4/2   Spin I   2  4  6    8  10  12  14  16  18 

________________________________________________________________ 

  3  E(I)   1  3  6  10  15  21  28  36  45 

       Eγ  1  2  3  4  5  6  7  8  9 

   Eγ
I+2-Eγ

 I  1  1  1  1  1  1  1  1 

       JI
(1)   3  3.5  11/3  15/4  19/5  23/6  27/7  31/8  35/9 

       JI
(2)   4  4  4  4  4  4  4  4  4 

   2.5  E(I)  1  2.5  4.5  7  10  13.5  17.5  22  27  

       Eγ  1  1.5  2  2.5  3  3.5  4  4.5  5 

       Eγ
I+2-Eγ

I  0.5   constant 

       JI
(1)   3  14/3  11/2  6  19/3  46/7  54/8  62/9  7 

       JI
(2)   8      constant 

 2.25  E(I)  1  2.25  3.75  5.5  7.5  9.75  12.25  15.0  18 

       Eγ  1  1.25  1.50  1.75  2  2.25  2.5  2.75  3 

       Eγ
I+2-Eγ

I  0.25   constant 

       JI
(1)  3  5.6  7.3  8.6  9.5  10.2   10.8   11.3 11.7 

       JI
(2)    16   constant 

 ___________________________________________________________________ 
  

      Since the actual data points deviate from the linear Mallmann plot, the linear 
kinematic moment of inertia values would change slightly. The difference between J(1)

expt 
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and J(1)
lin represents the effect of the rotation-vibration interaction, which increases with 

spin. Only these differences represent the structural changes with spin. The slope of the 
linear MoI curve is a measure of the sphericity of the nuclear core in the ground state 
itself (see Fig. 2), and it overlaps the slope of J(1)

expt at the lower spin. 

      For the linear relation assumed in Eq. (7), the dynamic moment of inertia JI
(2) stays 

constant for all spins I, but this constant value is dependent on R4/2 and increases with 
decreasing R4/2. For R4/2=3.0, 2.5 and 2.25 the dynamic MoI assumes a constant value of 
4, 8 and 16 respectively (energies expressed in units of E(2+) (Table I). The minimum 
value of the dynamic moment of inertia is 3 units for the pure rotor. 

 

B. Illustration of real cases 
Zhu et al. [16] extended the yrast spectra of Ba, Ce and Nd isotopes (N>82) to 

high spin (Iπ ≤18+) and studied the variations in their MoIs with spin. In Table II we 
present these data for three Nd isotopes and 150Sm with R4/2 ranging from 3.27 to 2.32. 
The level energies and kinematic MoI J(1)

expt as obtained from Eq. (4), using Eγ, are listed 
in the first two rows. The third row gives the linear kinematic MoI J(1)

lin as obtained 
through Eq. (7). The differences in the two are given in the 4th row.  

 TABLE II. The kinematic moment of inertia, using Eγ (expt.) and from RI/2.(MeV-1). 

________________________________________________________________ 

Isotope   R4/2  2+   4+   6+   8+   10+   12+   14+  16+  

_________________________________________________________________ 

152Nd (R4/2=3.27) 

EI    72.4  236.2  483.6  805.3  1194.8 1646.8 2157.7 2720.3 

J (1).    41.44  42.74  44.46  46.63  48.78  50.88  52.85  55.18 

lin MoI  41.44  42.74  43.10  43.28  43.38  43.45  43.49  43.53 

Diff.    0  0  1.36  3.35  5.40  7.44  9.36  11.57 

150Nd (2.94) 

EI    129.7  380.9  719.5  1128.4  1597.2 2117.3 2679.5 3277.5 

J (1).    23.13  27.87  32.49  36.68  40.53  44.18  48.07  51.84 
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Lin MoI.  23.13  27.87  29.51  30.35  30.86  31.20  31.64  31.3 

