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For nearly forty years, the Galster parametrization has been employed to fit existing data for
the neutron electric form factor, Gn

E, vs. the square of the four-momentum transfer, Q2. Typically
this parametrization is constrained to be consistent with experimental data for the neutron charge
radius. However, we find that the Galster form does not have sufficient freedom to accommodate
reasonable values of the radius without constraining or compromising the fit. In addition, the Gn

E

data are now at sufficient precision to motivate a two-parameter fit (or three parameters if we include
thermal neutron data). Here we present a modified form of a two-dipole parametrization that allows
this freedom and fits both Gn

E (including recent data at both low and high four-momentum transfer)
and the charge radius well with simple, well-defined parameters. Analysis reveals that the Galster
form is essentially a two-parameter approximation to the two-dipole form, but becomes degenerate
if we try to extend it naturally to three parameters.

I. INTRODUCTION

The electromagnetic form factors of nucleons provide
critical information about the distribution of electric
charge and magnetization within these fundamental par-
ticles of nuclear physics [1, 2]. For the specific case of the
neutron, the non-uniform charge distribution leads to a
finite value for the mean squared charge radius,

〈
r2n
〉
,

which corresponds to the second moment of the Breit-
frame distribution in position space, ρB(r). The charge
radius has been measured via the scattering of low en-
ergy (0.1 eV to 1000 eV) neutrons from high-Z, diamag-
netic atoms [3, 4]. It can also be determined from the
scattering of high energy electrons (0.1 GeV to 3 GeV)
from effective neutron targets. In the former case, the
charge radius is determined from measurements of the
neutron-electron scattering length, whereas in the latter
case it is determined from the slope of the neutron elec-
tric form factor, Gn

E, in the limit of zero four-momentum
transfer, Q2. “Double-polarization” experiments, which
employ both polarized electrons and polarized targets
and/or recoil polarimeters, have substantially improved
our knowledge of Gn

E(Q2). These results provide more
detailed information about the spatial extent of the pos-
itive and negative charge [5–7]. The shape of Gn

E(Q2) is
compared to theoretical models of the nucleon, but is also
parametrized for use in other investigations [1, 8]. Our
discussion here focuses on an issue in the relationship
of the charge radius determined from neutron-electron
scattering with the long-standing but nevertheless phe-
nomenological Galster parametrization.

In 1971, the Galster parametrization [9] was intro-
duced to fit data for Gn

E vs. Q2. After extensive new
experimental results with increased accuracy and range
in Q2, this form has continued to be employed. For ex-
ample, in 2004 Kelly used the Galster form, written as

Gn
E(Q2) =

Aτ

(1 +Bτ)
GD(Q2) (1)

where τ = Q2/(4m2
pc

2) and mp=0.9383 GeV/c2. The

dipole form factor is GD(Q2) = (1 + Q2/Λ2)−2 with
Λ2 = 0.71 (GeV/c)2, and A and B are fitted parame-
ters [8]. We will refer to this as the Galster form, but
note that it is the approach employed by Kelly, with two
free parameters. The parameter A can be related to 〈r2n〉
with the relationship

〈r2n〉 = − 6
dGn

E

dQ2

∣∣∣∣
Q2=0

=
−3A

2m2
pc

2
. (2)

In Fig. 1 we show the world’s data for Gn
E from double-

polarization experiments, including recent experiments
at low[10] and high momentum transfer[11]. Our goal
here will be to fit these data and compare the results
to independent determinations of the charge radius from
neutron-electron scattering. Towards this end, we will
consider both fits in which the slope of Gn

E is allowed to
vary freely and fits in which an experimental value for the
slope is included as a datum in the fit. In the Appendix,
we list the specific Gn

E values and uncertainties employed
in the plots and fits below, along with the references.

