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A rainbow-ladder truncation of QCD’s Dyson-Schwinger equations, constrained by existing appli-
cations to hadron physics, is employed to compute the valence-quark parton distribution functions
of the pion and kaon. Comparison is made to π-N Drell-Yan data for the pion’s u-quark distribution
and to Drell-Yan data for the ratio uK(x)/uπ(x): the environmental influence of this quantity is a
parameter-free prediction, which agrees well with existing data. Our analysis unifies the computa-
tion of distribution functions with that of numerous other properties of pseudoscalar mesons.
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Experimental information on the quark and gluon par-
ton distribution functions (PDFs) in the pion have pri-
marily been inferred from the Drell-Yan reaction [1–3]
in pion-nucleon and pion-nucleus collisions. Kaon PDF
data exists in the form of the ratio uK(x)/uπ(x) [1, 4].
While the nucleon PDFs are now fairly well determined,
the pion and kaon PDFs remain poorly known. Reference
[5] reviews both the experimental and theoretical status
of nucleon and pion PDFs. Since the pion is central to
hadron physics, and its key characteristics are dictated
by dynamical chiral symmetry breaking, pion structure
is a critical testing ground for our understanding of non-
perturbative QCD. Much more theoretical work has been
devoted to the pion elastic charge form factor (e.g., [6]);
ππ scattering (e.g., [7]); and the pion electromagnetic
transition form factor (e.g., [8]) than has been devoted
to the pion PDFs. Herein we take a material step toward
ameliorating that deficit.

Lattice-regularized QCD is restricted to low-order mo-
ments of the PDFs: the pointwise x-dependence is not
directly accessible [5, 9]; and model calculations of PDFs
are challenging. Chiral symmetry has guided studies of
pion PDFs within the Nambu–Jona-Lasinio (NJL) model
[10] at the expense of: an unphysical point-particle struc-
ture for the pion Bethe-Salpeter amplitude; and am-
biguities from a dependence upon regularization pro-
cedure owing to the lack of renormalizability. Con-
stituent quark models [11], instanton-liquid models [12]
and semi-empirical hadronic Fock state expansion mod-
els [13] have also been used, with the last reporting results
for uK(x)/uπ(x), too. In all these approaches, it is dif-
ficult to have pQCD elements coexisting naturally with
nonperturbative aspects of a bound state while respect-
ing the quantum field theoretical nature of the underlying
dynamics. The large x behavior of the pion PDFs pro-
vides an illustration. The QCD parton model [14] and
pQCD [15] are clear: at a scale of order-ΛQCD the behav-
ior is uπ(x) ∝ (1 − x)α with α = 2 + γ where γ > 0 is a
logarithmic correction. However the above models imply

an α ranging from 0 to 1, or at most 1.5 [5].

These issues may in principle be addressed if the
PDFs can be obtained from truncations of QCD’s Dyson-
Schwinger equations. The DSEs are a hierarchy of cou-
pled integral equations for the Schwinger functions (n-
point functions) of a theory. Bound-states appear as
poles in the appropriate n-point functions; e.g., the
bound-state Bethe-Salpeter equation (BSE) of field the-
ory appears after taking residues in the inhomogeneous
DSE for the appropriate color singlet vertex. Numer-
ous reviews; e.g., [16], describe the insight into hadron
physics achieved through the use of the rainbow-ladder
(RL) truncation of the DSEs, which is the leading-order
in a systematic, symmetry-preserving scheme [17].

The first DSE study of PDFs was conducted for the
pion [18] in an analysis that employed phenomenolog-
ical parametrizations of both the Bethe-Salpeter ampli-
tude and dressed-quark propagators. The purpose of this
present work is, for the first time: to employ numeri-
cal DSE solutions in the computation of the pion and
kaon PDFs, utilizing the same RL model that success-
fully predicted electromagnetic form factors [6, 19–21];
and to study the ratio uK(x)/uπ(x) in order to elucidate
aspects of the influence of an hadronic environment.

