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Detailed quantitative predictions are obtained for phonon and multiphonon ex-

citations in well-deformed rotor nuclei within the geometric framework, by exact

numerical diagonalization of the Bohr Hamiltonian in an SO(5) basis. Dynamical γ

deformation is found to significantly influence the predictions through its coupling

to the rotational motion. Basic signatures for the onset of rigid triaxial deformation

are also obtained.

PACS numbers: 21.60.Ev, 21.10.Re

I. INTRODUCTION

The Bohr Hamiltonian [1, 2], together with its generalizations [3, 4], has long served as

the conceptual benchmark for interpreting quadrupole collective dynamics in nuclei. The

conventional approach to numerical diagonalization of the Bohr Hamiltonian, in a five-

dimensional oscillator basis [4–6], is slowly convergent and requires a large number of basis

states to describe a general deformed rotor-vibrator nucleus. Therefore, it has commonly

been necessary to apply varying degrees of approximation in addressing the dynamics of

transitional and deformed nuclei, as in the rotation-vibration model [7] and rigid triaxial

rotor [8] treatments of the Bohr Hamiltonian, or in more recent studies of critical phenom-

ena [9–12].

However, diagonalization of the Bohr Hamiltonian is now possible [13] for potentials of

essentially arbitrary stiffness. In particular, the algebraic collective model (ACM) [14–18]

provides an efficient and straightforward computational framework based on SU(1, 1)×SO(5)

algebraic methods. The Bohr Hamiltonian is diagonalized in a basis of SU(1, 1) × SO(5)

product wave functions on the Bohr deformation variables β and γ and Euler angles Ω.

These are of the form Rλ
n(a; β)ΨvαLM(γ,Ω), where Rλ

n is an SU(1, 1) modified oscillator
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wave function [19] and ΨvαLM is an SO(5) ⊃ SO(3) spherical harmonic [20, 21]. The

SO(5) ⊃ SO(3) formulation may be used either simply to extend the conventional oscillator

basis to higher phonon numbers sufficient to provide full convergence [22–24] or, further,

to obtain much faster convergence as a function of basis size through the use of SU(1, 1) β

wave functions chosen optimally for the nuclear deformation [15].

The Bohr Hamiltonian can consequently be applied, without approximation, to the full

range of nuclear quadrupole rotational-vibrational structure, from spherical oscillator to ax-

ial rotor to triaxial rotor. Full convergence can be obtained for energies and electromagnetic

transition strengths involving high-lying states, for instance, interband transitions among β,

γ, and multiphonon bands in well-deformed rotor nuclei. The Bohr Hamiltonian inherently

induces coupling of the β, γ, and rotational degrees of freedom, thereby yielding a rich set

of phenomena.

To approach an understanding of the full problem, we shall consider, in this article, the

simpler but already extensive implications of coupling of the γ and rotational degrees of

freedom. The relevant Hamiltonian is then the “angular” part of the Bohr Hamiltonian,

and the ACM calculation reduces to diagonalization in a basis of SO(5) ⊃ SO(3) spherical

harmonics (Sec. II). The regime we address consists of rotational structure with axially

symmetric (axial) or weakly triaxial deformation. However, even for a nominally axial rotor,

the Bohr description is found to mandate significant dynamical fluctuations in γ, far from

γ = 0◦. The evolution of spectroscopic quantities (energies and transition matrix elements)

with respect to the γ confinement provided by the potential is systematically investigated

(Sec. III), and the spectroscopic implications of the onset of rigid triaxial structure are

explored (Sec. IV). Probability distributions with respect to γ and with respect to the

K quantum number are then used to examine the degree of adiabaticity, or separation of

rotational and vibrational degrees of freedom in the wave functions (Sec. V). Preliminary

results were presented in Refs. [25, 26].
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II. HAMILTONIAN AND SOLUTION METHOD

A. Hamiltonian

The Bohr Hamiltonian [2] is given, in terms of the quadrupole deformation variables β

and γ and Euler angles Ω, by

H = − ~
2

2B

[

1

β4

∂

∂β
β4 ∂

∂β
− Λ̂2

β2

]

+ V (β, γ), (1)

where

Λ̂2 = −
(

1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 1

4

∑

κ

L̂′2
κ

sin2(γ − 2
3
πκ)

)

. (2)

The operator appearing in brackets in the kinetic energy is the Laplacian in five dimensions.

Its angular part Λ̂2 is the Casimir operator for the five-dimensional rotation group SO(5),

which contains the rotations in physical space, acting on the Euler angle coordinates, as an

SO(3) subgroup. The Bohr coordinates are five-dimensional spherical polar coordinates, in

terms of which the five components qM (M = −2, . . ., 2) of the quadrupole deformation

tensor are expressed as

qM = β

[

cos γD
(2)
0,M(Ω)

1√
2
sin γ

[

D
(2)
2,M(Ω) + D

(2)
−2,M(Ω)

]

]

. (3)

The potential energy V (β, γ) must be periodic in γ, with period 120◦, and it must be

symmetric about γ = 0◦ and γ = 60◦. The Bohr coordinate system and Hamiltonian are

reviewed in detail in, e.g., Ref. [27].

The restriction to angular coordinates (γ,Ω) then yields a Hamiltonian

H = Λ̂2 + V (γ). (4)

Such an angular Hamiltonian arises as a schematic limit of the full Bohr Hamiltonian when

the coordinate β in (1) is taken to be rigidly fixed, as might be considered for a well-

deformed nucleus. However, a reduction to the angular form (4) is more broadly applicable

to transitional nuclei as well [11, 12], since it occurs by separation of variables when the

potential is of the form V (β, γ) = u(β) + v(γ)/β2 [28]. The explicit relations for reduction

to an angular Hamiltonian are reviewed in Appendix A. The symmetry conditions on V (γ)

are satisfied by the function cos 3γ and powers cosn 3γ thereof.
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FIG. 1: The shape of the potential V (γ) used in (5), plotted for various values of ξ (taking χ = 1).

Note that a constant offset ξ has been subtracted from each curve, so that V (0) = 0 in each case.

The dotted curve indicates the shape of the contribution from cos2 3γ.

Let us therefore consider, in particular,

H = Λ̂2 + χ
[

(1− cos 3γ) + ξ cos2 3γ
]

. (5)

The possible shapes of the potential appearing in this Hamiltonian are shown in Fig. 1.