II. FITTING Gn
E WITH THE GALSTER FORM

If we fit to Eq. (1) and allow both parameters to vary
freely, ie. without constraint from experimental charge
radius determinations, we obtain 〈r2n〉 = −0.0935(48) fm2

with a reduced χ2 of 0.90. The difference between the fit-
ted value and the experimental value of Ref. [3] for 〈r2n〉
(−0.1149(35) fm2) is 0.0214(64) fm2, which is 3.3 times
its uncertainty. As discussed in Ref. [4] and references
therein, there are two groups of experimental charge ra-
dius determinations that differ by more than their respec-
tive uncertainties. For the Dubna group of charge radius
determinations 〈r2n〉 = −0.134(3) fm2 [4], which yields a
difference from the fitted value of 6.6 times the uncer-
tainty in the difference. If instead we include a datum
for 〈r2n〉 = −0.1149 fm2 or 〈r2n〉 = −0.134 fm2 in the fit,
we obtain reduced χ2 values of 1.27 or 2.13, respectively.
Hence there is disagreement between the neutron charge
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radius extracted from the Galster form and both the ex-
perimental results of Ref. [4] and Ref. [3]. The simplest
conclusion from this disagreement between the charge ra-
dius extracted from electron and thermal neutron scat-
tering is that there is an issue with the shape of the fit
function at low Q2, where Gn

E is sensitive to the charge
radius. This issue indicates that a better phenomenolog-
ical form is required that provides a parametrization for
Gn

E with the freedom to accommodate the charge radius
determined from thermal neutron scattering.

There was already some evidence for an issue even
before the addition of new data from Refs. [10] and
[11]. Fitting to the Galster form with two free parame-
ters, but without including these new recent data, yields
〈r2n〉 = −0.095(8) fm2 with a reduced χ2 = 0.96. If we
include a datum for 〈r2n〉 = −0.1149 fm2 or 〈r2n〉 = −0.134
fm2 in the fit, we obtain reduced χ2 values of 1.13 or 1.61,
respectively. Even without these new data the magnitude
of Gn

E at its peak was already fairly well established, and
the essence of the issue with the Galster fit is that this
magnitude over-constrains the slope at the origin.

The primary results of fitting with the two-parameter
Galster form are listed in Table I. Next we will consider
alternative forms. First we consider the physically moti-
vated, Galster-like parametrization discussed in Ref. [12].
The parameters in this fit are written slightly differently
than in Eq. (1), but for our purposes this fit corresponds
to fixing the parameter B at 6.65. However, Λ2 is now
allowed to vary. Including a datum from Ref. [3] we
obtain A=1.670(54), which yields 〈r2n〉 = −0.1107(32)
fm2, and Λ2 = 1.03(5) (GeV/c)2, with a reduced χ2=
1.20, slightly better than the corresponding Galster fit.
If the parameter B is allowed to vary, the fit is not stable
and converges to either A=1.730(52), B = 13.0(2.0) and
Λ2 = 1.76(27) (GeV/c)2 or A=1.725(52), B = 0.67(36)
and Λ2 = 0.468(37) (GeV/c)2, with reduced χ2 values of
0.88 or 0.90, respectively. Either value of B is far from
the value determined in Ref. [12], hence the fit to the
data do not support the original physics that motivated
it. Furthermore, despite the improved χ2 the instabil-
ity of the fit is undesirable. The origin of this issue is
discussed in Sec. IV.

III. FITTING Gn
E WITH TWO-DIPOLE FORMS

To investigate a two-dipole approach, we will employ
an early parametrization for Gn

E(Q2) [13]. In the notation
of this work, this form (which we refer to as the Bertozzi
form) was written

Gn
E(Q2) =

1

(1 +Q2r21/12)2
− 1

(1 +Q2r22/12)2
(3)

where Q2 is in units of fm−2. Each dipole form was
meant to represent the Fourier transform of a exponential
charge distribution, where the total charge in the posi-
tive (negative) distribution was equal to the electronic