In the Bjorken-limit, DIS selects the most singular be-
havior of a correlator of quark fields of the target with
light-like and causal distance separation z2 ∼ 0+. With
incident photon momentum along the negative 3-axis, the
kinematics selects z+ ∼ z⊥ ∼ 0 leaving z− as the finite
distance conjugate to quark momentum component xP+,
where x = Q2/2P · q is the Bjorken variable, q2 = −Q2 is
the spacelike virtuality of the photon, and P is the target
momentum. To leading order in the operator product ex-
pansion, the target structure functions are proportional
to the charge-weighted sum of PDFs, qf (x), for parton
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FIG. 1. (Color online) Diagrammatic representation of par-
ton distributions. Top panel – the exact parton distribution
corresponding to Eq. (2); and bottom – Rainbow-ladder trun-
cation of the amplitude G. S2 is the qq̄ propagator.

of flavor f . The PDF is given by the correlator [22, 23]

qf (x) =
1

4π

∫

dλ e−ixP ·nλ〈π(P )|ψ̄f (λn) 6nψf (0)|π(P )〉c ,

(1)
expressed here in manifestly Lorentz-invariant form.
In the infinite momentum frame, qf (x) is the prob-
ability that a single f -parton has momentum frac-
tion x = k · n/P · n [23]. In the above, nµ, and
(for later use) pµ, are light-like vectors satisfying
n2 = p2 = 0 and n · p = 2. They form a convenient ba-
sis for the longitudinal sector of 4-vectors. One has
k · n = k+ and k · p = k−. The dominant component
of q is parallel to n, i.e., q− dominates. Note that
qf (x) = −qf̄(−x), and that the valence quark amplitude
is qvf (x) = qf (x) − qf̄ (x). It follows from Eq. (1) that
∫ 1

0
dx qvf (x) = 〈π(P )|J+

f (0)|π(P )〉/2P+ = Fπ(0) = 1.
In our DSE framework, dynamical information on the

various nonperturbative elements, such as propagators
and bound state amplitudes, is available in a Euclidean
momentum representation. (In our Euclidean metric:
{γµ, γν} = 2δµν ; γ

†
µ = γµ; γ5 = γ4γ1γ2γ3; a·b = Σ4

i=1aibi;

6n = γ ·n; and Pµ timelike ⇒ P 2 < 0.) The corresponding
formulation of Eq. (1) is

qf (x) = −
1

2

∫

d4k

(2π)4
δ(k · n− xP · n) trcd[i 6nG(k, P )] ,

(2)
where trcd denotes a color and Dirac trace, and G(k, P )
represents the forward q̄-target scattering amplitude. In
Euclidean metric the vectors n, p, P satisfy n2 = 0 = p2,
n · p = −2, P 2 = −m2

π, and P · n = −mπ.
The top part of Fig. 1 illustrates Eq. (2). In rainbow-

ladder truncation, which sums a symmetry-preserving
subset of dressed-quark and -gluon contributions to
the bound-state, we have the decomposition illustrated
in the bottom part of Fig. 1. The 4-point function
S2 is the dressed-qq̄ two-body propagator and Γπ is

the Bethe-Salpeter bound-state amplitude, both com-
puted in the RL truncation. The schematic form
∫

d4k S2 ⊗ i 6n δ(k · n− xP · n) = S(ℓ) Γn(ℓ;x)S(ℓ) is one
way to specify the required dressed quark vector vertex
Γn(ℓ;x). The RL truncation of Eq. (2) for the valence
uπ(x) is thus

uπ(x) = −
1

2

∫

d4ℓ

(2π)4
trcd [Γπ(ℓ, P )

×Su(ℓ) Γ
n(ℓ;x)Su(ℓ) Γπ(ℓ, P )Sd(ℓ− P )] , (3)

where the dressed-quark propagator is S(ℓ; ζ) =
1/[i 6ℓA(ℓ2; ζ) +B(ℓ2; ζ)], with ζ being the renormaliza-
tion mass scale. Note that the

∫

d4k evident in Fig. 1 is
contained within the definition of Γn(ℓ;x). This vertex
satisfies an inhomogeneous BSE (here with a RL kernel)
specified by the driving-term i 6n δ(ℓ · n− xP · n).
This selection of dynamics is an exact parallel to the

RL treatment of the pion charge form factor at Q2 = 0,
wherein the dressed vertex is defined with inhomoge-
neous term iγµ. Chiral symmetry and vector current
conservation are preserved [6, 19]. Equation (3) en-

sures
∫ 1

0
dx qvf (x) = 1 for f = u, d̄ automatically since

∫

dxΓn(ℓ;x) gives the Ward-identity vertex and the re-
sult follows from canonical normalization of the BS am-
plitude.
We adopt the representation ℓµ = 1