For ξ = 0, V (γ) ∝ (1 − cos 3γ), as considered in Ref. [14], providing a minimum at γ = 0◦

(axial deformation). With increasing χ, a “deeper” potential provides greater confinement or

stabilization around γ = 0◦, approximately harmonic (∝ γ2) for small γ. Including a cos2 3γ

term [Fig. 1 (dotted curve)] by taking ξ nonzero introduces a richer extremum structure

and a means for studying the axial-triaxial shape transition [10]. For ξ = 1/2, the potential

is more softly confining in γ, with a quartic minimum (locally ∝ γ4). This case is termed

“critical” in Ref. [10]. For ξ > 1/2, the potential has a minimum at a nonzero value of γ,

given by cos 3γ0 = 1/(2ξ). For large positive ξ, the cos2 3γ term dominates, and the minimum

approaches γ = 30◦. Although not considered here, with a negative cos2 3γ contribution the

Hamiltonian (5) may also be used to investigate prolate-oblate shape coexistence [29].
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B. Solution method

Any function of the coordinates (γ,Ω) with the requisite symmetry properties for a wave

function can be expressed in terms of symmetric linear combinations of Wigner D functions

as (e.g., Ref. [27])

ψ(γ,Ω) =
L
∑

K=0
even

FK(γ)ξ
(L)
KM(Ω), (6)

where [21]

ξ
(L)
KM(Ω) ≡ 1

(1 + δK)1/2

[

D
(L)
KM(Ω) + (−)LD

(L)
−KM(Ω)

]

. (7)

The wave function is thus fully specified by the FK(γ).

A complete set for expanding wave functions ψ(γ,Ω) is provided by the SO(5) ⊃ SO(3)

spherical harmonics ΨvαLM (γ,Ω) [20, 21]. The SO(5) ⊃ SO(3) spherical harmonics are

defined as the eigenfunctions of the SO(5) Casimir operator Λ̂2, with

Λ̂2ΨvαLM (γ,Ω) = v(v + 3)ΨvαLM(γ,Ω), (8)

chosen furthermore to posess definite angular momentum with respect to the SO(3) subgroup

of physical rotations. The ΨvαLM are labeled by the SO(5) seniority quantum number v

(v = 0, 1, . . .), the SO(3) angular momentum quantum number L, and its z-projection

quantum number M . (A multiplicity index α is also required to complete the labeling for

v ≥ 6 but will be omitted from the notation below when not needed.) The ΨvαLM are

explicitly realized by constructing the functions FK(γ) needed to express each spherical

harmonic in the form (6), as may be accomplished by the algorithm of Refs. [20, 21].

Diagonalization of the Hamiltonian (5) is carried out in a finite basis of these SO(5) ⊃
SO(3) spherical harmonics, truncated to some maximum seniority vmax. In general, higher-

seniority spherical harmonics are needed for the construction of more highly γ-localized wave

functions. Thus, diagonalization for Hamiltonians with stiffer γ confinement requires a basis

with higher vmax. A basis with vmax = 50 amply suffices for convergence of all calculations

in the present work.

It is first necessary to compute the Hamiltonian matrix elements with respect to the

SO(5) ⊃ SO(3) basis. For the kinetic energy, the matrix elements 〈Ψv′α′LM |Λ̂2|ΨvαLM〉 are
trivially evaluated by the eigenvalue equation (8). For the potential energy, the matrix ele-

ments of cos 3γ may be evaluated in terms of integrals of products of FK(γ) functions [14].
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Since Ψ300(γ,Ω) = (8π2)−1/2(3/
√
2) cos 3γ, it may be noted that the matrix elements of in-

terest are triple overlaps 〈Ψv′α′LM |Ψ300|ΨvαLM〉 of spherical harmonics, which are equivalent

to SO(5) ⊃ SO(3) generalized Clebsch-Gordan coefficients [20, 21]. These are calculated

and tabulated electronically (for v ≤ 50) in Ref. [21]. The matrix elements of cosn 3γ follow

immediately from those of cos 3γ, by insertion of resolutions of the identity, i.e., by matrix

multiplication.

Then, diagonalization of the Hamiltonian matrix yields the amplitudes aLij in the de-

composition

ψLiM(γ,Ω) =
∑

j

aLijΨLjM(γ,Ω). (9)

Here we have denoted the ith eigenfunction of the Hamiltonian, for angular momentum L,

by ψLiM(γ,Ω) and likewise relabeled the jth SO(5) ⊃ SO(3) spherical harmonic of angular

momentum L as ΨLjM , i.e., replacing v and α by a simple running index [21].

The leading-order electric quadrupole operator in the Bohr framework is M(E2) ∝ q.

Under the present restriction to angular coordinates, M(E2) ∝ Q, where Q is the unit

quadrupole tensor [20], defined by qM = βQM [see (3)]. It is straightforward to calculate

transition matrix elements between the Hamiltonian eigenstates (9), once the matrix ele-

ments are obtained between the basis states. Since Ψ12M (γ,Ω) = (8π2)−1/2
√

15/2QM , the

reduced matrix elements are proportional to 〈Ψv′α′L′‖Ψ12‖ΨvαL〉, which are again given by

SO(5) ⊃ SO(3) generalized Clebsch-Gordan coefficients, available from Ref. [21].

III. PHONON AND MULTIPHONON EXCITATIONS

A. Spectra

The nature of the spectra obtained from the Hamiltonian (5) depends both on the depth

of the potential (determined by χ) and the shape of the potential (determined by ξ as in

Fig. 1). The depth of the potential effectively controls the degree of γ confinement. It is

worth first carefully considering the implications of γ confinement, or conversely γ softness,

within this Bohr Hamiltonian framework. In this section, we shall therefore investigate the

structural dependence on χ (for ξ = 0), before proceeding to the dependence of structure

on the shape of the potential, and in particular the onset of rigid triaxiality, in Sec. IV.

The results of illustrative calculations are shown in Fig. 2, for χ = 50, 100, and 200.
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FIG. 2: Level schemes for the angular Hamiltonian (5) with ξ = 0, for (a) χ = 50, (b) χ = 100,

and (c) χ = 200. Rotational L(L+ 1) energies for the yrast band are indicated by the dots. The

potential V (γ) is shown in the inset, with the ground, quasi-γ, and quasi-γγ band head energies

indicated. (d–f) Staggering of level energies within the quasi-γ band, as measured by the energy

second difference S(L).
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FIG. 3: Level schemes for the angular Hamiltonian (5) with ξ = 0, for (a) the γ-independent

limit χ = 0 and (b) χ = 20, with levels arranged anticipating the quasiband structure of Fig. 2.

Rotational L(L+ 1) energies for the yrast band are indicated by the dots. The potential V (γ) for

χ = 20 is shown in the inset, with the ground, quasi-γ, and quasi-γγ band head energies indicated.

The low-lying states form quasi-bands which may be roughly identified as a ground-state

rotational band (K = 0), γ vibrational excitation (K = 2), and two-phonon γ excitations

(K = 4 and 0), denoted by γγ4 and γγ0.

The stiffness of the potential around γ = 0◦ simultaneously determines both the γ-

vibrational energy scale [increasing from Fig. 2(a) to Fig. 2(c)] and also how well confined

the wave function is with respect to γ, as seen in the corresponding approach to an ideal

rotational spectrum. Thus, within the framework of the Bohr Hamiltonian, the γ band

energy — more specifically, the energy ratio E(2+γ )/E(2
+
1 ), or separation of vibrational and

rotational energy scales — and the γ softness of the wave function are inextricably linked.

As a starting point, it may be observed that for χ = 0 the potential is strictly γ-

independent, and the spectrum therefore follows an SO(5) multiplet structure [30, 31].

