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We have calculated the nuclear symmetry energy Esym(ρ) up to densities of 4 ∼ 5ρ0 with the
effects from the Brown-Rho (BR) and Ericson scalings for the in-medium mesons included. Using
the Vlow−k low-momentum interaction with and without such scalings, the equations of state (EOS)
of symmetric and asymmetric nuclear matter have been calculated using a ring-diagarm formalism
where the particle-particle-hole-hole ring diagrams are included to all orders. The EOS for symmetric
nuclear matter and neutron matter obtained with linear BR scaling are both overly stiff compared
with the empirical constraints of Danielewicz et al. [9]. In contrast, satisfactory results are obtained
by either using the non-linear Ericson scaling or by adding a Skyrme-type three-nucleon force (TNF)
to the unscaled Vlow−k interaction. Our results for Esym(ρ) obtained with the non-linear Ericson
scaling are in good agreement with the empirical values of Tsang et al. [7] and Li et al. [10], while
those with TNF are slightly below these values. For densities below the nuclear saturation density
ρ0, the results of the above calculations are nearly equivalent to each other and all in satisfactory
agreement with the empirical values.

PACS numbers: 21.65.Jk, 21.65.Mn, 13.75.Cs

I. INTRODUCTION

The nuclear matter symmetry energy is an important
as well as very interesting subject in nuclear and astro-
nuclear physics. As reviewed extensively in the litera-
ture [1–8], it plays a crucial role in determining many
important nuclear properties, such as the neutron skin
of nuclear systems, structure of nuclei near the drip line,
and neutron stars’ masses and radii. It is especially of
importance that constraints on the nuclear matter equa-
tion of state (EOS) [9] and the density (ρ) dependence of
the symmetry energy Esym(ρ) [7, 10] up to ρ ≃ 4ρ0 have
been experimentally extracted from heavy-ion collisions,
ρ0 being the saturation density of symmetric nuclear
matter. There have been a large number of theoretical
derivations of Esym(ρ) using, for example, the Brueckner
Hartree-Fock (BHF) [11–13], Dirac BHF [6, 14–16], varia-
tional [17], relativistic mean field (RMF) [18] and Skyrme
HF [19] many-body methods. The results of these theo-
retical investigations have exhibited, however, large vari-
ations for Esym(ρ). Depending on the interactions and
many-body methods used, they can give either a ‘hard’
Esym(ρ), in the sense that it increases monotonically with
ρ up to ∼ 5ρ0, or a ‘soft’ one where Esym(ρ) arises to a
maximum value at ρ ≃ 1.5ρ0 and then descends to zero
at ∼ 3ρ0 [4, 8]. It appears that the predicted behav-
ior of Esym(ρ) may depend importantly on the nucleon-
nucleon (NN) interactions and the many-body methods
employed.
In the present work, we shall calculate the nuclear

symmetry energy using the low-momentum interaction
Vlow−k derived from realistic NN interactions VNN using
a renormalization group approach [20–24]. To our knowl-
edge, this renormalized interaction has not yet been ap-

plied to the study of Esym. As it is well known, most
realistic VNN contain hard cores, or strong short-range
repulsions. This feature makes these interactions not
suitable for being directly used in nuclear many-body cal-
culations; they need to be ‘tamed’ beforehand. For many
years, this taming is enacted by way of the BHF theory
where VNN is converted into the Brueckner G-matrix. A
complication of the G-matrix is its energy dependence
(see e.g. [25]), making it rather inconvenient for calcula-
tions. In the Vlow−k approach, a different ‘taming’ pro-
cedure is employed; it is performed by ‘integrating out’
the high-momentum components of VNN beyond a deci-
mation scale Λ. In this way, the resulting Vlow−k is en-
ergy independent. Furthermore Vlow−k is nearly unique,
namely the Vlow−ks deduced from various realistic VNN

(such as [26–29]) are nearly identical to each other for
decimation scale Λ ≃ 2fm−1 [22, 23].