Diff.    0  0  2.97  6.33  9.67  12.98  15.63  20.21 

148Nd (2.50) 

E(keV)   301.4  752.0  1279.8 1855.6 2471.6 3107.4 

J (1).    9.95  15.53  20.84  26.05  30.84  36.16 

Lin MoI  9.95  15.53  18.34  20.03  21.15  21.96 

Diff.    0  0  2.5  6.02  9.69  14.20 

150Sm (2.316) 

E(keV)   333.9 773.4 1278.9 1837.0 2432.0 3048.0 3646.0 4306.0 

J (1).    9.0  15.93  21.76  26.88  31.93  37.34  45.15  46.97 

Lin MoI  9.0  15.93  20.2  23.1  25.1  26.7  27.9  28.9 

Diff.    0  0  1.6  3.8  6.8  10.7  17.2  18.1 

__________________________________________________________________ 

  

      In the well-deformed nucleus, 152Nd, J(1)
expt increases by 22% at 12+. Of this about 5% 

is accounted for J(1)
lin based on R4/2, the remaining 17% is related to the structural change. 

In 150Nd (an X(5) nucleus) with R4/2=2.94, J(1)
expt increases by about 85% at 12+, of which 

35% is accounted for by the core shape of the ground state. For 148Nd, the J(1)
expt increases 

a factor of 3.5!, out of which 2/3rd is accounted for by the core deformation itself and 
1/3rd of the increase is related to a possible shape change. In 150Sm, with still smaller 
R4/2=2.32, the kinematic MoI increases from 9.0 to 45.1 at 14+, i.e. 5-fold increase, out of 
which a 3-fold increase is because of its core sphericity! (see Fig. 3). The smaller is the 
value of R4/2, the greater is the increase in J(1)

expt, most of which can be accounted for by 
the ground state shape itself!  

      Adding a rotation-vibration term in Eq. 6 yields 

  

E(I) = a I(I+1)  +  b I + c I2(I+1).           (8) 
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Interpreting the first term as the rotational energy (Rote) and the second term as the 
vibrational energy (Vibe) (see [17]), the Rote/E is only 26% in 150Sm at Iπ=2+. This 
supports the above findings. 

      Since this interpretation still suffers from the anomaly of the use of the rotor model 
formula for the numerator in Eq. (4), we consider an alternative method of expressing the 
level energies versus spin. 

  

IV. ENERGY IN THE FORM OF A SINGLE TERM FORMULA 
A. Variation of energy with spin I 

      A new way of expressing the level energies, free from the assumption of a nuclear 
shape was proposed earlier in [18]. Here one adopts the geometric-mean approach instead 
of the arithmetic-mean approach adopted in Eq. 6: 

      E(I) = a Ib .                (9) 

A plot of log E(I) versus log I yields ‘b’ as the slope and ‘log a’ as the intercept [18]. The 
power index ‘b’ varies between 1 and 2 in going from the vibration to the rotational limit. 
It is a direct measure of the degree of deformation of the nuclear core. For example, the 
index ‘b’ is 1.73, 1.56, 1.31 and 1.23 for 152Nd, 150Nd, 148Nd and 150Sm, with R4/2=3.27, 
2.94, 2.50 and 2.32 respectively. The coefficient ‘1/a’ is related to the MoI.  

 

TABLE III. The variation of power index bI and the coefficient aI with spin I. 

