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We study cluster formation in strongly deformed states for 28Si and 32S using a macroscopic-microscopic
model. The study is based on calculated total-energy surfaces, which are the sums of deformation-dependent
macroscopic-microscopic potential-energy surfaces and rotational-energy contributions. We analyze the
angular-momentum-dependent total-energy surfaces and identify the normal- and super-deformed states in 28Si
and 32S, respectively. We show that at sufficiently high angular momenta strongly deformed minima appear.
The corresponding microscopic density distributions show cluster structure that closely resemble the 16O+12C
and 16O+16O configurations. At still higher deformations, beyond the minima, valleys develop in the calculated
surfaces. These valleys lead to mass divisions that correspond to the target-projectile configurations for which
molecular resonance states have been observed. We discuss the relation between the one-body deformed minima
and the two-body molecular-resonance states.

PACS numbers: 21.10.-k, 21.60-n, 27.30.+t

A rich variety of nuclear structure data in the s-d shell re-
gion provides an excellent opportunity to investigate how a
system transitions between one-body-like mean-field and two-
body-like cluster structures [1, 2]. Because of recent progress
in experimental techniques, it has been possible to determine
that strongly deformed states exist in 36Ar and 40Ca, by the ob-
servation of γ-ray cascades typical of rotational bands [3, 4].
These bands are called super-deformed (SD) bands. Such new
have triggered renewed interest in whether the strongly de-
formed states exist in other s-d shell nuclei.

In this connection, the existence of such states in 28Si and
32S has been theoretically suggested [5–8]. Many experi-
mental searches for, and studies of such states have been
performed [9, 10]. An important feature of nuclear struc-
ture in the s-d shell region is that the densities of strongly-
deformed one-body states often exhibit significant cluster
structure [11, 12], similar to the 16O+16O configuration sug-
gested to exist in 32S [7, 13, 14]. Recently, the existence of
alpha-cluster states in 32S was clearly shown in elastic 28Si+α
scattering experiments [10]. However, the existence of the
strongly deformed states and the mechanism of the cluster for-
mations in 28Si and 32S have not yet been well established.

Another important observation is the molecular resonances
emerging just below the Coulomb barrier in the two-body en-
trance channel, in both the 16O+12C and 16O+16O reactions
leading to 28Si and 32S, respectively. That is, the molecular-
resonance states would consist of the 16O+12C and 16O+16O
cluster components, similar to the clusters in the strongly de-
formed states in 28Si and 32S. It is thus interesting to inves-
tigate the relation between the one-body deformed states and
the two-body molecular-resonance states and the association
with the cluster formations in the deformed states.

Two different theoretical approaches have been used to de-
scribe the deformed states in the s-d shell nuclei. One is nu-
clear structure calculations using one-body wave functions.
Leander and Larsson identified several distinct minima with
exotic shapes using the macroscopic-microscopic model [15].
Minima at high angular momenta were also investigated based

on a cranking model for the rotational inertia [16]. However,
the ℓ2 term in their mean-filed potential leads to many un-
physical minima at large deformations. Moreover, strongly
necked-in shapes are not possible in the Nilsson perturbed-
spheroid (ǫ) parametrization.

The SD states and the low-lying excited states have also
been treated in Hartree-Fock-type (HF) self-consistent mean-
field calculations [5, 19], often coupled with the generator-
coordinate method (GCM) [20, 21]. For 32S, Kimura and
Horiuchi suggested the existence of an SD band contain-
ing the 16O+16O cluster components, based on the antisym-
metrized molecular dynamics coupled with GCM [7]. They
also showed that a third rotational band with N = 28, where
N is the principal quantum number of the relative motion
between clusters, in the 16O+16O configuration connects to
the molecular-resonance states. The existence of the normal-
deformed (ND) state in 28Si and its relation to the 16C+12O
molecular resonances were also investigated [8, 22].

The second approach is reaction calculations using a two-
body potential model appropriate to the entrance channel.
Those studies are mainly based on an optical potential which
well reproduces the experimental elastic or inelastic cross sec-
tions [14, 23–27]. For 32S, Ohkubo and Yamashita [14] cal-
culated the SD bands with the deep 16O-16O potential [14].
They recognized three rotational bands with N = 24, 26, and
28, and showed that the lowest and the third bands correspond
to the SD band and the molecular resonances, respectively.
Kocak et al. also obtained a similar SD band with N = 24
using the alpha-alpha double-folding potential [28].