Successive multiplets consist of angular momenta 0, 2, 4-2, 6-4-3-0, . . ., for v = 0, 1, 2,

3, . . ., respectively, with multiplet energies ∝ v(v + 3), as depicted in Fig. 3(a). The sys-

tem is simply a Wilets-Jean [30] or SO(6) [32] rotor, but without β excitations (see also

Ref. [14]). Then, as γ confinement is introduced, the familiar rotational band structure

begins to emerge. An intermediate spectrum, obtained for χ = 20, is shown in Fig. 3(b).
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For χ = 50 [Fig. 2(a)], rotational quasi-bands are well-developed, and E(2+γ )/E(2
+
1 ) ≈ 10,

as appropriate to, e.g., the well-deformed rare earth nuclei. However, it is seen from the

potential plot in Fig. 2(a) that the γ confinement for this value of χ is still weak. The range

of energetically accessible γ values increases significantly for successive phonon excitations,

such that confinement is almost nonexistent at the energy of the two-phonon excitation.

Dynamical γ deformation consequently plays a major role in the calculated structure,

through its interaction with the rotational dynamics. This is reflected in significant devia-

tions from ideal rotational behavior in the spectroscopic predictions.

Most noticeably, on inspection of Fig. 2(a), level energies within the γ quasi-band fol-

low a gently γ-soft staggering pattern [2(34)(56) . . .]. This staggering is reminiscent of the

SO(5) level degeneracies obtained for χ = 0, and it disappears as the γ stiffness increases

[Fig. 2(b,c)]. The deviations from rotational energy spacings are even more pronounced for

the calculated two-phonon energy bands. Note especially the near doubling of the rotational

energy spacing scale for the two-phonon bands, relative to the ground state band, for χ = 50

[Fig. 2(a)].

The deviations from rotational energy spacings within the γ band may be seen most

clearly from plots of the level energy second difference S(L) ≡
[

[E(L)−E(L− 1)]− [E(L−
1)−E(L− 2)]

]

/E(2+1 ), as shown in Fig. 2(d–f). For an ideal rotational band with L(L+1)

energy spacings, the curve is flat, with S(L) = 1/3. Alternatively, γ-soft staggering is

manifest in minima at even L. As surveyed in Ref. [33], the observed level energies within the

γ bands of most transitional and rotational nuclei yield S(L) plots which are either gently

γ-soft or near constant (≈ 1/3). A few transitional nuclei (e.g., 152Sm, 156Gd, or 162Er)

exhibit a degree of staggering comparable to that found for χ = 50 (see also Refs. [17, 34]).

However, most rare earth rotational nuclei (see Fig. 3 of Ref. [33]) more clearly follow an

L(L+1) energy spacing within the γ band. There is thus an apparent disagreement between

the degree of dynamical γ softness expected in the Bohr picture given E(2+γ )/E(2
+
1 ) ≈ 10,

and the observed structure in nuclei, at least if we assume the basic Hamiltonian (5).

Within the ground state band, the Hamiltonian (5) is found to yield relative energies [i.e.,

E(L+
1 )/E(2

+
1 )] which fall below the L(L + 1) expectation for an adiabatic rotor. The ideal

rotational energies are indicated, for comparison, by the dots in Fig. 2(a–c). The deviation

from L(L + 1) spacing within the ground state band decreases, as would be expected, for

increasing γ stiffness. The effect has already been noted in the context of a full β and γ
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calculation with the ACM in Ref. [13] (see Fig. 5 of that reference). Such a deviation would

traditionally be characterized as “centrifugal stretching”, based on an the interpretation in

which the β deformation increases, and thus the rotational moments increase, with increasing

angular momentum. However, here the effect is seen to arise purely from the interaction of

γ and rotational degrees of freedom, for a system in which “stretching” in the β degree of

freedom is strictly impossible.

B. Evolution of observables

The evolution of the numerical predictions, with increasing γ stiffness, is examined more

quantitatively and systematically in Fig. 4. Both the energy spectrum [Fig. 4(left)] and

electromagnetic (specifically, electric quadrupole) moments and transition matrix elements

[Fig. 4(right)] are shown, as functions of χ.

The onset and evolution of rotational band structure, as γ confinement is introduced, may

be traced in the full energy spectrum [Fig. 4(a)]. Note especially the correlation between the

γ band energy [Fig. 4(a)] and the ground state band energy ratio E(4+1 )/E(2
+
1 ) [Fig. 4(b)],

which varies from 2.5 for γ-independent rotation to 3.33 for rigid axial rotation. This ratio

is commonly taken as an indicator of rotational adiabaticity. For the present restricted

problem, adiabaticity represents separation of the γ and rotational degrees of freedom, but

in general for the Bohr Hamiltonian the quantitative details will also be affected by the

β degree of freedom. The evolution of multiphonon band energies can also be followed in

Fig. 4. These begin anharmonically low, at less than twice the γ band energy — for χ = 50,

an estimate based on low-lying band members gives Eγγ,4/Eγ ≈ 1.7 and Eγγ,0/Eγ ≈ 1.9 —

but approach harmonicity as χ increases. The relative energies of the bands may also be

seen in Fig. 2(a–c).

The evolution of electromagnetic properties is traced for representative quadrupole mo-

ments and transition strengths in Fig. 4(right). In the γ-independent limit, the wave

functions are simply the SO(5) ⊃ SO(3) spherical harmonics themselves, and electromag-

netic matrix elements are governed by SO(5) selection rules and related by SO(5) ⊃ SO(3)

Clebsch-Gordan coefficients. On the other hand, in the limit of large γ stiffness, electromag-

netic matrix elements are expected to approach the Alaga rule ratios [2, 35] of the adiabatic

axial rotor, given by ordinary angular momentum Clebsch-Gordan coefficients.
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FIG. 4: Evolution of spectroscopic properties with γ stiffness, for the angular Hamiltonian (5)

with ξ = 0. Quantities shown are (a) excitation energies of low-lying levels, normalized to E(2+1 ),

(b) the energy ratio E(4+1 )/E(2+1 ), specifically, (c) electric quadrupole moments of the ground

state band and γ band 2+ members, (d) electric quadrupole reduced transition probabilities for

one-phonon transitions between the ground, γ, and two-phonon γ (K = 0 and 4) bandhead states,

and (e) reduced transition probabilities for the transitions depopulating the 2+γ bandhead state.

All electromagnetic quantities are normalized to B(E2; 2+1 → 0+1 ) ≡ 1.