______________________________________________________________ 

Isotope   R4/2   2+   4+   6+   8+   10+   12+   14+   16+     

________________________________________________________________ 

152Nd (R4/2=3.27) 

EI    72.4  236.2  483.6  805.3 1194.8 1646.8 2157.7 2720.3 

  bI’ (1.732)a   1.706  1.729  1.738  1.742  1.744  1.744  1.744 

aI’ (21.75)    22.17  21.85  21.71  21.65  21.62  21.61  21.62 

Ecalc. (16.8)  72.4  241.1  487.1  802.5 1181.9 1621.8 2119.1 2671.7 
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150Nd (R4/2=2.94) 

EI    129.7  380.9  719.5  1128.4 1597.2 2117.3 2679.5 3277.5 

bI’ (1.557)    1.554  1.560  1.561  1.560  1.559  1.556  1.553 

aI’ keV (44.07)   44.16  44.00  43.97  43.99  44.03  44.11  44.19 

Ecalc. (2.0)  129.7  381.8  717.9  1123.6 1590.6 2112.9 2686.3 3307.7 

148Nd (R4/2=2.50) 

E(keV)   301.4 752.0 1279.8 1855.6  2471.6 3107.4 

bI’ (1.311)    1.319  1.316  1.311  1.307  1.302 

aI’ keV (121.5)   120.8  121.04  121.47 121.78 122.22 

Ecalc.  (21.8)  301.4 747.9 1272.7 1855.9 2486.7 3158.2  

150Sm (R4/2=2.32) 

       333.9 773.4 1278.9 1837.0 2432.0 3048.0 3646.0 4306.0 

bI  (1.227)    1.212 1.222 1.230 1.234 1.234 1.228 1.230 

aI  (142.7)    144.2 143..2  142.4 142.0 142.0 142.6 142.4 

Ecalc. (19.8)  334.0 781.8 1285.7 1830.0 2406.3 3009.6 3636.2 4283.5 

__________________________________________________________________ 

a. The values in parenthesis are the average values. For the calculated energies, it 
represents the standard deviation in keV for up to Iπ = 12+.  

      Here one may determine the values of the parameters bI and aI from the consecutive 
level energies or from E(I) and E(2). Then one can study the variation of these parameters 
with spin I. In [18], the near constancy of the power index bI with spin I up to 12+ was 
illustrated for many rare-earth nuclei.  Further, the slight variation in bI may reflect a 
small change in the nuclear structure (or MoI) with spin   

      In Table III we illustrate the values of bI and aI in 148-152Nd and 150Sm. A constancy of 
these values within 1% is seen. The expression (9) clearly represents the variation of 
level energy with spin, and the constancy with spin of a. and b. indicates that there is 
almost no change in the nuclear structure! This is not surprising. The index is 1.9 for a 
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well-deformed nucleus and 1.0 for a spherical vibrator. An intermediate value represents 
the nuclear core sphericity. 

      One criticism of this method may be that the ‘b’ being an index, the variation is less 
visible. To examine this aspect, we recalculated the level energies using the average ‘b’.  
The standard deviation of the calculated energies up to spin 12+ in the cited cases in 
(Table III), covering the full range spherical to deformed, (see the first number within 
parenthesis) is rather small (within 1-2%) for a mean energy, say at 10+. Thus the 
expression (9) reproduces the dependence of level energies on spin I very well. In fact at 
higher spin, a change in ‘b’ reflects the change in the nuclear structure. 

      In the cases cited here, one sees a pattern of variation in bI. For instance, in 152Nd bI 
increases with increasing spin I. In 150Nd, it increases upto 8+, then decreases. In 148Nd, it 
decreases monotonically with increasing spin I. In fact, the same pattern of variation in 
the slope of the J(1) with spin I occurs for the three isotopes of Nd, as seen in Fig. 6 of 
[16].  Thus the small change in the slope of the kinetic MoI corresponds to the change in 
the magnitude of the index bI, which is easier to realize. Further, it provides a new 
perspective to the MoI plots, not so well realized before. The average slope of the kinetic 
MoI plot corresponds to the average value of ‘b’ and the variation in its slope with spin 
corresponds to the variation in bI (in the opposite sense). We have observed the same 
trend in Ba and Ce isotopes. The curvature in the slope of J(1) curves (see [16]) 
corresponds to the curvature in the bI curves, in the opposite sense.  Also, a sharp change 
in bI reflects a crossing of the two bands or rotation alignment (see below). This is an 
additional advantage of this method.  