2 (αp
µ + βnµ) + kµ⊥

to transform to new variables α = −ℓ · n and β = −ℓ · p,
thus converting Eq. (3) to the form

uπ(x) =
−JE
2(2π)4

∫ +∞

−∞

dβ d2ℓ⊥ T (n, p; ℓ, P )
∣

∣

α=xP ·n
, (4)

where: JE = −i/2 is the Jacobian of the variable trans-
formation; and T is the result of the trace in Eq. (3),
using Γn(ℓ;x) ≈ nµ∂S

−1(ℓ)/∂ℓµ δ(ℓ · n− xP · n), which
is the correct result from the Ward Identity after

∫

dx.
Since qf (x) is obtained from the hadron tensor Wµν ,

which in turn can be formulated from the discontinu-
ity T µν(ǫ)− T µν(−ǫ) of the forward Compton amplitude
T µν , we observe that all enclosed singularities from the
difference of contours cancel except for the cut that pro-
duced the delta function constraint on α.
We employ the RL-DSE model developed in Refs. [24–

26], in which the BSE kernel takes the form K =

−4π αeff(k
2)Dfree

µν (k)λ
i

2 γµ ⊗ λi

2 γν , where k is the gluon
momentum. The parameters used here are exactly as
listed in Ref. [26]; besides the current quark masses, there
is one infrared strength parameter for αeff(k

2) and it re-
produces QCD’s one-loop renormalization-group behav-
ior for k2 & 2GeV2. A more general method for treating
K has recently become available [27]. The DSE that pro-
duces S(ℓ) is also determined by αeff(k

2) [24–26]; and the
combination of the DSE and BSE produces dressed color-
singlet vector and axial-vector vertices satisfying their
respective Ward-Takahashi identities. This ensures that
the chiral-limit ground-state pseudoscalar bound-states
are the massless Goldstone bosons from dynamical chiral
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TABLE I. Illustrative selection of DSE results [6, 19, 20, 26]
obtained with the RL kernel employed herein compared with
experimental values [29]. (Dimensioned quantities are listed
in GeV or fm2, as appropriate.)

mπ fπ mK fK r2π r2
K+ gπγγ r2πγγ

expt. 0.138 0.092 0.496 0.113 0.44 0.34 0.5 0.42
calc. 0.138 0.092 0.497 0.110 0.45 0.38 0.5 0.41

symmetry breaking [24, 25]; and it ensures electromag-
netic current conservation [28]. This kernel is found to be
successful for, amongst other things, light-quark meson
properties [26] including electromagnetic elastic [6, 19]
and transition [20, 21] form factors. Selected pion and
kaon results are displayed in Table I.
For Γπ(ℓ, P ) we employ the most general form

Γπ(ℓ, P ) = γ5 [iEπ(q;P ) + 6PFπ(q;P )

+ 6q Gπ(q;P ) + σµνqµPνHπ(q;P )] , (5)

where q = ℓ− P/2 is the relative qq̄ momentum appropri-
ate to Eq. (3). For a charge-conjugation eigenstate (e.g.,
the pion), the invariant amplitudes E,F and H are even
in q · P , while G is odd. The kaon invariant amplitudes
contain both even and odd components. We expand the
q ·P dependence in Chebschev polynomials [26], keeping
terms of order n = 0− 3. The domain of ℓ2 over which
the quark propagators are needed in this application is
larger than what is available from previous solutions of
the quark DSE. We therefore adopt a constituent mass
pole approximation for the denominator of the specta-
tor quark propagator [18]. Constituent spectator masses
(Mu,Ms) = (0.4, 0.55)GeV permit a minimal adjustment
to establish the normalization 〈x0〉. We compared the ap-
proximation Γn(ℓ;x) ≈ nµ∂S

−1(ℓ)/∂ℓµ δ(ℓ · n− xP · n)
with the bare vertex truncation and found that no dis-
tribution moment changed by more than 3%. This ap-
proximation becomes exact in the limit of an infrared
dominant RL kernel [30].
In Fig. 2 we display our DSE result [31] for the va-

lence u-quark distribution evolved to Q2 = (5.2 GeV)2

in comparison with πN Drell-Yan data [3] at a scale
Q2 ∼ (4.05 GeV)2 obtained via a LO analysis. Our dis-
tribution at the model scale Q0 is evolved using leading-
order DGLAP. The model scale is fixed toQ0 = 0.57 GeV
by matching the xn moments for n = 1, 2, 3 to the ex-
perimental analysis given at (2GeV)2 [34]. Our mo-
mentum sum rule result 〈x〉u+d = 0.74 (pion), 〈x〉u+s =
0.76 (kaon) at Q0 shows clearly the implicit inclusion of
gluons as a dynamical entity in a true covariant bound-
state approach. Only a point-meson BS amplitude can
produce a value of 1.0 for the momentum sum rule at
Q0 [8].
In Fig. 2 we also show the result from the first