The electric quadrupole moment Q(2+1 ) and Q(2
+
γ ) are shown in Fig. 4(c). All quadrupole

moments vanish in the γ-independent limit, by a selection rule arising from a parity quantum

number defined in the five-dimensional space of the Bohr coordinates (R5-parity) [13, 21,

36]. In the rotational limit, these quadrupole moments are expected to approach values of

±8
√
π/7 ≈ ±2.03, negative for the ground state band (K = 0) and positive for the γ band

(K = 2), expressed relative to B(E2; 2+1 → 0+1 )
1/2. These values are rapidly attained, by

χ . 25.
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For harmonic γ vibration, the γ → g, γγ4 → γ, and γγ0 → γ interband intrinsic matrix

elements 〈f |M′|i〉 [2] are expected to be in the proportion 1 :
√
2 : 1 [18]. The overall

normalization of these intrinsic matrix elements, i.e., the γ → g strength, decreases with

increasing γ stiffness [4]. For the transitions among the bandhead states, in particular,

these intrinsic matrix element ratios correspond to B(E2; 2+γ → 0+g ), B(E2; 4+γγ,4 → 2+γ ), and

B(E2; 0+γγ,0 → 2+γ ) strengths in the proportion 1 : 2.8 : 5. The approach to harmonic values is

seen in Fig. 4(d). Simply from considering these transitions, harmonic behavior would appear

to set in very gradually for χ & 50. However, a more comprehensive consideration of the

electromagnetic transition strengths, which leads to some modification of this conclusion, is

provided by the Mikhailov analysis in Sec. IIID. The branching ratios for electric quadrupole

transitions between bands likewise approach the Alaga rule ratios. For the transitions from

the 2+γ bandhead to the ground state band members [Fig. 4(e)], for instance, the adiabatic

rotor has B(E2; 2+γ → 0+g ), B(E2; 2+γ → 2+g ) andB(E2; 2+γ → 4+g ) strengths in the proportion

0.4 : 0.57 : 0.029.

C. Effective γ deformation

Although we have so far examined γ softness indirectly, through its spectroscopic sig-

natures, the wave function ψ(γ,Ω) is directly accessible for the eigenstates calculated in

the diagonalization of the Bohr Hamiltonian, and thus the deviation of γ from 0◦ can be

considered directly. The simplest measure is provided by an effective γ value γ̄, defined by

cos 3γ̄ ≡ 〈cos 3γ〉. (10)

The matrix elements of cos 3γ in the SO(5) ⊃ SO(3) spherical harmonic basis are al-

ready available, as noted in Sec. II, so this expectation value may readily be calculated.

The definition (10) is consistent with the quadrupole shape invariant approach [37, 38],

in which an effective γ for the full (β, γ,Ω) coordinate space is defined by cos 3γeff =

〈β3 cos 3γ〉/〈β2〉3/2 [39–41].

The evolution of γ̄ for the ground state, γ, and γγ band members (for L ≤ 4) is shown

in Fig. 5. In the χ = 0 (γ-independent) limit, 〈cos 3γ〉 = 0 by the R
5-parity selection rule,

and thus γ̄ = 30◦ for all states. As χ increases past χ ≈ 50, it is seen that the γ̄ values

for the members of each band cluster and decrease with increasing χ. The γ̄ value jumps



13

0 50 100 150 200
c

0

10

20

30

g
Hde

gL

0+
2+
3+
4+

FIG. 5: Evolution of the effective values γ̄ with respect to χ stiffness, for the angular Hamilto-

nian (5) with ξ = 0. Values are shown for ground state, γ, γγ4, and γγ0 quasi-band members with

L ≤ 4.

substantially between bands, increasing from ground to γ to γγ bands, indeed, as expected

for successive phonon excitations.

The situation for “axial rotor” nuclei within the Bohr Hamiltonian framework is very

much contrary to the classic but schematic characterization of such nuclei as having “γ ≈ 0◦”,

which may be more concretely interpreted as γ ≪ 30◦. Recall that the γ-band excitation

energies matching the experimental values for rotor nuclei are obtained for χ ≈ 50. For

this stiffness, the ground state band members have γ̄ ≈ 15◦, and the γ band members have

γ̄ ≈ 23◦. These large γ̄ values are consistent with the large range of energetically accessible

γ values for these states [Fig. 2(a,inset)]. The full probability distribution with respect to

the γ coordinate is considered in Sec. V.

D. Intrinsic matrix elements

A more comprehensive and meaningful examination of electromagnetic transition

strengths is realized by considering the interband transitions in aggregate, according to
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FIG. 6: Interband transition amplitudes B(E2)1/2, from the γ quasi-band to the ground state

band (top), from the γγ4 quasi-band to the γ quasi-band (middle), and from the γγ0 quasi-band

to the γ quasi-band (bottom), for Mikhailov analysis. Plots are included for the calculations of

Fig. 2, with χ = 50 (left), χ = 100 (middle), and χ = 200 (right) and ξ = 0. The values shown are

for transitions between levels with L ≤ 6, normalized to B(E2; 2+1 → 0+1 ) ≡ 1.

the Mikhailov mixing formalism [42]. Within this framework, all transition amplitudes

are expressed in terms of a single intrinsic electromagnetic matrix element and single

mixing parameter between each pair of bands. They are expected to fall on a straight

line on an appropriate (Mikhailov) plot of 〈K2J2‖M‖K1J1〉 or, commonly, B(E2)1/2 vs.

J2(J2 + 1)− J1(J1 + 1). The intrinsic matrix elements and mixing parameter are identified

from the slope and intercept.

Specifically, for interband transitions with ∆K = 2, the leading-order band mixing rela-
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TABLE I: Electric quadrupole interband intrinsic matrix elements 〈f |M′|i〉 and mixing parameters

a, for different γ stiffnesses, as extracted from the Mikhailov analyses of Fig. 6. Ratios, as indicators

of anharmonicity, are tabulated in the final two columns. The values for an adiabatic rotor with

harmonic γ vibration [18] are included for comparison. The values for the intrinsic matrix elements

are normalized to B(E2; 2+1 → 0+1 ) ≡ 1.

γ → g γγ4 → γ γγ0 → γ

〈f |M′|i〉 a 〈f |M′|i〉 a 〈f |M′|i〉 a

γγ4 → γ

γ → g

γγ0 → γ

γ → g

χ = 50a 0.42 0.025 ∼ 0.6a ∼ 0.03 ∼ 0.5a ∼ 0.03 ∼ 1.4a ∼ 1.1a

χ = 100 0.30 0.012 0.43 0.012 0.30 0.018 1.44 1.01

χ = 200 0.23 0.007 0.33 0.007 0.23 0.009 1.43 1.00

Harmonic — — — 1.41 1

a The γγ → γ intrinsic matrix elements for χ = 50 can only be crudely approximated, since the

Mikhailov plot yields values which are not strongly linear [Fig. 6(d,g)]. The estimated parameters

used in the analysis are M1 ≈ 0.9 for γγ4 → γ and M1 ≈ 0.4 for γγ0 → γ.

tion for E2 reduced matrix elements is [2, (4-210)]

〈K2J2‖M‖K1J1〉 = σ1(2J1 + 1)1/2(J1K122|J2K2)
[

M1 +M2[J2(J2 + 1)− J1(J1 + 1)]
]

, (11)

where it is assumed thatK2 = K1+2, and where σ1 =
√
2 ifK1 = 0 or σ1 = 1 otherwise. The

parameters in this expression are related to the intrinsic matrix element 〈K2|M′|K1〉, mixing

matrix element 〈K2|ε+2|K1〉, and intrinsic quadrupole moment Q0 by M1 = 〈K2|M′|K1〉 −
4(K1+1)M2 andM2 = [15/(8π)]1/2eQ0〈K2|ε+2|K1〉 [2, (4-211)]. The intrinsic matrix element

may thus be extracted from the slope and intercept as

〈K2|M′|K1〉 =M1 + 4(K1 + 1)M2. (12)

More specific expressions for K-decreasing and K-increasing transitions, in terms of B(E2)

reduced transition probabilities, are given in Appendix B.