Using this Vlow−k interaction, we shall first calculate
the equations of state (EOS) E(ρ, α) for asymmetric nu-
clear matter, from which Esym(ρ) can be obtained. Here
E is the ground-state energy per nucleon and ρ is the
total baryon density. α is the isospin asymmetry param-
eter defined as α = (ρn − ρp)/ρ, where ρn and ρp de-
note, repspectively, the neutron and proton density and
ρ = ρn + ρp. Our EOS will be calculated using a ring-
diagram many-body method [30–32]. As we shall discuss
later, this method includes the particle-particle hole-hole
(pphh) ring diagrams to all orders. In comparison, only
the diagrams with two hole lines are included in the famil-
iar HF, BHF and DBHF calculations. In other words, in
these HF methods a closed Fermi sea is employed while in
the ring-diagram framework the effects from the fluctua-
tions of the Fermi sea are taken into account by including
the pphh ring diagrams to all orders.
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The nuclear symmetry energy Esym(ρ) is related to the
asymmetric nuclear matter EOS by

E(ρ, α) = E(ρ, α = 0) + Esym(ρ)α2 +O(α4). (1)

The contributions from terms of higher order than α2 are
usually negligibly small, as illustrated by our results in
section III. With such contributions neglected, we have

Esym(ρ) = E(ρ, 1)− E(ρ, 0). (2)

Then the symmetry energy is just given by the energy dif-
ference between neutron and symmetric nuclear matter.
In calculating Esym(ρ), the above EOS clearly play an
important role. In our calculation, we shall require that
the NN interaction and many-body methods employed
should give satisfactory results for E(ρ, 1) and E(ρ, 0)
of, respectively, neutron and symmetric nuclear matter.
The use of Vlow−k alone, however, has not been able to re-
produce the empirical nuclear saturation properties, the
predicted saturation density and binding energy per par-
ticle being both too large compared with the empirical
values of ρ0 ≃ 0.16fm−3 and E ≃ −16MeV for symmetric
nuclear matter [30, 31]. To improve the situation, it may
be necessary to include the effects from Brown-Rho (BR)
scaling [35–37] for the in-medium mesons, or a three-
nucleon force (TNF) [41]. BR scaling is suitable only for
the low density region; it suggests that the masses of light
vector mesons in medium are reduced ‘linearly’ with the
density. We consider here the EOS up to about ∼ 5ρ0
and at such high density the linear BR scaling is clearly
not applicable. In the present work we shall adopt the
non-linear Ericson scaling [42] for the in-medium mesons
and apply it to our Esym(ρ) calculations. The effects
from the BR and Ericson scalings on the nuclear EOS
and symmetry energy will be studied.

The organization of this paper is as follows. In sec-
tion II we shall briefly describe our derivation of the low-
momentum interaction Vlow−k using a T -matrix equiv-
alence approach. Some details about the calculation of
the EOS for asymmetric nuclear matter from this inter-
action with the pphh ring diagrams summed to all orders
will also be presented. Ericson scaling is a non-linear
extension of linear BR scaling. The difference between
them will be addressed in this section. Our results will be
presented and discussed in section III. A summary and
conclsion is contained in section IV.

II. FORMALISM

We shall calculate Esym(ρ) using a low-momentum
ring-diagram approach [30–32], where the pphh ring dia-
grams are summed to all orders within a model space of
decimation scale Λ. In this approach, we employ the low-
momentum interaction Vlow−k [20–24]. Briefly speaking,
this interaction is obtained by solving the following T -

matrix equivalence equations:

T (k′, k, k2) = VNN(k
′, k)

+
2

π
P

∫

∞

0

VNN(k
′, q)T (q, k, k2)

k2 − q2
q2dq, (3)

Tlow−k(k
′, k, k2) = Vlow−k(k

′, k)

+
2

π
P

∫ Λ

0

Vlow−k(k
′, q)Tlow−k(q, k, k

2)

k2 − q2
q2dq, (4)

T (k′, k, k2) = Tlow−k(k
′, k, k2); (k′, k) ≤ Λ. (5)

In the above VNN represents a realistic NN interaction
such as the CDBonn potential [26]. P denotes principal-
value integration and the intermediate state momentum q

is integrated from 0 to ∞ for the whole-space T and from
0 to Λ for Tlow−k. The above Vlow−k preserves the low-
energy phase shifts (up to energy Λ2) and the deuteron
binding energy of VNN . Since Vlow−k is obtained by inte-
grating out the high-momentum components of VNN , it
is a smooth ‘tamed’ potential which is suitable for being
used directly in many-body calculations.