  

TABLE IV. The effective MoI from the power index formula Eq. 9 and 10*. 

__________________________________________________________ 

Isotope   R4/2  2+  4+  6+  8+  10+  12+  14+  16+ 

______________________________________________________________ 

152Nd  (3.27) 

E(keV)   72.4 236.2 483.6 805.3 1194.8 1646.8 2157.7 2720.3 

Num      7.4  11.2  14.6  17.8  20.8  23.6  26.1 

1/a (45.58)  45.06  45.06  45.08  45.37  45.64  45.90  46.09  46.47 

150Nd  (2.94) 

E (keV)   129.7 380.9 719.5 1128.4 1597.2 2117.3 2679.5 3277.5 
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Num      5.69 7.66  9.28 10.67  11.90 12.96 13.89 

1/a  (22.82)  22.64  22.64  22.63  22.70  22.77  22.86  23.07  23,23 

148Nd  (2.50) 

E(keV)   301.4  752.0  1279.8  1855.6 2471.6 3107.4 

Num      3.73  4.37  4.80  5.14  5.37 

1/a (8.32)  8.28  8.28  8.28  8.34  8.34  8.45 

150Sm  (2.316) 

E(keV)   333.9 773.4 1278.9 1837.0 2432.0 3048.0 3646.0 4306 

Num      3.05  3.49  3.85  4.12  4.33  4.41  4.58 

1/a (6.99)  6.94  6.94  6.91  6.89  6.93  7.02  7.38  6.94 

___________________________________________________________________ 

 *Numbers in parenthesis following 1/a are the average values of 1/a. 

.  

      Since the anomaly of a steep increase of J(1) is due to the use of a rotor model value in 
the numerator, we evaluated the same through the Eq.10  

  

      1/aI = (Ib-(I-2)b)/Eγ.             (10) 

  

(see the Num(erator) row in Table IV). For example, at Iπ=12+, the numerator in Eq 4 is 
equal to 23 for all nuclei. But here it is ∼(21, 12, 5.4) for Nd (A=152,150 and 148) with 
R4/2 = 3.27, 2.94 and 2.50 respectively. See Fig. 4 for the numerator in Eq.10 versus spin 
I plot. A plot of the numerator versus Eγ illustrates the almost linear relation of the two, 
which yields an almost constant 1/aI. (Fig. 5). 

      The inverse of the coefficient ‘a’ corresponds to the MoI, in a much more realistic 
way than the kinematic MoI in Eq. (4), since the former is free from any shape model and 
the latter is essentially a rotor model concept. Because of the appropriate numerator, 
dependent on the spherical content of the nuclear core (expressed through bI), one gets an 
almost constant effective MoI in 1/aI (Fig. 6). A plot against ω2 is also shown in Fig 7. 
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The information conveyed from the slope of the kinematic MoI is given here by the 
magnitude of the index bI and that of the effective MoI 1/aI, which are almost constant 
with respect to spin I.  

      There is no a priori reason to express level energies in integer power of spin. If a 
constant non-integer power index can express the dependence of level energy on spin, 
there is no reason to exclude such an index.  As stated above, the index is equal to 1.0 for 
a spherical vibrator and nearly 2 for a rotor, which serve as benchmarks of collective 
structure. Hence for the intermediate nuclei, the index has to be a non-integer in a single 
term expression. 

      The breaking point in the value of bI or aI is better exhibited on a (1/a) versus (ħω)2 
plot. It indicates the back bending at Iπ=8+ for 116Pd and a back bending at 12+ for 158Er 
(Fig. 8). Similar features can be obtained for all other back benders. Thus the power 
index ‘b’ and (1/a) can be used as realistic indicators of the constancy or a measure of 
variation of the nuclear structure. 