The interband quadrupole transition strengths for the Bohr Hamiltonian calculations

of Sec. IIIA are shown in Fig. 6 in Mikhailov form. They are plotted as B(E2)1/2 vs.

Lf (Lf + 1) − Li(Li + 1), for transitions between states with L ≤ 6. For the most part,
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the transition amplitudes do indeed follow an essentially linear pattern, and it is therefore

meaningful to extract effective intrinsic matrix elements, well as mixing parameters, from the

Mikhailov analysis. (The Mikhailov formalism has been applied to extract effective intrinsic

matrix elements from the interacting boson model [43], in a similar fashion, in Refs. [44, 45].)

However, deviations from a linear relation are significant for transitions involving the two-

phonon quasi-bands for χ = 50 [Fig. 6(left)], as might be expected from the substantial

γ-softness and deviations from rotational energy spacings already noted for these bands.

The resulting intrinsic matrix elements for the γ → g, γγ4 → γ, and γγ0 → γ transitions,

obtained from (B2) and (B4), are listed in Table I, together with the dimensionless mixing

parameter a = |M2/M1| (see Appendix B). The normalization of the electric quadrupole

operator M(E2) is arbitrary in the present analysis. To provide a scale for comparison with

experiment, the intrinsic matrix elements in Table I are given relative to the square root of

the in-band B(E2; 2+1 → 0+1 ).

For harmonic γ vibration, the ratios of the γγ → γ intrinsic matrix elements to the

γ → g intrinsic matrix element are expected to be 〈γ|M′|γγ4〉/〈g|M′|γ〉 =
√
2 ≈ 1.41 and

〈γ|M′|γγ0〉/〈g|M′|γ〉 = 1, according to the proportion noted in Sec. III B. For comparison,

ratios of the intrinsic matrix elements extracted from the Bohr Hamiltonian numerical cal-

culations are given in the last two columns of Table I. Note the rapid quantitative approach

of these calculated ratios to the expected harmonic values. Even the γγ → γ transitions for

the soft χ = 50 case are essentially consistent with harmonic ratios, to the extent that slope

and intercept parameters can meaningfully be extracted in this instance [Fig. 6(d,g)]. For

χ = 200, harmonic values are obtained to within ∼ 1%.

The bandmixing, indicated by the Mikhailov plot slopes, is substantial in all the cases

considered in Table I. The harmonicity of the intrinsic matrix elements is therefore not

apparent simply from the plot intercepts buy only after the leading-order bandmixing cor-

rections (B2) and (B4) are taken into account. For example, even for the most adiabatic

case, χ = 200, the γ → g [Fig. 6(c)]and γγ4 → γ [Fig. 6(f)] Mikhailov plots both have slope

parameters a ≈ 0.012, resulting in a 5% adjustment to the γ → g intrinsic matrix element

and a 14% adjustment to the γγ4 → γ intrinsic matrix element.

In summary, although the strengths of the individual interband transitions only approach

the limit of an adiabatic rotor (and, more specificially, harmonic vibration) gradually, as ob-

served from Fig. 4(d), this deviation is quantitatively well-described in terms of a rapid
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FIG. 7: Level schemes for the angular Hamiltonian (5), for (a) ξ = 0 with χ = 50, (d) ξ = 0.5

with χ = 100, and (e) ξ = 0.8 with χ = 500. Rotational L(L + 1) energies for the yrast band are

indicated by the dots. The potential V (γ) is shown in the inset, with the ground, quasi-γ, and

quasi-γγ band head energies indicated. (d–f) Staggering of level energies within the quasi-γ band,

as measured by the energy second difference S(L). Figure adapted from Ref. [21].

approach to harmonic values of the interband intrinsic matrix elements, but with the in-

dividual transition strengths modified by leading-order ∆K = 2 bandmixing (11). The

strength of this mixing then gradually decreases with increasing γ stiffness.

IV. ONSET OF RIGID TRIAXIALITY

The excitation spectrum may be expected to change dramatically with the onset of rigid

triaxiality. The Bohr Hamiltonian predictions ultimately approach a γ = 30◦ Davydov rotor

spectrum [8] for confinement by a sufficiently stiff cos2 3γ potential [13]. However, the initial
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FIG. 8: Interband transition amplitudes B(E2)1/2, from the γ quasi-band to the ground state

band (top), from the γγ4 quasi-band to the γ quasi-band (middle), and from the γγ0 quasi-band

to the γ quasi-band (bottom), for Mikhailov analysis. Plots are included for the calculations of

Fig. 7, with ξ = 0 (χ = 50) (left), ξ = 0.5 (χ = 100) (middle), and ξ = 0.8 (χ = 500) (right). The

values shown are for transitions between levels with L ≤ 6, normalized to B(E2; 2+1 → 0+1 ) ≡ 1.

Figure panels (a–f) adapted from Ref. [21].

onset of triaxiality is reflected in much more subtle deviations from the characteristics of an

axially symmetric rotor. The difference between axial and triaxial minima in the potential

is obscured by the substantial dynamical fluctuations in γ present in both cases. As noted

in Sec. II, the onset of triaxiality may be investigated by considering the introduction of a

cos2 3γ contribution, i.e., nonzero ξ, in the Hamiltonian (5).

The results of calculations for two representative potentials are shown in Fig. 7: the
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TABLE II: Electric quadrupole interband intrinsic matrix elements 〈f |M′|i〉 and mixing param-

eters, for different γ potential shapes chosen to reproduce the onset of weak rigid triaxiality, as

extracted from the Mikhailov analyses of Fig. 8. Ratios, as indicators of anharmonicity, are tab-

ulated in the final two columns. The Y(5) triaxial estimate [10] is included for comparison. The

values for the intrinsic matrix elements are normalized to B(E2; 2+1 → 0+1 ) ≡ 1. The results

in this table also serve to correct intrinsic matrix element values given previously in Table 1 of

Ref. [26]. The roles of initial and final bands were interchanged, in that analysis, when extracting

the slope parameter from (B1) and (B3), resulting in the use of an incorrect sign for the bandmixing

correction term in (B2) and (B4).

γ → g γγ4 → γ γγ0 → γ

〈f |M′|i〉 a 〈f |M′|i〉 a 〈f |M′|i〉 a

γγ4 → γ

γ → g

γγ0 → γ

γ → g

ξ = 0.5 (χ = 100) 0.43 0.025 0.58 0.022 0.37 0.035 1.36 0.87

ξ = 0.8 (χ = 500) 0.43 0.028 0.51 0.018 0.27 0.015 1.18 0.63

Y(5) — — — 1.23 0.73

soft or “critical” axial minimum (ξ = 0.5) [Fig. 7(b)] and a weakly triaxial minimum (ξ =

0.8) [Fig. 7(c)]. For each of these calculations, the potential depth, or χ, is chosen to

give E(2+γ )/E(2
+
1 ) ≈ 10, again appropriate to the well-deformed rare earth nuclei. The

comparable axial rotor calculation with the same γ band energy, i.e., χ = 50, is shown again

as a baseline for comparison [Fig. 7(a)].