FIG. 1: Sample ring diagram included in the equation of state
E(ρ,α). Each wave line represents a Vlow−k vertex. The HF
one-bubble insertions to the Fermion lines are included to all
orders.

We use a ring-diagram method [30–32] to calculate the
nuclear matter EOS. In this method, the ground-state
energy is expressed as E(ρ, α) = Efree(ρ, α) + ∆E(ρ, α)
where Efree denotes the free (non-interacting) EOS and
∆E is the energy shift due to the NN interaction. In our
ring-diagram approach, it is is given by the all-order sum
of the pphh ring diagrams as illustrated in Fig. 1. Note
that we include three types of ring diagrams, the proton-
proton, neutron-neutron and proton-neutron ones. The
proton and neutron Fermi momenta are, respectively,
kFp = (3π2ρp)

1/3 and kFn = (3π2ρn)
1/3. With such

ring diagrams summed to all orders, we have [31, 32]

∆E(ρ, α) =

∫ 1

0

dλ
∑

m

∑

ijkl<Λ

Ym(ij, λ)

× Y ∗

m(kl, λ)〈ij|Vlow−k|kl〉, (6)
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where the transition amplitudes Y are obtaind from a
pphh RPA equation [30–32]. Note that λ is a strength
parameter, integrated from 0 to 1. The above ring-
diagram method reduces to the usual HF method if
only the first-order ring diagram is included. In this
case, the above energy shift becomes ∆E(ρ, α)HF =
1
2

∑

ninj〈ij|Vlow−k|ij〉 where nk=(1,0) if k(≤, >)kFp for
proton and nk=(1,0) if k(≤, >)kFn for neutron.
The above Vlow−k ring-diagram framework has been

applied to nuclear matter [30] and neutron-star mat-
ter [31]. This framework has also been tested by ap-
plying it to dilute cold neutron matter at the limit that
the 1S0 scattering length of the underlying interaction
approaches infinity [33, 34]. This limit is usually referred
to as the unitary limit, and the corresponding potentials
as unitarity potentials. For many-body systems at this

limit, the ratio ξ ≡ E0/E
free
0 is expected to be a universal

constant of value ∼ 0.44. (E0 and Efree
0 are, respectively,

the interacting and non-interacting ground-state ener-
gies of the many-body system.) In previous calculations
[33, 34] we have applied our ring-diagram method to cal-
culate neutron matter using several very different unitar-
ity potentials (a unitarity CDBonn potential obtained by
tuning its meson parameters, and several square-well uni-
tarity potentials). The ξ ratios given by our calculations
for all these different unitarity potentials are all close to
0.44, in good agreement with the Quantum-Monte-Carlo
results (see [34] and references quoted therein). In fact
our ring-diagram results for ξ are significantly better than
those given by HF and BHF. The above unitary calcu-
lations provide a stringent test for many-body methods,
and our ring-diagram framework has done well in this
test.
It is well known that the use of the free-space VNN

alone is not adequate for describing nuclear properties at
high densities. To satisfactorily describe such properties,
one may need to include the three-nucleon force [41] or
the in-medium modifications to the nuclear interaction.
In the present work, we shall employ in our EOS calcu-
lations nuclear interactions which contain the in-medium
modifications suggested by the Brown-Rho (BR) [35, 36]
and Ericson [42] scalings. These scalings are based on
the relation [35, 36, 40] that hadron masses scale with
the quark condensate 〈q̄q〉 in medium as

m∗

m
=

(

〈q̄q(ρ)〉

〈q̄q(0)〉

)1/3

(7)

where m∗ is the hadron mass in a medium of density ρ,
and m is that in free space. The quark condenstate 〈q̄q〉
measures the chiral symmetry breaking, and its density
dependence in the low-density limit is related [43, 44] to
the free πN sigma term ΣπN by