The aim of this paper is to show cluster formations in the
strongly deformed states for 28Si and 32S. We find that consid-
eration of rotational contributions to the energy is essential.
In the study here we apply for the first time the macroscopic-
microscopic model, so successful in the description of fusion
and fission reactions in heavy-mass systems [17, 29–32], to
very light nuclei. The model allows us to describe both one-
center deformed and two-center cluster-like configurations
with mass asymmetry within the same model framework. In
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FIG. 1. (Color online) Potential energy curve for 28Si versus the
quadrupole moment. The open square and SD denote the super-
deformed minimum. The absolute minimum is denoted by GS. The
solid line denotes the potential versus Q2 near the ground state, along
a trajectory that locally minimizes the energy. The gray (green) and
dotted lines denote the only relatively prominent valleys found in the
one-body potential-energy surface. They correspond to shapes with
asymmetries similar to the 16O+12C and 24Mg+α reaction channels.
The solid line with superimposed triangles is the ridge separating
these two channels.

this approach the clusters are joined by a neck region with a
lower single-particle density. For lighter mass systems, such
treatments are essential for a unified description of the whole
process, because the scission point shape closely resembles
that of the saddle point, as has been well established in fusion-
fission processes below the Businaro-Gallone point [18]. We
calculate and analyze total-energy surfaces which are the sums
of a potential-energy surface and a rotational-energy contribu-
tion, which both are functions of five shape-degrees of free-
dom. We use the immersion technique to identify reaction
channels that we expect correspond to molecular resonances
including various mass asymmetric divisions. We show that in
this model minima with density distributions corresponding to
the cluster configurations of 16O+12C and 16O+16O appear at
high angular momenta.

We use the three-quadratic-surface (3QS) parametriza-
tion [31, 32] to describe nuclear shapes in a five-dimensional
deformation space. The shape degrees of freedom are a
quadrupole-moment parameter Q2, a neck-related parameter
η, left- and right-fragment deformation parameters, ǫf1 and
ǫf2, and a mass-asymmetry parameter αg. The parameter η
describes the curvature of the middle body. The parameter ǫ
is the Nilsson perturbed-spheroid parameter. Near scission we
have to a very good approximationαg = (M1−M2)/(M1+M2),
where M1 and M2 are the masses of the left and right nascent
fragments, respectively. The microscopic single-particle po-
tential is calculated by folding a Yukawa function over the
shape or “sharp-surface generating volume” [29].

We calculate the adiabatic one-body potential-energy sur-
face in a five-dimensional deformation space for 28Si and 32S
and and analyze their structure using the immersion method.
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FIG. 2. (Color online) Potential energy curve for 32S versus the
quadrupole moment. The gray (green) and dotted lines denote paths
leading to valleys in the one-body potential energy surface corre-
sponding to strongly necked-in one-body shapes with asymmetries
similar to those of the 16O+16O and 28Si+α reaction channels. The
other symbols are the same as Fig. 1.

Details of the model are given in Ref. [17]. The parameters
correspond to FRLDM(2002) [33]. We calculate the poten-
tial energies at 41 × 15 × 15 × 15 × 35 grid points for Q2,
η, ǫf1, ǫf2, and αg, respectively. For αg grid points we use
−0.025(0.025)0.825; the fragment shape grid points are the
same as Ref. [17]; in η the choice is similar. We take into
account the shape dependence of the A0 and Wigner terms in
our calculations [34]. However, in the form introduced in our
model the Wigner energy is zero for the N = Z nuclei we con-
sider here. Near the ground states, we perform β-constrained
calculations, which describe better one-body shapes for small
deviations from spherical shape. For the purpose of com-
paring with calculations in other shape parameterizations we
sometimes give the deformations of our shapes in terms of the
β shape parameters, obtained by expanding the 3QS shapes in
spherical harmonics [30]. We calculate nuclear density dis-
tributions and determine the number of nucleons in the left
and right fragments by integrating the single-particle densi-
ties [35].