In Fig. 7, the γ-phonon quasiband structure is seen to remain intact. Our concern is there-

fore with the principal spectroscopic properties of these bands — excitation energies of the

bands, deviations from rotational energy spacing within the bands, and electric quadrupole

intrinsic matrix elements. The two-phonon energy anharmonicities evolve from slightly neg-

ative (Eγγ/Eγ < 2) for ξ = 0 [Fig. 7(a)] to positive (Eγγ/Eγ > 2) [Fig. 7(b,c)] with the

introduction of triaxial tendencies. The anharmonicity of the γγ0 band rises more rapidly

than that of the γγ4 quasi-band. Qualitatively, this is consistent with evolution towards a

γ-stiff, adiabatic triaxial rotor [18], for which the K = 4 quasi-band is a triaxial rotational

excitation and the K = 0 quasi-band is a γ vibrational excitation.

The level energies within the γ band progress, with increasing ξ, from γ-soft staggering

[2(34)(56) . . .] to the reverse pattern associated with triaxial rotation [(23)(45) . . .] [8]. As in
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Sec. IIIA, the staggering may be seen most immediately from plots of the second difference

S(L) [Fig. 7(d–f)], which has minima at even L for γ-soft staggering or at odd L for triaxial

staggering.

The “centrifugal stretching” phenomenon in the yrast band, i.e., reduction of

E(L+
1 )/E(2

+
1 ) relative to L(L + 1) spacing, persists [Fig. 7(b,c)] at about the same level

as for χ = 50. However, the growth in rotational constant (and general deviation from

rotational behavior) for the excited, especially γγ, bands is tamed relative to the axial cal-

culation. This may be at least qualitatively understood by comparing the potential plots

in Fig. 7(a–c,insets). The axial calculation of Fig. 7(a), as noted in Sec. IIIA, provides

only weak confinement at the γγ band energies (γ . 40◦). Although the nominally “softer”

calculation of Fig. 7(b) does provide weaker confinement, compared to this axial calculation,

at the ground state energy, it actually provides stiffer confinement, to a smaller range of γ

values (γ . 30◦), at the γγ band energies. [This effect may be more properly considered a

reflection of the steep rise in the cos2 3γ term used to create the triaxial confinement than

an intrinsic property of the onset of triaxiality per se. There is no inherent calculational

reason not to consider a potential with, for instance, a triaxial minimum located at the same

position as in Fig. 7(c,inset) but a lower barrier at γ = 60◦.1] A similar observation may be

made for the calculation of Fig. 7(c), which provides confinement to triaxial γ at the ground

state energy, but simply provides (axial) confinement to γ . 30◦ at the γγ band energies.

For the weakly triaxial calculations considered here, the interband transition strengths

continue to follow an essentially linear pattern on a Mikhailov plot, as expected for rotational

bandmixing, as seen in Fig. 8. The γγ → γ transitions, in fact, demonstrate better linear

behavior [Fig. 8(e–f,h–i)] than for χ = 50 [Fig. 8(d,g)]. Interband intrinsic matrix elements

may therefore again be extracted from the Mikhailov analysis, as given in Table II. The

γ → g intrinsic matrix element remains essentially constant, and equal to that for the axial

χ = 50 calculation, but the γγ4 → γ, and γγ0 → γ intrinsic matrix elements decrease

substantially compared to the harmonic γ-vibrational values.

Such a reduction of the γγ → γ intrinsic matrix elements, relative to the harmonic

values, has already been proposed [10] on relatively simple grounds. Supposing an adiabatic

1 Any potential V (γ) satisfying the basic requirements from the Bohr coordinate symmetries may be ex-

panded in terms of the form cosn 3γ (this is equivalent to Fourier decomposition in terms of the form

cos 3nγ) and therefore may readily be accomodated for calculations within the ACM.



21

PH
gL

HaL

0+
2+
3+

4+
5+
6+

c=50g

HbL

c=200

HcL

x= 0.8
c=500

PH
gL

HdL

g

HeL Hf L

PH
gL

HgL

gg4

HhL HiL

0 30
g HdegL

PH
gL

HjL

gg0

0 30 60
g HdegL

HkL
0 30 60

g HdegL

HlL

FIG. 9: Probability distributions with respect to γ for low-lying quasi-band members in calculations

with Hamiltonian (5), for the axial cases χ = 50 (left) and χ = 200 (middle), both with ξ = 0,

and for the weakly triaxial case ξ = 0.8 with χ = 500 (right). Probability distributions are shown

for members of the ground state, γ, γγ4, and γγ0 quasi-bands (top to bottom, respectively), with

L ≤ 6.

separation of rotation from vibration, and furthermore imposing a small-γ approximation,

yields a one-dimensional Schrödinger equation problem in γ. In Ref. [10], a square well is

then adopted for V (γ) to simulate the onset of triaxiality. This yields the Y(5) estimate

shown for comparison in Table II.
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FIG. 10: The K content of low-lying quasi-band members in calculations with Hamiltonian (5),

for the axial cases χ = 50 (left) and χ = 200 (middle), both with ξ = 0, and for the weakly triaxial

case ξ = 0.8 with χ = 500 (right). Probabilities PK for K = 0 (solid curve), K = 2 (dashed curve),

and K = 4 (dotted curve) are shown for members of the ground state, γ, γγ4, and γγ0 quasi-bands

(top to bottom, respectively), with L ≤ 10.

V. WAVE FUNCTION PROBABILITY DISTRIBUTIONS

In the limit of adiabatic separation of the γ and rotational degrees of freedom, the wave

functions of all members of a band would be given by

ψKLM(γ,Ω) = FK(γ)ξ
(L)
KM(Ω), (13)



23

where the function FK(γ) would be identical for all states within the same band, independent

of L. The band is characterized by intrinsic angular momentum projection K. This may

be contrasted to the general situation (6), in which all even K with 0 ≤ K ≤ L (or

2 ≤ K ≤ L for L odd) can contribute, and the coefficients FK(γ) need not be directly

related for different states. The breaking of adiabaticity has already been seen to have

spectroscopic consequences (Secs. III and IV). Here we shall more directly inspect the wave

functions themselves, through the probability distributions. Specifically, we examine the

probability distribution P (γ), with respect the γ coordinate, after integration over Euler

angles, and the probability decomposition PK , with respect to the K quantum number for

the Euler angle (rotational) dependence, after integration over γ. The calculational details

are given in Appendix C.

First, considering P (γ), results are given in Fig. 9 for the softest axial calculation

of Sec. III (χ = 50) [Fig. 9(left)], the stiffest axial calculation of Sec. III (χ = 200)

[Fig. 9(middle)], and the weakly triaxial calculation of Sec. IV (ξ = 0.8 with χ = 500)

[Fig. 9(right)]. Successive panels (top to bottom) show the P (γ) distributions for the ground,

γ, γγ4, and γγ0 band members, respectively, with L ≤ 6. All the P (γ) vanish at γ = 0◦ and

γ = 60◦, due to the volume element for the Bohr coordinates (see Appendix C).