〈q̄q(ρ)〉

〈q̄q(0)〉
= 1−

ρΣπN

f2
πm

2
π

(8)

where fπ = 93MeV is the pion decay constant and ΣπN =
45 ± 7MeV [45]. Applying the above scaling to mesons

in low-density nuclear medium, one has the linear scaling
[36]

m∗

m
= 1− C

ρ

ρ0
(9)

where m∗ and m are, respectively, the in-medium and
free meson mass, and C is a constant of value ∼ 0.15.
The above scaling will be referred to as the linear BR
scaling. (Pions are not scaled because they are protected
by chiral symmetry.) Nucleon-nucleon interactions are
mediated by meson exchanges, and clearly the in-medium
modifications of meson masses can significantly alter the
NN interaction. These modifications could arise from
the partial restoration of chiral symmetry at finite den-
sity/temperature or from traditional many-body effects.
Particularly important are the vector mesons, for which
there is now evidence from both theory [36, 46, 47] and
experiment [48, 49] that the masses may decrease by ap-
proximately 10 − 15% at normal nuclear matter density
and zero temperature. It should be pointed out that, as
reviewed recently by Hayano and Hatsuda [50] and Milov
[51], there are also experiments which do not support the
above in-medium decrease (or drop) of the meson mass.
However, there are more experiments that support the
in-medium decrease of meson masses as compared to ex-
periments which do not see such evidence.[51] Density-
dependent nuclear interactions obtained by applying the
above scaling to the light mesons (ω, ρ and σ) which me-
diate the NN potential have been employed in studying
the properties of nuclear matter [30, 31, 37, 38] and the
14C →14 N β-decay [39].
We are interested in the EOS and Esym up to densities

as high as ρ ≃ 5ρ0, and at such high densities the above
linear scaling is clearly not suitable. How to scale the
mesons in such high density region is still by and large
uncertain. We shall adopt here the Ericson scaling [42]
which is an extension of the BR scaling. In this scaling,
a new relation for the quark condensate 〈q̄q〉 based on
chiral symmetry breaking is employed, namely

〈q̄q(ρ)〉

〈q̄q(0)〉
=

1

1 + ρΣπN

f2
π
m2

π

. (10)

Note that this relation agrees with the linear scaling re-
lation of Eq.(8) for small ρ. The above scaling suggests
a non-linear scaling for meson mass

m∗

m
=

(

1

1 +D ρ
ρ0

)1/3

(11)

with D = ρ0ΣπN

f2
π
m2

π

, and we shall refer to this scaling as

the non-linear BR scaling. Using the empirical values
for (ΣπN , ρ0, fπ, mπ), we have D= 0.35±0.06. In the
present work, we shall employ the one-boson exchange
BonnA potential [29] with its (ρ, ω, σ) mesons scaled
using both the linear (Eq.(9)) and non-linear (Eq.(11))
BR scaling. This potential is chosen because it has a
relatively simple structure which is convenient for scaling
its meson parameters.
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III. RESULTS AND DISCUSSIONS

Using both the unscaled and scaled BonnA potentials,
we first calculate the ring-diagram EOS for symmetric
nuclear matter to investigate if they can give saturation
properties in good agreement with the empirical values.
We employ the low-momentum interactions Vlow−k from
these potentials using a decimation Λ = 3.0fm−1, which
is chosen because we are to study the EOS up to high
densities of ∼ 5ρ0. As shown in Fig. 2, the EOS (la-
belled ‘Vlow−k alone’) calculated with the unscaled po-
tential saturates at kF ≃ 1.8fm−1, which is too large
compared with the empirical value, and it also overbinds
nuclear matter. We then repeat the calculation includ-
ing the medium modifications from the BR scalings. For
the linear BR scaling (Eq.(9)), we have used Cω=0.128,
Cρ=0.113 and Cσ=0.102. These parameters are chosen
so as to have satisfactory saturation properties, namely
they give E0/A ≃-15.5 MeV and ρ0 ≃ 0.17 fm−3. In Fig.
2 we also present our results obtained with the non-linear
BR scaling (Eq.(11)) using parameters Dω = Dρ=0.40
and Dσ=0.30. They were chosen to provide satisfactory
results for E0/A and ρ0.
We now discuss some boundary conditions associated

with the BR scalings. With such scalings, the NN po-
tential becomes VNN (ρ), namely it becomes density de-
pendent. But it should satisfy certain boundary condi-
tions: As ρ approaching zero, VNN (ρ) should become
the free NN potential which reproduces the experimental
NN scattering data and deuteron binding energy. This
boundary condition is satisfied because we start from the
realistic BonnA potential, and VNN (ρ = 0) is by con-
struction the same as BonnA. In the present work, we
also require the condition that VNN (ρ = ρo), ρo being
the nuclear matter saturation density, reproduces the em-
pirical nuclear matter saturation properties, by choosing
the scaling parameters, the Cs or Ds, appropriately, as
mentioned above. Thus, in our present work, we require
VNN (ρ) to satisfy the above boundary conditions at ρ=0
and ρ0. For densities in between and beyond, the density
dependence of this potential is ruled by the scalings we
employ.
It is of interest that for densities . ρ0 the EOS given