Figures 1 and 2 show the calculated results for 28Si and 32S
as “optimal” one-dimensional potential-energy curves imbed-
ded in the five-dimensional space, versus the quadrupole mo-
ment. Nuclear densities at points of special interest are also
given. The calculated potential-energy curves for 28Si and 32S
are quite similar to other calculations [5, 7, 8, 19–21]. At
larger Q2 valley-like structures appear in the 5D surface; we
show curves corresponding to the bottom of the only two rela-
tively prominent, that is deep and persistent, valleys we iden-
tify. The scission points in each reaction channel are denoted
by solid circles. The one-body ground state connects continu-
ously to these two-body cluster channels.

For 28Si, we identify two paths: one given by the dotted
line, leading to the 24Mg+α reaction channel, and a second,
given by the gray line, leading to 16O+12C reaction channel.
Those are separated by a potential ridge, shown as a solid
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FIG. 3. (Color online) Potential energy curves versus quadrupole
moment for I = 8, 10, and 16 for 28Si . The shape configuration
of the ND minimum is changed to the 16O+12C like cluster one at
I = 10. The symbols are the same as Fig. 1.

line with superimposed triangles. The calculated ground-state
shape is oblate with Q2 = −0.59 (e2b). We obtain a flat po-
tential energy curve near Q2 = 0.05 (e2b), which is consis-
tent with the HF calculation of Ref. [19]. Although this flat
area corresponds to a much smaller beta than the β2 ∼ 0.5 of
the ND minimum found in Ref. [8] we label this flat part at
Q2 = 0.05 (e2b) ND. For higher angular momenta it evolves
into a more well-localized minimum. We furthermore iden-
tify the additional energy minimum at Q2 = 1.41 (e2b) at
β = 0.68, denoted by the open square, with the SD minimum
[8]. In spherical shell-model terminology this is interpreted
as a 4p-16h (4~ω) state with the intruder single-particle or-
bital of 1/2[330] (labeled with the Nilsson asymptotic quan-
tum numbersΩπ[NnzΛ]) at the Fermi energy for both protons
and neutrons. From our deformed mean-field model point of
view there are no particle-hole excitations, since this is the
lowest possible energy at this deformation. In this sense, our
calculated results and those at Jπ = 0+ of Ref. [8] are quite
similar to each other, both as relates to the shape configura-
tions at the ground-state, the ND, and the SD minima and to
the single particle configurations (see. (a), (b), and (c) of Fig. 2
and (a) and (b) of Fig. 4 in Ref [8]). The optimal potential-
energy curves obtained by [8] for the 24Mg+α and 16O+12C
channels in 28Si are also quite similar to the results here.

For 32S, we identify two paths, one leading to the 16O+16O
(the gray line) the reaction channel, the other to the 28Si+α
(the dotted line) reaction channel, and the separating ridge (the
solid line with the filled triangles). The calculated ground-
state is prolate with Q2 = 0.39 (e2b) corresponding to β2 =

0.24. We also obtain an additional, almost symmetric mini-
mum at Q2 = 1.58 (e2b) corresponding to β = 0.72, denoted
by an open square. This minimum is the SD state. Again,
in spherical shell-model terminology this is interpreted as a
4p-12h (4~ω) state with the intruder single-particle orbital
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FIG. 4. (Color online) Potential energy curves at the intrinsic an-
gular momentum I = 6, 8, and 18 for 32S versus the quadrupole
moment. The shape configuration of the SD minimum is changed to
the 16O+16O like cluster one at I = 8. The symbols are the same as
Fig. 2.

1/2[330] at the Fermi energy for both protons and neutrons.
We now calculate the total energy versus angular momen-

tum (and Q2) for 28Si and 32S. We calculate the macroscopic
rigid-body moment of inertia for the shapes of interest and ob-
tain the total energy by adding the shape-dependent rotational
energy to the five-dimensional potential-energy surface. The
rotational energy ER is then given by ER = ~

2I(I + 1)/2J⊥,
where I denotes the collective rotational angular momentum
in the intrinsic frame and J⊥ denotes the rotational moment
of inertia. We only consider rotations around the ρ axis, which
is perpendicular to the symmetry axis (z axis) [36]. Even if
the two fragments are well separated, we treat such configu-
rations as rigid-body rotors. We analyze the total potential-
energy surfaces obtained at each I, using the water immersion
method.