DSE study [18], which employed phenomenological
parametrizations of the nonperturbative elements. Our
present calculation lies marginally closer to the Drell-Yan
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FIG. 2. (Color online) Pion valence quark distribution func-
tion evolved to (5.2 GeV)2. Solid curve – full DSE calculation
[31]; dot-dashed curve – semi-phenomenological DSE-based
calculation in Ref. [18]; filled circles – experimental data from
Ref. [3], at scale (4.05 GeV)2; dashed curve – NLO re-analysis
of the experimental data [32]; and dot-dot-dashed curve –
NLO reanalysis of experimental data with inclusion of soft-
gluon resummation [33].

data in Ref. [3] at high-x. However, this is not significant
because both DSE results agree with pQCD; viz., u(x) ∼
(1− x)α with α & 2 and growing with increasing scale,
which is not true of the reported Drell-Yan data.

Motivated by this, a NLO reanalysis of the data was
performed [32]; and we also show that result at Q2 =
(5.2 GeV)2 in Fig. 2. It does clearly reduce the extracted
PDF at high-x but not enough to resolve the data’s ap-
parent discrepency with pQCD behavior, which is dis-
cussed at length in Ref. [5]. The DSE exponents are 2.4
at model scaleQ0 = 0.54GeV in Ref. [18], and 2.1 at scale
Q0 = 0.57GeV for the present study. DSE analyses do
not allow much room for a larger PDF at high-x. A res-
olution of the conflict between data and well-constrained
theory has recently been proposed: a reanalysis of the
original data at NLO with a resummation of soft gluon
processes [33] produces a PDF whose behavior for x > 0.4
is essentially identical to that of the earlier DSE calcula-
tion [18], as is apparent in Fig. 2.

In Fig. 3 we display the first nine moments of our re-
sult for uπ(x) at scale Q2 = (5.2 GeV)2 in comparison
with the earlier DSE result from Ref. [18] and the NLO
reanalysis [32] of the original E615 data, all plotted as a
%-deviation from the moments of the most recent anal-
ysis of Ref. [33]. Considering that the high moments are
small, e.g., 〈x9〉 ∼ 0.003, the two DSE results are both
equally well in accord with the recent analysis.

The ratio uK/uπ measures the local hadronic environ-
ment. In the kaon, the u-quark has a heavier partner
than in the pion and this should cause u(x) to peak
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FIG. 3. (Color online) Moments of the pion’s valence u(x)
at scale (5.2 GeV)2, shown as a % deviation from the re-
cent (ASV) re-analysis [33] (NLO, with soft gluon resumma-
tion) of the 1989 E615 πN Drell-Yan data [3]. Filled cir-

cles – present full DSE calculation [31]; filled squares – semi-
phenomenological DSE-based calculation [18]; and filled dia-

monds – re-analysis (NLO, without soft gluon resummation)
of the same Drell-Yan data [32].

at lower-x in the kaon. Our DSE calculation [31] is
shown in Fig. 4 along with available Drell-Yan data [1, 4],
which does not separate sea and valence quarks. Our
parameter-free result agrees well with the data. The ra-
tio at x = 0 approaches one under evolution owing to
the increasingly large population of sea-quarks produced
thereby [35]. On the other hand, the ratio at x = 1 is a
fixed-point under evolution; i.e., it is independent of the
scale Q2, and is therefore a persistent probe of nonper-
turbative dynamics [5].

In Fig. 4 we also display a calculation which employs
a reduced BS amplitude: only the leading two invariant
amplitudes E(q;P ) and F (q;P ) are retained, and each
is truncated to the lowest Chebychev moment in q · P ,
i.e., E(q;P ) → Ẽ(q2). The field theory variable q · P is
a constant in quantum mechanics. (These reductions in
the BSE vertices occur within a NJL model description;
but that model also ignores the q2 dependence of the
vertices.) These simplifications do not change the quali-
tative behavior of the ratio, but the detailed quantitative
agreement is impaired.