      Eq. (9) not only represents a different approach of expressing level energies, it 
enables a model independent new definition of the MoI. Applying to E(2), E(4), it yields 
the value of ‘b’ independent of ‘a’. The value of bI is simply equal to logR(I/2)/log(I/2). 
So bI is a function of RI/2 and thereby it incorporates in itself the deformation of the 
nucleus at each nuclear state. Eq. (9) is just another way of expressing the linear relation 
of all RI/2 to R4/2, as noted by Mallmann [14]. In other words, Eq. (9) is based on Eq. (7) 
in Sec. III.B, expressed in a different (and simple) mathematical form. The method is 
equally well applicable to β- and γ-bands and to the S-band or RAL band.  

      Thus, this work is an attempt to point out the anomaly in the too sharp variation of the 
kinematic moment of inertia, numerically exceeding the rigid body MoI in cases of near-
vibrational nuclei, as illustrated for 148Nd and 150Sm, wherein at 12+ we noted a 400% and 
500% increase respectively in the kinematic MoI. In a positive sense, this work points to 
the importance of the variation in the slope of the kinetic MoI plots, rather than of the 
actual increase in MoI with spin. 

  

B. Correspondence of power index ‘b’ with IBM-1 control parameter ξ 

  

      In the IBM-1, a schematic Hamiltonian is often used to study the variation of the 
nuclear structure along the transition class-A from the U(5) limit to the SU(3) limit: 

  

HIBM = ε nd + k Q⋅Q.               (11) 
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Note the similarity with energy expression (6). This can be rewritten in the form 

  

HIBM = a [(1- ξ) nd + ξ Q⋅Q].            (12) 

  

For ξ=0, it represents the U(5) limit and for ξ=1 the SU(3) limit. Thus ξ varies 0 to 1.  In 
a study of the nuclear structure of 150Sm (R4/2=2.316), Gupta et al. [19] obtained the ε/k 
ratio ≅39=(1-ξ)/ξ, equivalent to ξ= 0.025, close to the U(5) limit. This has a good 
correspondence with the value of (b-1) = x = 0.227 (Table III) on a scale of zero to 0.9, 
closer to the vibrational model limit of zero. Thus (b-1)=x or the index ‘b’ plays the role 
of the control parameter to reproduce the variation of nuclear structure as represented by 
the K-bands in the nucleus.  Corresponding to the use of the energy scale parameter 
defined in Eq. 11 or 12, the coefficient ‘a’ in Eq. 9 acts as the energy scale parameter.  

 In a recent study of Eq. (7), its universal validity to predict the energy ratio RI/2, 
(for I≤10), the same as, in the three limiting symmetries of U(5), SU(3) and O(6) as well 
as in the two critical point symmetries of E(5) and X(5)  (approximately) has been 
illustrated [20[.  

   

V.  DISCUSSION AND CONCLUSION 
  

      In this work, the anomaly in the use of the terms kinetic and dynamic moments of 
inertia, essentially rotor model concepts, for the non-rotational nuclei is pointed out. The 
relation of R(I) to R(4) as expressed in Eq. (7) is used to determine the contribution of the 
sphericity in these quantities. This partly explains the observed increasing slopes of J(1)

expt 
against spin I or ω (or ω2). The difference in J(1)

expt and J(1)
linear is a better measure of the 

variation of nuclear structure, but both still suffer from the use of a numerator derived 
from the rotor formula. 