Figures 3 and 4 show, for three different angular mo-
menta, total potential energy curves, along one-dimensional
“minimal-energy” paths imbedded in the five-dimensional de-
formation space for 28Si and 32S, respectively. The ND and
SD minima are present for 28Si and the SD minimum for 32S.
In the figures, the ND and SD minima at each I are indi-
cated by open squares. The dotted lines through these min-
ima are the optimal pathways from ground-state-like shapes
to the 24Mg + α and 28Si + α channels. The other symbols are
the same as Figs. 1 and 2. Nuclear densities at points of spe-
cial interest are also given. The potential pockets at the ND
minima vanish as the angular momentum increases.

Figure 5 shows the calculated rotational bands in the ND
and SD minima. In the figure, the total energies at the ND and
SD minima are denoted by solid lines with open squares. For
comparison, we plot experimental data as solid squares. How-
ever, experimental band assignments have not been well con-
firmed, except for the ND state of 28Si and the alpha-cluster
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FIG. 5. (Color online) Rotational levels in the ND and SD minima
versus the intrinsic angular momentum I for 28Si and 32S. The solid
line with the open square denotes the total energies at the ND or
SD minima. The solid square denotes experimental data taken from
Refs. [13, 39] We normalize the calculated band-head energies to
experimental data by shifting the ND minimum for 28Si by +4.8 MeV
and the SD minima for 28Si and 32S by +2.8 MeV.

states of 32S.
For the ND state of 28Si, the band assignments have been

confirmed by γ-ray measurements [37]. We thus directly com-
pare our calculated results with those data. In the top panel of
the figure, we normalize the calculated bandhead energies to
the lowest levels of the experimental data, because our cal-
culated energies show some discrepancy with respect to the
experimental data. After this normalization, the calculated
level spacings agree well with data, which suggests that the
calculated deformation of the ND minimum is realistic. In
comparison to other calculations, we find that our calculated
rotational bands of the ND state for 28Si correspond to those
with the lowest N, namely N = 18 in Refs. [22, 27].

For the alpha-cluster states of 32S, those were recently
clearly identified in 24Mg+α elastic scattering experiments.
However, we do not identify minima corresponding to those
states in our calculations. The experimentally deduced mo-
ment of inertia for those states is about two times as large as
our calculated results of the SD states (see the bottom panel of
Fig. 5), indicating that it is necessary to take into account ro-
tations at smaller Q2 than in the present calculations, in order
to reproduce this experimental result. At such small Q2, tri-
axial deformations are important. To access triaxial shapes a
model extension such as Ref. [17, 38] is necessary. After such
extension, the Jacobi shape transitions in the β-γ deformation
space, as shown in Ref. [9], could be studied.

The rotational bands for the SD states of 28Si and 32S have

28Si n = 7 32S n = 5 28Si n = 5

(b) I = 10
1/2+[211]+[220]

(d) I = 8
1/2 [101]+[321]

(f) I = 10
1/2+[220]+[211]

(a) I = 0
5/2+[202]

(c) I = 0
1/2 [101]

(e) I = 0
1/2+[220]+[211]

FIG. 6. (Color online) Density distributions of neutron single-
particle wave functions for 28Si and 32S. The solid line denotes the
half depth of the mean-field potential. We normalize the color to the
density distribution at the maximum of each plot at I = 0.

been not confirmed yet. Therefore we are limited to plot-
ting possible candidates proposed by Refs. [13, 39] for those
states. The middle and bottom panels of Fig. 5 shows the cal-
culated results. In the figure, we also perform the same nor-
malization as the ND state of 28Si to the experimental results.
We consider that our calculated result for the SD state of 32S
corresponds to that with N = 24 of Refs. [7, 14, 28]. After
the normalizations, we see that the behaviors of the calculated
results for the SD states of both 28Si and 32S are similar to the
experimental moment of inertia proposed by Refs. [13, 39].
However, further experimental investigations are necessary
for establishing the existence of the SD states and for band
assignment.

At high angular momentum, the asymmetry at the shape
configurations of the ND and SD minima for 28Si and 32S be-
come close to the 16O+12C and 16O+16O divisions, respec-
tively. In Figs. 3 and 4, we can clearly see drastic shape tran-
sitions, that is, from densities with one-center to two-center
cluster-like configuration. For the ND and SD minima for 28Si
and 32S, the neck formation occurs suddenly at I = 10 and 8,
respectively.