An estimate of the leading large-x behavior
uK(x) ∼ AK (1 − x)α can be made in the limit
where the quark propagators are characterized by
constituent masses Mu,Ms and the vertex is taken to
be i 6n δ(ℓ · n − xP · n), preserving the Ward Identities.
We also truncate ΓK to γ5EK(q2) = γ5NK/(q

2 + Λ2
K)

where q = ℓ− P/2. The quark mass dependence of AK

and Aπ will provide an estimate of uK(1)/uπ(1). For
x > 1/2 the pole in the spectator quark propagator is
the only one in the upper half plane and the ℓ− integral
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FIG. 4. (Color online) DSE prediction for the ratio of u-
quark distributions in the kaon and pion [5, 31]. The full
Bethe-Salpeter amplitude produces the solid curve; the re-
duced BS amplitude produces the dashed curve. The reduced
amplitude retains only the invariants and amplitudes involv-
ing pseudoscalar and axial vector Dirac matrices, and ignores
dependence on the variable q ·P . These are part of the reduc-
tions that occur in a pointlike treatment of the pseudoscalar
mesons. The experimental data is from [1, 4].

may readily be evaluated to yield

uK(x) =
4Ncπ

2

(2π)4

∫ ∞

µm(x)

dµ
xM2 + µ+M2

u

[µ+M2
u]

2
E2

K(q2).

(6)
Here: M2 = m2

K − (Ms −Mu)
2; we have changed the

integration variable from ~ℓ⊥ to µ = −ℓ2, where the
latter is the value at the ℓ− pole; q2 evaluated at
the ℓ− pole is q2 = m2

K/4 + (µ−M2
s )/2; and µm(x) =

a/(1− x) − xm2
K , with a = xM2

s . This divergence of
the lower limit for large x guarantees that the result is
completely determined by the ultraviolet behavior of the
propagators and bound state amplitudes.
The integral can be expressed as

uK(x) = N

∫ ∞

0

dµ̂
a

1−x + b+ µ̂

[ a
1−x + c+ µ̂]2

(
a

1− x
+ d+ µ̂)−n,

(7)
where bound-state amplitudes determined by one gluon
exchange correspond to n = 2. The quantities a, b, c, d
depend on the mass-dimensioned scales in the system
and are nonsingular in x: a scales with the square of
the spectator quark mass and other details are imma-
terial. A change of variable to µ̄ = (1− x)µ̂/a shows
that uK(x) ∝ [(1− x)/a]n when a/(1−x) is greater than
any physical mass-scale in the system. Running of the
struck quark mass over a wide domain can be accom-
modated. We thus have uK(x) ∝ NK (1− x)2/M4

s and
uπ(x) ∝ Nπ (1− x)2/M4

u. Note that it is the bound-state
amplitudes that completely determine the exponent α [5]:
if the argument of EK/π did not diverge at large-x, the
combined scaling effect of the propagators would vanish,
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giving α = 0.

The above analysis applied to the ratio suggests
uK(1)/uπ(1) ∼

fπ
fK

(Mu/Ms)
4 ∼ 0.2, where the ratio of

Bethe-Salpeter amplitude normalization constants is es-
timated from the experimental fπ/fK . This estimate is
in fair accord with our full calculation in Fig. 4. The NJL
model with a sharp cutoff yields (Mu/Ms)

2 [10]. How-
ever, in general this lacks a physical contribution from
bound state amplitudes and NJL results depend sensi-
tively upon the regularization scheme.

With this study we have unified the computation of
distribution functions that arise in analyses of deep in-
elastic scattering with that of numerous other properties
of pseudoscalar mesons, including meson-meson scatter-
ing and the successful prediction of electromagnetic elas-

tic and transition form factors. Our results confirm the
large-x behavior of distribution functions predicted by
the QCD parton model; provide a good account of the
π-N Drell-Yan data for uπ(x); and our parameter-free
prediction for the ratio uK(x)/uπ(x) agrees with extant
data, showing a strong environment-dependence of the
u-quark distribution.
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was supported in part by the U. S. National Science
Foundation, under grant No. NSF-PHY-0903991, part
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U. S. Department of Energy, Office of Nuclear Physics,
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Knowledge Innovation Program of the Chinese Academy
of Sciences, Grant No. KJCX2.YW.W10.
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