TABLE I: Results of fitting Gn
E. The column labelled “〈r2n〉d”

lists the reference for the 〈r2n〉 datum included in the fit. For
the Galster form, the parameters A and B are listed, along
with the resulting value for 〈r2n〉. For the Bertozzi and mod-
Ber (modified Bertozzi) forms, the parameters 〈r2n〉, rav, and a
are listed (for the Bertozzi form the normalization parameter
a is fixed at unity). χ2

red is the reduced χ2 for the fit.“dof”
refers to the number of degrees of freedom for each fit.

form Eq. 〈r2n〉d A B 〈r2n〉 [fm2] χ2
red dof

Galster (1) — 1.409(82) 2.09(39) −0.0935(54) 0.90 20

Galster (1) [3] 1.664(47) 3.27(32) −0.1104(31) 1.27 21

Galster (1) [4] 1.950(43) 4.82(36) −0.1293(29) 2.13 21

form Eq. 〈r2n〉d rav [fm] a
〈
r2n
〉

[fm2] χ2
red dof

Bertozzi (3) — 0.709(19) 1 −0.0906(64) 0.94 20

Bertozzi (3) [3] 0.763(11) 1 −0.1107(32) 1.33 21

Bertozzi (3) [4] 0.809(10) 1 −0.1295(29) 2.14 21

mod-Ber (4) [3] 0.856(32) 0.115(20) −0.1147(35) 0.91 20

mod-Ber (4) [4] 0.950(30) 0.095(11) −0.1337(30) 0.96 20

charge e (−e). The two radii r1 and r2 were rewritten
as r21 = r2av + 1

2 〈r
2
n〉 and r22 = r2av − 1

2 〈r
2
n〉, where r2av is

the average of the squared radii for the two distributions
and 〈r2n〉 is the mean squared charge radius. By con-
straining 〈r2n〉 to an experimental value, Gn

E vs. Q2 was
parametrized using the single parameter rav. Allowing
the charge radius to vary (two parameters), we find that
this approach yields results similar to the Galster form. If
the charge radius datum from Ref. [3] is included, we ob-
tain

〈
r2n
〉

= −0.1107(32) fm2 and rav=0.763(11) fm. The

reduced χ2 is 1.33, slightly higher than that obtained
for the Galster fit for the same conditions. The values
of r1 and r2 are 0.726(11) fm and 0.800(11) fm, respec-
tively. A charge radius of 0.0906(64) fm2 with a reduced
χ2 of 0.94 is obtained if the charge radius constraint is
removed, and a reduced χ2 value of 2.14 is obtained if
the experimental charge radius result from Ref. [4] is in-
cluded as a datum. Hence for our current purposes the
Bertozzi form has both the same capabilities and limita-
tions as the Galster form. The results for fitting with the
Bertozzi form are summarized in Table I.

To obtain greater freedom for this two-dipole form, we
consider a modified version of the Bertozzi form, which
is similar to the BLAST form recently employed[10].
It is also similar to that presented by Friedrich and
Walcher[14] for the smooth part of Gn

E, but their fitting
included additional terms to address a possible bump in
Gn

E. The modified form we employ is given by

Gn
E(Q2) =

a

(1 +Q2r21/12)2
− a

(1 +Q2r22/12)2
. (4)

The two rms radii r1 and r2 are now given by r21 =
r2av + 〈r2n〉/2a and r22 = r2av − 〈r2n〉/2a. The data are
fit with three parameters: the charge radius 〈r2n〉, the av-
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FIG. 1: The world’s double-polarization data forGn
E including

the two new experimental results in Ref. [10] and Ref. [11],
along with a fit to Eq. (4) that includes the experimental
charge radius of Ref. [3] as a datum. The form of the fit is the
modified version of the Bertozzi fit discussed in the text. The
values of the fitted parameters are 〈r2n〉 = −0.1147(35) fm2,
rav=0.856(32) fm, and a = 0.115(20).