by the linear and non-linear BR scalings are practically
equivalent to each other. As also seen from Fig. 2, the
above equivalence begins to disappear for densities larger
than ρ0. There the EOS given by the linear BR scaling
is much stiffer than that given by the non-linear one;
the difference between them becomes larger and larger
as density increases. In addition to the above two EOS,
we have also calculated an EOS using the interaction
given by the sum of the unscaled Vlow−k and an empiri-
ral Skyrme three-nucleon force (TNF). The well-known
emipirical Skyrme force [52] is of the form

VSkyrme =
∑

i<j

V (i, j) +
∑

i<j<k

V (i, j, k), (12)

where V (i,j ) is a two-nucleon momentum dependent in-

teraction, and V(i,j,k) is a zero-range three-nucleon inter-
action which has played an indispensible role for nuclear
saturation. For nucleons in a nuclear medium of density
ρ, this three-nucleon force becomes a density-dependent
two-nucleon force commonly written as

Vρ(i, j) =
t3
6
ρδ(~ri − ~rj). (13)

In Fig. 2 the EOS labelled ‘Vlow−k with TNF’ is obtained
using the combined interaction of Vlow−k (unscaled) and
Vρ. The parameter t3 is adjusted so that the resulting
EOS gives satisfactory saturation properties for symmet-
ric nuclear matter. The EOS shown has t3=2000 MeV-
fm6.
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FIG. 2: Ring-diagram EOSs calculated for symmetric nuclear
matter with different interactions. The BonnA interactions
unscaled, scaled with the linear BR scaling of Eq. (9), and
scaled with the non-linear scaling of Eq. (11) are used, respec-
tively, for the results labelled ‘Vlow−k alone’, ‘linear BRS’,
and ‘non-linear BRS’. For ‘Vlow−k with TNF’ we use the
unscaled BonnA interaction together with the Skyrme-type
three-nucleon force of Eqs. (12-13).

It is of interest that the above three EOS (linear and
non-linear BR, TNF) are nearly identical for densities
. ρ0, but they deviate from each other with increasing
densities. Without experimental guidelines about the nu-
clear matter EOS above ρ0, it would be difficult to de-
termine which of these three EOS has the correct high
density behavior. Fortunately, heavy-ion collision exper-
iments conducted during the last several years have pro-
vided us with constraints of the EOS at high densities.
Danielewicz et al. [9] have obtained a constraint on the
EOS for symmetric nuclear matter of densities between
2ρ0 and 4.5ρ0, as shown by the red solid-line box in Fig.
3. Comparing our three EOSs with their constraint, the
linear BRS EOS is clearly not consistent with the con-
straint and should be ruled out. This linear scaling is
suitable for low densities, but definitely needs modifica-
tion at high densities. It is primarily for this purpose
that we have considered the non-linear scaling. As dis-
played in Fig. 3, the EOS with the non-linear BR scaling
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is in much better agreement with the constraint than
the linear-BR one. It satisfies the constraint well ex-
cept being slightly above the constraint at densiies near
∼ 4.5ρ0. It is of interest that the EOS using Vlow−k

with the Skyrme-type TNF exhibits even better agree-
ment with the constraint.
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/fm
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ρ/ρ0

linear BRS
non-linear BRS
Vlow-k with TNF

FIG. 3: The equations of state for symmetric nuclear matter
calculated with different interactions as explained in the cap-
tion of Fig. 2. The Danielewicz constraint [9] derived from
heavy-ion collisions is denoted by the ‘solid-line box’.