There are two important mechanisms for such clusteriza-
tion: (i) intersection between a high-Ω level, whose energy in-
creases with deformation and is mainly localized in the “equa-
tor” region, and a low-Ω level whose energy decreases with
deformation (intruder level) and is mainly localized in the
“polar” regions, (ii) mixing of single-particle levels with high
quantum number. The former can be seen in the shape transi-
tion of the ND minimum for 28Si. At I = 0, the neutron level
at the Fermi surface consists of the 5/2+[202] component ((a)
in Fig. 6), which forms the surface of the middle body part
in the total density. At I = 10, an transition occurs between
this last occupied level and the intruder level, which is an ad-
mixture of 1/2+[211] (75.3%) and [220] (16.4%) and which
now becomes the highest occupied level as shown in (b) in
Fig. 6. In this case, the wave-function density shifts from the
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surface of the middle body into the two nascent fragments.
The second mechanism (ii) is at play in the SD minimum for
32S. At I = 0, the neutron single particle at the seventh level
consists of the 1/2[101] component ((c) in Fig. 6). At I = 8,
the components of [321] is slightly mixed in this level. The
single-particle density of the middle body becomes low due
to 1/2−[101] (93.2%) and [321] (4.3%), as shown in (d) in
Fig. 6. The component of [321] describes stretching of the
single-particle densities and [321] is strongly fragmented into
many of the levels in both 28Si and 32S.

The other interesting behavior of the single-particle wave
function that influences the clusterization is the neck forma-
tion. The neutron single-particle wave function of the fifth
level for 28Si consists of the 1/2+[220] (66.9%) and [211]
(26.8%) components ((e) in Fig. 6). With increasing angular
momentum, the [220] component increases, whereas the [211]
component decreases, which forms the neck part between two
fragments. At I = 10, the wave function is described by
1/2+[220] (80.3%) and [211] (17%), as shown in (f) in Fig.
6. This trend can be also seen in the [220] component for 32S.
Although it seems that two fragments are well separated at the
high angular momentum, those are tightly bonded by the neck
formation.

In more elaborate microscopic calculations, the lowest level
J = 0+ would contain components of intrinsic states with dif-
ferent I. The highest J is limited to what is obtained when all
the spins are aligned, although the potential pocket still exists
at high I. In this respect, the obtained density distribution at
the ND minimum of I = 10 for 28Si is very similar to that at
J = 0+ of Ref. [8]. Consequently, the ND and SD states can
contain cluster components even at J = 0+.

Our calculations show a plausible mechanism for the origin
of the molecular resonances. In the calculations, we can iden-
tify the potential valleys leading to the 24Mg+α and 16O+12C
channels in 28Si and to 28Si+α and 16O+16O channels in 32S,
as shown in Figs. 1 and 2. Also, in this study we cannot
clearly identify any other valleys and associated density clus-
ters in the potential surface. Consequently there is an inter-
esting correspondence between the valley structures obtained
in our calculations and the observed reaction channels asso-
ciated with molecular resonances. Expressed differently we
could say that when entrance-channel target/projectile mass
ratios are similar to the one-body density clusters correspond-
ing to the calculated valleys in the potential-energy surfaces
do we experimentally observe molecular resonances.

As shown in this study, the highly excited SD and ND states
for 28Si and 32S contain significant 16O+12C and 16O+16O
cluster components, respectively. We expect that those two
states relate to the observed molecular resonances, because
their mass asymmetry at high angular momentum are very
close to the target/projectile combinations in the entrance
channel for which molecular-resonances are observed. It is
thus interesting to investigate how those states in the one-body
system relate to the molecular-resonances in the two-body re-
action channels.

A key question is whether the molecular resonances arise
because of effects after fusion, during formation of the com-
pound system or because of effects in the final stages of
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FIG. 7. Heights of the Coulomb barrier versus the orbital angular
momentum in the 16O+12C (the top panel) and the 16O+16O (the bot-
tom panel) reactions. The potential energy is measured from the in-
finitely separated two nuclei. The solid line with the circles denotes
the calculated heights of the Coulomb barrier. The open square de-
notes the energy at the touching point when the potential pocket in
the fusion barrier vanishes. The solid triangle denotes the average
energies of experimental data for the molecular-resonance states at
each angular momentum taken from Refs. [14, 27]. The dashed line
with the open triangles denotes the heights of the saddle points lead-
ing to the 16O+12C and 16O+16O reaction channels in the calculated
potential-energy surface for 28Si and 32S, respectively. The calculated
heights of the saddle points are shifted so as to fit to the Coulomb-
barrier height at ℓ = 0.

the two-body heavy-ion collision. The molecular resonances
emerge just below the Coulomb barrier in the two-body re-
action channels, indicating that those states exist in the re-
gion of slightly overlapping densities of colliding two nuclei.
It is thus unclear whether those two nuclei are strongly or
weakly coupled with each other, corresponding to the one-
body “sticking” or the two-body “freely rotating” limits [40],
respectively. To investigate those two limits, we calculate the
Coulomb barrier heights of the freely rotating and sticking
limits, and investigate the correlation between those and the
molecular-resonance states.