erage rms radius rav, and the normalization parameter
a. Note that the charge radius has units e · fm2, but
is typically written in units where e = 1. The original
Bertozzi form represented two dipoles of unit charge e.
For this modified fit, the total charge for each dipole is
q=ae, hence in the denominator the charge radius is nor-
malized by a to keep the correct slope at Q2=0. On
the other hand, r21,2 =

∫
dq r2/

∫
dq is truly a distance

squared and is already normalized by charge. This is
formed for each dipole separately and for the average of
the two, r2av = (r21 +r22)/2, but not for the neutron charge
radius 〈r2n〉 = ae(r21 − r22), which cannot be normalized
since

∫
dq = 0. In the modified Bertozzi form the av-

erage spatial extent and separations of the positive and
negative distributions are given by rav and (

〈
r2n
〉
/a)1/2,

respectively.

Fitting Gn
E(Q2) with the datum from Ref. [3] for

the charge radius yields 〈r2n〉=−0.1147(35) fm2, a =
0.115(20) and rav=0.856(32) fm, with a reduced χ2 of
0.91. The fitted value of the charge radius is essentially
identical to the experimental datum that was included,
with a similar uncertainty, and the extracted value for
the average radius for the neutron is well-defined. The
reduced χ2 is improved over the two-parameter fits, with
well-defined parameters that have reasonable uncertain-
ties. This fit is shown in Fig. 1. The dramatic reduction
in the normalization parameter from unity to 0.115 al-
lows for a much greater difference between the two radii;
the values of r1 and r2 are 0.48 fm and 1.11 fm, respec-
tively. Results for fitting with the modified Bertozzi form
are listed in Table I.

In Fig. 2 we show the fits for Gn
E, for both the original

and modified Bertozzi fitting forms along with the form
factors for the individual positive and negative compo-
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FIG. 2: (Color online) Fits for Gn
E for both the original and

modified Bertozzi fitting forms, along with the form factors
for the individual positive and negative components. For the
positive and negative components of the original form, the
y-axis scale is on the left. For the positive and negative com-
ponents of the modified form, as well as Gn

E for both forms,
the y-axis scale is on the right.

nents. (For these plots and those of the Fourier trans-
forms below we show the fits for which the charge radius
datum from Ref. [3] was included.)

-0.4

0

0.4

0.8

1.2

1.6

-0.1

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2

+ chg (a=1)
- chg (a=1)

+ chg (a=0.115)
- chg (a=0.115)
total chg (a=0.115)
total chg (a=1)

4!
r2 "

#
(r)

/e
  [

fm
-1

] 4!r 2"
# (r)/e  [fm

-1]

r [fm]

$$$$

%%%%

FIG. 3: (Color online) Breit-frame Fourier transforms
4πr2ρB(r)/e for the original and modified Bertozzi fits. As
discussed in the text, the positive, negative, and total trans-
forms are shown for each fit. For the positive and negative
components of the original form, the y-axis scale is on the
left. For the positive and negative components of the modi-
fied form, as well as for the total transform for both forms,
the y-axis scale is on the right.

In Fig. 3 we show the Breit-frame Fourier transforms
for the original Bertozzi fit (a=1 and rav=0.763 fm) and
the modified Bertozzi fit (a=0.115 fm and rav=0.856 fm).
Similar transforms are shown in a recent study of the
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role of mesons in the electromagnetic form factors of the
nucleon [15].

IV. DISCUSSION OF FITTING FORMS

The form of the Galster fit is actually closely related to
the two-dipole fit in the same way a dipole comes from
two oppositely charged monopoles. The form for two
oppositely charged dipoles, given by

G2-dipole =
a

(1 + b1τ)2
− a

(1 + b2τ)2
(5)

with comparable parameters b1 and b2 can be approxi-
mated by

d

db

a

(1 + bτ)2
∆b =

2a∆b τ

(1 + b̄τ)3
. (6)

The dimensionless parameters b̄ and ∆b are given by

∆b = (b2 − b1) =
−〈r2n〉
3λ2pa

and (7)

b̄ = 1
2 (b2 + b1) =

r2av
3λ2p

, (8)

where λp = h̄/mpc = 0.2103 fm is the reduced Compton
wavelength of the proton. This is essentially the Galster
form