So far we have studied the effects of the BR scalings
and the TNF three-nucleon force on the EOS for symmet-
ric nuclear matter. The neutron matter EOS is also an
interesting and important topic [53, 54]. It plays a cru-
cial role in determining the nuclear symmetry energies as
well as the properties of neutron stars. It should be of
interest to study also the effects of the above BR scalings
and the TNF force on the EOS of neutron matter. Us-
ing the same Vlow−k ring-diagram framework employed
for symmetric nuclear matter and the same C, D and t3
parameters, we have caculated the neutron matter EOS
up to 4.5ρ0. Our calculated neutron-matter EOS are dis-
played in Fig. 4. Danielewicz et al. [9] have given two
different constraints for the neutron matter EOS: a stiff
one (upper solid-line box) and a soft one (lower solid-line
box) which are both displayed in Fig. 4. As we can see,
the linear BRS EOS is again producing too much pres-
sure. The non-linear BRS EOS agrees well with the stiff
constraint (upper box) while the TNF EOS is fully within
the soft constraint box. To further test these two EOS
(non-linear BRS and TNF), it would be very helpful to
have narrower experimental constraints on the neutron
matter EOS.
The symmetry energy Esym is a topic of much current

interest, and extensive studies have been carried out to
extract its density dependence from heavy-ion collision
experiments [7, 10]. Based on such experiments, Li et al.
[10] suggested an empirical relation

Esym(ρ) ≈ 31.6(ρ/ρ0)
γ ; γ = 0.69− 1.1, (14)

for constraining the density dependence of the symme-
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/fm
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ρ/ρ0

linear BRS
non-linear BRS
Vlow-k with TNF

FIG. 4: The equations of state for neutron matter calcu-
lated with different interactions as explained in the caption of
Fig. 2. The Danielewicz constraint [9] derived from heavy-ion
collisions is denoted by the ‘solid-line box’. See text for more
explanations.

try energy. Also based on such experiments, Tsang et

al. [7] recently proposed a new empirical relation for the
symmetry energy, namely

Esym(ρ) =
Cs,k

2

(

ρ

ρ0

)2/3

+
Cs,p

2

(

ρ

ρ0

)γi

(15)

where Cs,k = 25MeV, Cs,p = 35.2MeV and γi ≈ 0.7. It
should be useful and of interest to check if our calculated
Esym(ρ) is consistent with the above relations.
Using the ring-diagram framework described earlier,

we have calculated the ground-state energy E(ρ, α) for
asymmetric nuclear matter. (Recall that the asymmetry
parameter is α = (ρn − ρp)/ρ.) Some representative re-
sults are shown in Fig. 5: the results in the left panel are
obtained with the ‘Vlow−k with TNF’ interaction while
for the right panel the ‘non-linear BR’ interaction is used.
As seen, E(ρ, α) varies with α2 almost perfectly linearly,
for a wide range of ρ. (Note that in Fig. 5 we plot
the energy difference Esym(ρ, α) − Esym(ρ, 0).) This is
a desirable result, indicating that our ring-diagram sym-
metry energy can be accurately obtained from the simple
relation given by Eq. (2), namely the energy difference
between neutron and symmetric nuclear matter. Note
that the above linear behavior has also been observed
in previous symmetry energy calculations using different
many-body methods [4, 55].
In Fig. 6, the ‘shaded area’ represents the empirical

constraint, Eq.(14), of Li et al. [10]. As seen, there are
large uncertainties in the high-density region. The em-
pirical relation Eq.(15) of Tsang et al. [7] is given by
the ‘second curve from bottom’ in the figure. As seen,
the density dependence of this relation is slightly below
the softest limit (lower boundary of the shaded area) of
Eq.(14). Our ‘non-linear BR’ results are in the middle of
the shaded area, in good agreement with the empirical
constraint of [10]. Our results with the TNF force are
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FIG. 5: Ring-diagarm equations of state of asymmetric nu-
clear matter. See text for more explanations.

below the empirical ones of both [10] and [7], giving a
softer density dependence than both. It may be noticed
that for densities (ρ . ρ0), the calculated and empirical
results are all in good agreement with each other. The
symmetry energies given by them at ρ0 are all close to
∼ 30MeV, which is also the only well determined em-
pirical value. Furthermore, our calculated symmetry en-
ergies all increase monotonically with density. We have
required our nuclear matter EOS to satisfy certain em-
pirical constraints, and with such requirements it may
be difficult for our present calculations to have a soft
Esym(ρ) as soft as the supersoft one of [8] which satu-
rates at density near ∼ 1.5ρ0.
We have found that our symmetry energies can be well

fitted by expressions of the same forms as Eqs.(14) and
(15), with the exponents γ and γi treated as parameters.
In Table I, we compare the exponents determined from
our results with the empirical ones of [10] and [7]. The γ
exponent given by the non-linear BR scaling is in good
agreement with the empirical values of [10]. The empir-
ical γi of [7] is, however, about half-way between the γi
obtained with ‘non-linear BRS’ and that with ‘TNF’.