For the freely rotating limit, we calculate the Coulomb-
barrier heights as a function of the orbital angular momen-
tum I for the 16O+12C and 16O+16O reactions. In the cal-
culation, we use the Yukawa-plus-exponential model, which
is the same framework as used in the present calculations of
the potential-energy surface and is well tested in many two-
body reactions [41, 42]. The Coulomb interaction energy is
calculated for two point charges. The centrifugal potential
is ~2I(I + 1)/2µr2, where µ is the reduced mass and r is the
center-of-mass distance between colliding nuclei. That is, the
moment of inertia in the two-body system, J(2bd), is given by
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J(2bd) = µr
2, corresponding to the rotational energy of two

freely rotating rigid bodies. When the fusion barrier does not
go over a maximum during the approach of the two colliding
heavy ions, that is it keeps rising until touching, we follow
conventional practice and define the “Coulomb barrier” as the
energy at touching. In the sticking limit, the Coulomb barrier
heights correspond to that of the saddle point in the calculated
one-body potential-energy surface.

Figure 7 shows the resulting Coulomb-barrier heights mea-
sured relative to two infinitely separated nuclei (the open cir-
cle with the solid line). The energy at the touching point is
denoted by the open square. The average energies of experi-
mental data at each ℓ for the molecular-resonance states tabu-
lated in Refs. [14, 27] are denoted by solid triangles. For com-
parison, we also plot the height of the saddle points leading to
the 16O+12C and 16O+16O reaction channels in the calculated
potential-energy surface for 28Si and 32S (the open triangle
with the dashed line). We shift the calculated height of the
saddle points so as to fit to the Coulomb-barrier height of the
two-body reactions at I = 0, because we here focus on dis-
cussing their moments of inertia, not its absolute energies.

In the figure, we can clearly see the calculated Coulomb-
barrier heights strongly correlate with the experimental data
of the molecular-resonance states, whereas the slope of the
height of the saddle points differs from those. The moment of
inertia for the molecular-resonance states is well reproduced
by the freely rotating J(2bd), rather than the one-body ridged
rotor J⊥, indicating that the molecular resonances are gov-
erned by effects in the two-body entrance channel.

In the deformed states, the two clusters show the property
of the one-body ridged rotor as shown in Fig. 5, whereas in
the molecular-resonance states, they can freely rotate. The
former comes from the single-particle wave functions tightly
bonding two clusters as shown in Fig. 6 (b) and (f). That
is, the one-body ridged rotor would change to the two-body
freely rotating rotor, if such bonding wave functions of the
neck part vanish by the development of two clearly separated
clusters. Such wave functions thus play an important role in
transitioning from the one-body deformed and the two-body
molecular-resonance states.

In summary, we have investigated cluster formation in the
one-body ND and SD states for 28Si and 32S and their relation
to the molecular resonance states. We calculated the total-
energy surfaces with inclusion of a rotational-energy contri-
bution in a five-dimensional deformation space and analyze
these as functions of angular momentum. We identify the ND
and SD minima in the potential-energy surface for 28Si and
32S. The obtained deformed minima are quite similar to those
proposed by other theoretical models. The level spacings of
the rotational bands for those deformed minima are in good
agreement with the experimental data. The nuclear densities
in the ND and SD minima become very cluster-like when the
angular momentum reaches I = 8 and 10, respectively. We
show how cluster configurations develop due to changing oc-
cupation of specific single-particle levels with increasing de-
formation and angular momentum. When we consider the
paths from the one-body ND and SD states to the 12C+16O
and 16O+16O channels and change the inertia from that of a
one-body rigid rotor to that of a freely rotating system for the
corresponding two-body reaction channels, we can show that
the molecular resonances are connected to the ND and SD
states.
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