The basic features seen in Fig. 9 may be qualitatively understood in terms of the small-γ

limit of (5), which reduces (e.g., Ref. [10]) to a two-dimensional harmonic oscillator problem,

with two-dimensional angular momentum m = K/2 and with γ as the “radial” variable.

The K = 2nγ (or m = nγ) bands, i.e., the ground, γ, and γγ4 bands, have probability

distributions which are nodeless. These move towards higher γ with increasing phonon

number nγ [Fig. 9(a,d,g) or Fig. 9(b,e,h)]. The centers of the probability distributions are at

substantially nonzero γ values, in the 10◦–30◦ range, but move towards smaller γ for larger

stiffess [compare Fig. 9(left) with Fig. 9(middle)]. All these properties are as anticipated

from the γ̄ values in Fig. 5. For the γγ0 band, which is characterized by K = 2(nγ − 2) (or

m = nγ − 2), the probability distributions have a single node [Fig. 9(j,k)].

Adiabatic separation (13) implies identical P (γ) distributions for all members of the same

band. Indeed, the P (γ) curves are virtually indistinguishable between band members for the

examples in Fig. 9. The exceptions are, once again, the γγ bands in the χ = 50 calculation

[Fig. 9(g,j)]. There is some slight displacement between the curves for the different members

of the ground or γ bands in this calculation as well. The breaking of adiabaticity is also
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apparent for the γγ0 band members with L > 0, from the disappearance of the node in

P (γ), which indicates that multiple K values must contribute to the wave function.2

It is interesting to note the qualitative differences of the more triaxial calculation

[Fig. 9(right)] from the axial calculations [Fig. 9(left,middle)]. The P (γ) for the ground,

γ, and γγ4 bands (i.e., those with nodeless distributions) [Fig. 9(c,f,i)] are peaked at γ val-

ues roughly comparable to those for the χ = 50 “axial” calculation [Fig. 9(a,d,g)] (recall

that the parameters were chosen so that these calculations share the same γ band energy)

but are more sharply peaked. The γγ0 distribution [Fig. 9(l)] shows a marked enhacement

of the peak at small (axial) γ. This may seem counterintuitive for a “triaxial” calculation,

but, as already remarked in Sec. IV, the triaxial confinement is limited to the ground state

band energy.3

In interpreting the P (γ) distributions as indicators of adiabaticity, it should be noted

that, although adiabatic separation implies identical P (γ) distributions, the converse is not

strictly true. Adiabaticity might be violated, and several K values might contribute in (6),

but the various FK(γ) for the different band members may be related such that, nonetheless,

the same P (γ) distributions are obtained after integration over Euler angles. Therefore, these

distributions can only be conclusively taken to indicate adiabaticity if it is also known that

only one K value contributes significantly.

The contributions of different K values in each of the bands (ground, γ, γγ4, and γγ0)

are shown in Fig. 10, for each band member with L ≤ 10. For the calculations in Fig. 10,

the bandhead states have essentially pure K. The largest admixture in a bandhead state

is ∼ 3% for the γγ4 bandhead in the χ = 50 calculation, but the bandhead K admixtures

in the other calculations are all < 10−3. (Note that the γγ0 bandhead, as an L = 0 state,

trivially has pure K = 0.) The admixtures increase with L within each band. Again, the

extremes are in the γγ bands for χ = 50, where the admixtures account for approximately

half the probability at L = 10 [Fig. 10(g,j)]. In contrast, for the weakly triaxial calculation

2 When only one K term contributes to (13), a zero-crossing in FK(γ) necessarily yields a zero-valued

minimum in P (γ). If, instead, the minimum is washed out, it may be concluded that multiple K terms

are contributing in (C2), such that these terms do not simultaneously have nodes at the same γ value.
3 Moreover, under adiabatic separation, the γ wave function for the excited K = 0 band must be orthogonal

to the ground state band wave function. Since this distribution has moved to larger γ values, the redis-

tribution in probability to the smaller-γ peak for the excited band can be understood from orthogonality

constraints, following arguments similar to those applied in Ref. [29] for prolate-oblate coexistence.
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[Fig. 10(right)], the K admixtures in the γγ bands are actually slightly smaller than for the

ground state band. Indeed, they closely match theK admixtures of the corresponding bands

in the stiff axial χ = 200 calculation [Fig. 10(middle)]. This observation is consistent with

the characterization of these bands as relatively “good” axial rotational bands, as suggested

spectroscopically in Sec. IV.

VI. CONCLUSION

The possibility of exact diagonalization of the Bohr Hamiltonian for essentially arbitrary

β and γ stiffness opens the door for direct comparison of the Bohr Hamiltonian predictions

with experiment throughout the range of possible dynamics for the nuclear quadrupole

degree of freedom. At a phenomenological level, this permits meaningful tests of the Bohr

Hamiltonian for general rotor-vibrator nuclei.

For instance, in the past, interpretation of rotational “phonon” states, although nominally

within the Bohr description, has largely been at a schematic level (e.g., Refs. [44, 46–49]):

adiabatic separation of the rotational and vibrational degrees of freedom is assumed, the

β and γ excitations are taken to be harmonic, and phonon selection rules are assumed for

electric quadrupole transitions. These predictions are then adjusted by the leading-order

spin-dependent bandmixing relation, but with ad hoc mixing parameters. Here, instead,

we explore exact predictions of the Bohr Hamiltonian, both for axial and weakly triaxial

confinement.

The present analysis, which has been restricted to the γ and rotational degrees of free-

dom, provides a starting point for understanding the full dynamics involving all five Bohr

coordinate degrees of freedom, i.e., considering coupling with the β degree of freedom as

well. Many of the qualitative properties of the present solution may be expected to carry

over (see, e.g., Fig. 4 of Ref. [26]). However, the introduction of β softness may generally be

expected to quantitatively alter the results, for instance, further attenuating the rotational

character of the bands [e.g., reducing the ratio E(4+1 )/E(2
+
1 )]. Moreover, in the case of near

degeneracy of the γ phonon or multiphonon bands with bands involving β excitations, band-

mixing can substantially alter the results. Therefore, detailed comparison with experiment

should be made in the context of a full treatment incorporating β softness.

Microscopic descriptions of nuclear collectivity rely upon a reduction of the many-body
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problem to one involving effective collective degrees of freedom. Mean-field approaches

to deriving the quadrupole collective dynamics (reviewed in, e.g., Refs. [27, 50, 51]) yield

a Hamiltonian involving a much more general, coordinate-dependent form for the kinetic

energy operator than the conventional but schematic Laplacian form considered in (1). The

resulting generalized Bohr Hamiltonian [27] may be represented in terms of coordinate-

dependent moments of inertia. It should be noted that the ACM can readily accomodate

Hamiltonians involving much more general differential operators [16] in the β and angular

variables than the simple Laplacian form. For instance, scalar-coupled products of the

quadrupole momentum tensor p and coordinate tensor q constitute an important special

case considered in the geometric collective model [4, 6]. The Bohr kinetic energy is obtained

as the lowest-order term (p × p)(0), and attention in phenomenological studies has largely

been limited to the next term (p× q×p)(0). These and higher-order terms in the coordinate

dependence may be combined to recover much or all of the flexibility of the generalized Bohr

Hamiltonian [52].