TABLE I: Density exponents for the nuclear symmetry energy
Esym(ρ) calculated with different interactions as explained in
the caption of Fig. 2. The exponents γ and γi are defined
respectively in Eqs. (14) and (15).

γ γi
Li et al. [10] 0.69-1.1

Tsang et al. [7] 0.7
non-linear BRS 0.82 1.04
Vlow−k with TNF 0.53 0.43

IV. SUMMARY AND CONCLUSION

Employing the Vlow−k low-momentum interactions, we
have calculated the nuclear symmetry energy Esym(ρ) up
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FIG. 6: The density dependence of symmetry energies calcu-
lated with different interactions as explained in the caption
of Fig.2. The empirical results of Tsang et al. (dot-dash line)
and Li et al. (shaded area) are from [7] and [10], respectively.

to a density of ∼ 5ρ0 using a ring-diagram framework
where pphh ring diagrams are summed to all orders. We
first calculate the EOS for symmetric nuclear matter and
neutron matter and compare our results with the corre-
sponding empirical constraints of Danielewicz et al. [9].
To have satisfactory agreements with such constraints,
we have found it necessary to include certain medium
corrections to the free-space NN interations. In other
words, the effective NN interactions in medium are dif-
ferent from those in free space, and when using them in
nuclear many-body problems it may be necessary to in-
clude the renormalization effects due to the presence of
other nucleons. We have considered several methods to
incorporate such medium corrections. Although the nu-
clear matter saturation properties can satisfactorily be
reproduced by including the medium corrections from the
well-known linear Brown-Rho scaling for the in-medium
mesons, this scaling produces an EOS which is too stiff
compared with the Danielewicz constraints. We have
found that the EOS obtained with the Ericson non-linear
scaling (referred to earlier as the non-linear BR scaling)
are in good agreement with the Danielewicz constraints.
We have considered another method to render the ef-
fective interaction density dependent, namely adding a
Skyrme-type three-nucleon force (TNF) to the unscaled
Vlow−k interaction. The EOS so obtained are also in
good agreement with the Danielewicz constraints, but
the resulting neutron matter EOS is significantly softer
than that with the non-linear scaling. The three methods
(linear and non-linear scalings, and TNF) all have repro-
duced well the empirical saturation properties of nuclear
matter (ρ0 ≈ 0.17fm−3 and E0/A ≈ −15MeV), but their
results at high densities are different. We have deter-
mined the scaling parameters C (linear BR scaling) and
D (non-linear Ericson scaling) by fitting the above sat-
uration properties. It is encouraging that the results,
(0.102 . C . 0.128) and (0.30 . D . 0.40), so obtained
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are actually in good agreement with the theoretical result
D ≃ 0.35± 0.06 ≃ 3C given by Eqs.(7-11).
Including the above medium modifications, we pro-

ceed to calculate the nuclear symmetry energies. We
have found that the Esym(ρ, α) given by our asymmetric
ring-diagram calculations depends on α2 almost perfectly
linearly. This is a rather useful result, suggesting that
the symmetry energy as calculated by our ring-diagram
method can be reliably obtained from the simple energy
difference between symmetric nuclear matter and neu-
tron matter. Our symmetry energies obtained with the
non-linear Ericson scaling agree well with the empirical
constraints of [10], and are slightly above the empirical
values of [7]. Our results with the TNF force is slightly
below the empirical results of both [10] and [7]. The
non-linear Ericson scaling has given satisfactory results
for the equations of states of nuclear matter and nuclear
symmetry energies up to a density of ∼ 5ρ0. We believe
this scaling provides a suitable extension of the linear BR
scaling to moderately high densities of . 5ρ0. Our cal-
culated Esym(ρ) all increase monotonically with ρ up to
∼ 5ρ0. It may be of interest to carry out further studies
about the possibility of obtaining a supersoft symmetry
energy which may saturate at some low density of∼ 1.5ρ0
[8].
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