      In a wholly different approach, we use a power index formula to express the energy, 
which is free from the shape model. The validity of the formula is demonstrated by the 
near constancy of its parameters against spin, and the reproduction of level energies using 
the mean value within 1-2%. The parameters bI and aI or (1/aI) reflect the variation in the 
nuclear structure with spin, including the back-bending. The average ‘b’ and ‘a’ (measure 
of the sphericity of the core) vary with Z and N. The information available in the slope of 
the kinetic MoI curves from Eq. 4 is now available in the magnitude of the index bI and 
1/aI, as illustrated for the three isotopes of Nd. The range of validity of Eq. 9 (and 10) is 
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in the full collective space, rotor to spherical-vibrator, the two benchmarks. Further it 
yields an expression for the MoI using a numerator derived from the power index 
formula, and the Eγ (experiment). For the rotor it reduces to the usual formula. For the 
spherical vibrator, the numerator is 2 instead of 3 for Iπ=2+, as it should be. For higher 
spins, appropriate values are obtained, depending upon the rotational content of the 
nuclear core. Thus the use of the power index formula for E(I) solves the anomaly of the 
too large increase of kinetic MoI with spin in shape transitional nuclei. We have also 
pointed out the correpondence of the two parameters ‘b’ and ‘a’ with the control 
parameter ξ, and the energy scaler in the 2-parameter form of the IBM-1 Hamiltonian. 

      Further, it is known that there is something constant in a rotational band, gsb or a 
band based on an excited state, its band head. This is true for the even-even nuclei as well 
as for the regular (smoothly spaced) bands in odd-A nuclei. For a stable structure, the 
increase in level energies in a rotational band arises from the dynamics and which is a 
function of spin I=F(I). If the parameters involved in the function F(I) are constant, i.e. 
non-varying with spin, except the spin itself, such a function should have deeper 
meaning. In this sense, the index ‘b’ or x=(b-1) represents a useful form of this function. 
In fact this is the essence of the empirical observation of Mallmann. Compared to the 
other variants of this function such as the BM expansion in powers of I(I+1) or the 
various forms of anharmonic vibrator expressions, in powers of I itself or more complex 
expression like the ab formula [21] or the pq formula [22], the power index expression is 
the simplest with a clear meaning of the power index ‘b’ or x=(b-1), which are directly 
related to the deformation of the nuclear core. One can even correlate the CBS model 
[23] with this expression. Once one fixes the square well potential parameters, viz. the 
βmin and βmax, the two ends of the square well and the depth, which are constant for a 
given K-band, one gets the energies of the band. Thus ‘x=b-1’ is related to the parameters 
of the well, on the â-axis. The x=0 corresponds to the βmin=0, and x>0 but <1 corresponds 
to the βmin  greater than zero. In conclusion, we have presented a model independent 
expression for the level energies in all regular collective K-bands. 
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Figure captions 
1. The linear relation of RI with R4/2, illustrated for R6/2. The ratio of the two sides in the 
two similar triangles yields the Eq. (7). 

2. The dependence of the linear kinetic moment of inertia on the energy ratio R4/2 for 
three different values. Energy for J(I) expressed in units of E(2+). 

3. The kinetic MoI using the rotor formula and the linear relation of RI/2 with R4/2 in the 
Mallmann plot, for 152Nd and 150Sm. A large part of the increase in 150Sm is given by the 
latter. 

4. The values of the numerator Ib – (I-2)b in Eq. 10 versus spin I compared with rotor 
model values. Note the decreasing slope for decreasing rotational content in the nucleus. 

5. Same as Figure 3, but for the plot against Eγ. Note the almost linear relation of the 
numerator in Eq. 10 and the experimental Eγ . At Iπ=2+, the numerator reduces to R4/2 in 
Eq. (10), exceeding rotor value of 3.0, if R4/2 exceeds it.  

6. The kinetic MoI J(1) and 1/aI versus spin for 148-152Nd.  At Iπ=2+, the numerator in Eq. 
10, exceeding 3.0 for 152Nd yields 1/aI exceeding J(1) in the rotor model . 

7. The same as in Figure 5, but the plot is against rotational frequency ω2. The 1/aI plots 
of effective MoI show an almost constant value. 

8. The back bending of kinetic MoI is also given in the 1/a plot for 158Er.at I=10. 
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Fig. 2 JBGupta 
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Fig. 6 JBGupta 
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Fig. 2. CC10230/Gupta 
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Fig.4. CC10230/Gupta 
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