GGalster =
Aτ

1 +Bτ
GD =

Aτ

(1 +Bτ)

1

(1 +Dτ)2
(9)

if B ≈ D ≈ b̄. The dimensionless parameters are

A = 2a∆b =
−2〈r2n〉

3λ2p
and (10)

D =
4m2

pc
2

Λ2
=

r2D
3λ2p

, (11)

where GD = (1+Dτ)−2. The dipole radius rD = 0.81 fm
(corresponding to Λ2 = 0.71 (GeV/c)2) yields D = 4.96,
which is roughly comparable to the values of B listed in
Table I, as well as the original Galster parameterB = 5.6.
This has the correct asymptotic dependence as G ≈ Aτ
at low Q2 and G ≈ GD at high Q2. Not relying on the
dipole form factor or two dipoles, the general expansion
would have been Aτ/(1 + Bτ + Cτ2 + Dτ3) which has
more parameters than can be fit from the data [8]. We
can fit to this general expansion by dropping the term in
D, and obtain A=1.723(52), B=13.6(1.8), C=90(8) with
a reduced χ2=1.03 (for the datum in Ref. [3]). Although
this fit can accomodate the charge radius and yields well-
defined fit parameters, it does not have the proper Q−4

dependence at high Q2 [8] and does not have the simple
form of the modified Bertozzi fit.

TABLE II: Comparison of four values for A obtained from
use of the three relationships in Eq. (14), based on the fits
for which the experimental value for 〈r2n〉 from Ref. [3] was
included. For the line labelled “2-par”, the values were de-
termined from the fitted values of A and B (Galster) and by
using Eq. (8) and (7) to obtain b̄ and ∆b from 〈r2n〉 and rav
(Bertozzi) . For the line labelled “3-par”, we used Eqs. (10)
and (11) to obtain D from Λ (Galster-like, Sec. II) and also
the fitted value of a (modified Bertozzi, Table I).

A1 A2 A3 A4

2-par 1.66 1.67 2.80 2.77

3-par(+) 1.72 1.73 1.13 1.29

3-par(−) 1.73 1.73 −1.98 −2.07

To account for the difference between B and D, one
can expand the Galster form in powers of τ/(1 + Dτ)
using the relation (1 +Bτ) = (1 +Dτ)(1− D−B

1+Dτ τ):

GGalster = AτG
3/2
D (12)

×
(

1− (D −B)τG
1/2
D + (D −B)2τ2GD + . . .

)
,

where (D−B)τ/(1 +Dτ) is small for experimentally ac-
cessible values of τ . This can be compared to the expan-
sion of two dipoles, where we use the approach above to
expand G2-dipole = a/(1 + b1τ)2 − a/(1 + b2τ)2 and com-
bine terms to express it as a function of b̄ and ∆b:

G2-dipole = 2a∆bτG
3/2
D

(
1 + 3(D − b̄)τG1/2

D (13)

+ (6(D − b̄)2 + 1
2∆b2)τ2GD + . . .

)
.

Comparing each term and simplifying we get the three
equalities

A = 2a∆b (14)

D −B = 3(D − b̄), and (15)

3(D − b̄)2 = 1
2∆b2. (16)

While it may seem reasonable to extend the Galster
form to a three parameter fit for A, B, and D, the
third equality is quadratic and has two solutions for
D(b̄,∆b). Thus the Galster fit becomes degenerate as
(D −B)→ 0, and is not useful as a three-parameter fit.
Manipulation of Eq. (14) leads to four different determi-
nations of A, which should all be equal, up to a sign,
to −2〈r2n〉/3λ