Even further generalizations may be required. For instance, the Sp(3,R) symplectic shell

model framework gives rise to a collective model in which the generalized Bohr Hamiltonian

must be augmented with a vorticity degree of freedom [53]. Since the collective model serves

as the intermediate link between microscopic theories and spectroscopic predictions, it is

essential to determine the limitations of the Bohr Hamiltonian and the nature of the modifi-

cations required such that its predictions can accurately describe the observed phenomena.

Acknowledgments

Valuable discussions with N. V. Zamfir, D. J. Rowe, S. De Baerdemacker, F. Iachello,

S. Frauendorf, and A. Aprahamian are gratefully acknowledged. This work was supported

by the US DOE under grant DE-FG02-95ER-40934.

Appendix A: Restriction to angular coordinates

In this appendix, the reduction of the full Bohr Hamiltonian (1) to an angular Hamilto-

nian (4) is briefly summarized. First, for convenience, let us simplify the Bohr Hamiltonian
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to its equivalent dimensionless form

H = −
[

∆̂− Λ̂2

β2

]

+ V (β, γ), (A1)

where

∆̂ =
1

β4

∂

∂β
β4 ∂

∂β
, (A2)

by rescaling H → (2B/~2)H and V → (2B/~2)V . The two routes to obtaining an angular

Hamiltonian indicated in Sec. IIA proceed more precisely as follows:

(1) Schematically, rigid β deformation (β ≈ β0) is obtained if the nuclear wave function

Ψ(β, γ,Ω) is highly localized by a stiff potential with respect to β. For specificity, consider

V (β, γ) = u(β) + v(γ). Then H ≈ Hβ + β−2
0 HγΩ, where Hβ = −∆̂ + u(β) and HγΩ = Λ̂2 +

β2
0v(γ). The separated eigenfunctions Ψ(β, γ,Ω) = f(β)ψ(γ,Ω) satisfy Hβf(β) = εβf(β)

and HγΩψ(γ,Ω) = εγΩψ(γ,Ω). Note that the angular problem is thus of the form (4), with

V (γ) ≡ β2
0v(γ). The total energy eigenvalues E, defined by HΨ(β, γ,Ω) = EΨ(β, γ,Ω),

are obtained additively as E = εβ + β−2
0 εγΩ. Therefore, for fixed β excitation (e.g., the

ground state for the β problem), the eigenvalues of the angular problem directly give the

energy spectrum. These arguments apply only in the limit of stiff β confinement, and finite

β softness may be expected to lead to β-γ coupling [17].

(2) Alternatively, for V (β, γ) = u(β) + v(γ)/β2, the Bohr Hamiltonian eigenproblem is

exactly separarable [28]. In this case, H = Hβ + β−2HγΩ, where Hβ = −∆̂ + u(β) and

now HγΩ = Λ̂2 + v(γ). The separated eigenfunctions Ψ(β, γ,Ω) = f(β)ψ(γ,Ω) satisfy

(Hβ + β−2εγΩ)f(β) = Ef(β) and HγΩψ(γ,Ω) = εγΩψ(γ,Ω). Note that the angular problem

is of the form (4) with V (γ) ≡ v(γ). The eigenvalue εγΩ from the angular problem now

appears in the β equation as a “centrifugal” coefficient, i.e., multiplying β−2. It therefore

enters indirectly into the total eigenvalue E, through the β eigenproblem, rather than directly

giving the energy spectrum.

Appendix B: Mikhailov relations

This appendix adapts the leading-order ∆K = 2 bandmixing relations (11) and (12) to

the form required for the analysis of Figs. 6 and 8. For K-decreasing transitions (e.g., γ → g

and γγ4 → γ), in terms of B(E2) reduced transition probabilities,

B(E2;KiJi → KfJf) = σ2
i (JiKi2− 2|JfKf )

2M2
1

[

1 + a[Jf(Jf + 1)− Ji(Ji + 1)]
]2
, (B1)
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with normalized positive slope parameter a = −M2/M1. Thus, the intrinsic matrix element

is extracted as

〈Kf |M′|Ki〉 =M1[1− 4(Kf + 1)a]. (B2)

Similarly, for K-increasing transitions (e.g., γγ0 → γ),

B(E2;KiJi → KfJf) = σ2
i (JiKi2 + 2|JfKf )

2M2
1

[

1 + a[Jf(Jf + 1)− Ji(Ji + 1)]
]2
, (B3)

where now the positive slope parameter is a = +M2/M1, and thus the intrinsic matrix

element is extracted as

〈Kf |M′|Ki〉 =M1[1 + 4(Ki + 1)a]. (B4)

Appendix C: Wave function probability relations

In this appendix, expressions are given for the probability distribution P (γ), with respect

to the γ coordinate, and the decomposition PK , with respect to the K quantum number, for

a wave function ψ(γ,Ω). Note that the volume element for the coordinates (γ,Ω) is given

by |sin 3γ| dγ dΩ.
The probability distribution P (γ) is obtained by integration over Euler angles, as

P (γ) = |sin 3γ|
∫

|ψ(γ,Ω)|2 dΩ, (C1)

and thus, in terms of the (real) coefficient functions FK(γ) appearing in (6),

P (γ) =
16π2

2L+ 1
|sin 3γ|

L
∑

K=0
even

[FK(γ)]
2. (C2)

The angular integration has been carried out using the orthogonality integral for the D func-

tions [54], which gives
∫

ξ
(L′) ∗
K ′M ′(Ω)ξ

(L)
KM(Ω) dΩ = (16π2)/(2L+1)δL′LδK ′KδM ′M , unless K = 0

with L odd, in which case the integral vanishes [21]. For the eigenfunctions ψLiM(γ,Ω)

obtained with respect to the SO(5) ⊃ SO(3) basis, the known quantities are the diagonal-

ization coefficients aLij appearing in (9) and the functions FLiK(γ) in the representation of

the SO(5) ⊃ SO(3) spherical harmonics

ΨLiM(γ,Ω) =

L
∑

K=0
even

FLiK(γ)ξ
(L)
KM(Ω), (C3)
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where we again use a counting index to label the spherical harmonics. In terms of these,4

PLi(γ) =
16π2

2L+ 1
|sin 3γ|

L
∑

K=0
even

∑

jk

aLijaLikFLjK(γ)FLkK(γ). (C4)

The contribution of each K value to ψ(γ,Ω), integrated over γ, is

PK =
16π2

2L+ 1

∫ π/3

0

[FK(γ)]
2 sin 3γ dγ. (C5)

For the functions ψLiM (γ,Ω), represented by aLij coefficients with respect to the SO(5) ⊃
SO(3) basis, these probabilities may be computed as

PLi;K =
16π2

2L+ 1

∑

jk

aLijaLik

∫ π/3

0

FLjK(γ)FLkK(γ) sin 3γ dγ. (C6)
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