2
p (1.73 for fits that employ the experimen-

tal value for 〈r2n〉 from Ref. [3]). These four values are
given by A1 = A, A2 = 2a∆b, A3 = ±241/2a(D − b̄),
and A4 = ±(8/3)1/2a(D −B). We compare them in Ta-
ble II, with results shown for the two-parameter fits listed
in Table I and the two three-parameter Galster-like fits
discussed at the end of Sec. II. One could say that the
Galster fit has done so well over the years because it is
the lowest order approximation to a two-dipole fit. The
two-dipole fit describes a positive and negative charge
distribution, where the average 〈r2n〉 of the two is approx-
imately equal to r2D for the dipole distribution GD.
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V. CONCLUSION

In summary, neither the Galster nor the Bertozzi two-
parameter forms provide the freedom needed to simul-
taneously fit Gn

E(Q2) and the experimental values for
the charge radius. The three-parameter, two-dipole form
(modified Bertozzi, Eq. 4) is a simple form that is consis-
tent with experimental data for both Gn

E(Q2) and
〈
r2n
〉
,

yields parameters with reasonable values and low fit un-
certainties, and has an improved reduced χ2 as compared
to the two-parameter Galster or two-dipole (Bertozzi)
fits. An experimental program that aims to determine
the charge radius using a completely different method
should provide new information on the charge radius [16].
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Appendix A: Gn
E(Q2) data

In Table III we list double-polarization data for
Gn

E(Q2). The values in the column labelled Gn
E were used

for the fits discussed in this paper. Following Ref. [17],
we used the results of Ref. [18] and Ref. [19], which su-
persede that of Ref. [20] and Ref. [21], respectively. In
addition, we have used the result from the analysis in
Ref. [22] of the experiment in Ref. [23]. We have also fol-
lowed Ref. [17] in not including the pioneering results of
Refs. [24–26] because they were not corrected for nuclear
interaction effects. For weighting the fits, we employed
the uncertainties listed, which were obtained by adding
the reported statistical and systematic uncertainties in
quadrature.

The column labelled Gn
M lists the source for the Gn

M
value employed to determine Gn

E, as reported in the cor-
responding reference. We found that re-extracting Gn

E
values using a specific parameterization[8] for Gn

M had

a negligible effect on our fitting results. Nevertheless,
we provide these re-extracted values in the column la-
belled Gn

E(consistent). Where “ratio” is listed for Gn
M,

Gn
E(consistent) was determined by simply multiplying the

reported Gn
E/Gn

M ratio by our chosen Gn
M. Where a refer-

ence or “dipole” is listed, Gn
E(consistent) was determined

by applying a correction to the reported Gn
E. Where

nothing is listed for Gn
M, it was not clear how to per-

form the correction from the information available in the
original reference.

TABLE III: Double-polarization data for Gn
E(Q2). The con-

tents of the table are discussed in the text.

Q2 (GeV/c)2 Gn
E reference Gn

M Gn
E(consistent)

0.142 0.0334(52) [10] ratio 0.0337

0.15 0.0481(84) [19] - -

0.203 0.0405(54) [10] ratio 0.0405

0.21 0.066(16) [29] dipole 0.0637

0.255 0.066(37) [30] [27] 0.0624

0.291 0.0506(66) [10] ratio 0.0502

0.30 0.0552(64) [31] [28] 0.0550

0.34 0.0679(91) [19] - -

0.40 0.0520(38) [22] - -

0.415 0.0477(75) [10] ratio 0.0465

0.447 0.0550(62) [32] ratio 0.0549

0.495 0.04632(704) [33] dipole 0.0468

0.50 0.0526(42) [34] [28] 0.0528

0.59 0.0477(73) [31] [28] 0.0480

0.67 0.0484(71) [18] [28] 0.0486

0.79 0.0468(93) [31] [28] 0.0469

1.00 0.0454(65) [34] [28] 0.0451

1.132 0.0394(31) [32] ratio 0.0397

1.450 0.0411(37) [32] ratio 0.0417

1.72 0.0236(31) [11] ratio 0.0246

2.48 0.0208(31) [11] ratio 0.0206

3.41 0.0147(24) [11] ratio 0.0141
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