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Using the (241)-dimensional viscous hydrodynamic code VISH2+1 with a temperature dependent
specific shear viscosity (1/s)(T"), we present a detailed study of the influence of a large hadronic shear
viscosity and its corresponding relaxation time 7, on the transverse momentum spectra and elliptic
flow of hadrons produced in 200 A GeV Au+Au collisions. Although theory, in principle, predicts
a well-defined relation 7T =k(T) x (n/s) (T'), the precise form of x(T") for the matter created in
relativistic heavy-ion collisions is not known. For the popular choice k=3 the hadron spectra are
found to be insensitive to a significant rise of 1/s in the hadronic stage, whereas their differential
elliptic flow v2(pr) is strongly suppressed by large hadronic viscosity. The large viscous effects
on vy are strongly reduced if (as theoretically expected) (T") is allowed to grow with decreasing
temperature in the hadronic stage. This implies that, until reliable calculations of «(T") become
available, an extraction of the hadronic shear viscosity from a comparison between VISH2+1 and a
microscopic hadron cascade or experimental data requires a simultaneous fit of (n/s)(T") and (7).

PACS numbers: 25.75.-q, 25.75.Dw, 25.75.1.d, 24.10.Nz

I. INTRODUCTION

A fluid state of matter, quark-gluon plasma (QGP),
is created in ultra-relativistic heavy-ion collision experi-
ments at the Relativistic Heavy Ion Collider (RHIC) [1-
4]. Theoretical analysis of these experiments established
that QGP behaves like an almost perfect liquid with very
small viscosity [5-7]. Much effort has been focused on de-
termining the QGP transport parameters, in particular
its specific shear viscosity (n/s)qap, i.e. the ratio be-
tween its shear viscosity n and entropy density s (see
[8, 9] for recent reviews).

In a recent article [10] the newly developed hybrid
code VISHNU [11] has been used to extract (n/s)qap
from the observed collision centrality dependence of the
integrated charged hadron elliptic flow vs. This code
couples the macroscopic evolution of the QGP by the
(241)-dimensional viscous hydrodynamic code VISH2+1
to the Boltzmann cascade UrQMD which describes the fi-
nal hadronic rescattering and freeze-out stage microscop-
ically. The microscopic simulation of the late hadronic
stage is numerically costly, and a macroscopic descrip-
tion with viscous fluid dynamics would therefore be much
preferred if valid. Unfortunately, a detailed study pre-
sented in [11] indicated that the microscopic UrQMD dy-
namics cannot be faithfully simulated with viscous hy-
drodynamics if one assumes the frequently used relation-
ship 7,T'=3% between the specific shear viscosity 7/s
and the microscopic relaxation time 7, for the shear vis-
cous pressure tensor 7 scaled with the temperature
T of the fluid. Relations of the type 7,7 =%, with
constant proportionality factors x, are found theoreti-
cally in both the extreme weak-coupling (for a massless
Boltzmann gas one finds k=6 in Israel-Stewart theory
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[12, 13] and k=5 in the modified approach by Denicol
et al. [14]) and extreme strong-coupling limits (where
one has kK =4—2In2=2.614 for N'=4 super-Yang-Mills
theory at infinite coupling [15-17]). Other recent work,
however, based on modified Kubo relations [18-21] and
a deeper analysis of the Boltzmann equation and its con-
nection to viscous hydrodynamics [14, 22, 23], suggests
(in some cases strong) temperature dependence of k.

Here we will explore one such proposed relation,
k= (e+p)/p [19] (where e and p are the energy density
and pressure of the system), which leads to a strong in-
crease of k(T') with decreasing temperature in the mas-
sive hadron resonance gas below the quark confinement
temperature T,. Such an increase is qualitatively consis-
tent with certain observations made in the recent VISHNU
study [11]. We here use VISH2+1 to investigate, within a
purely hydrodynamic framework, systematically the con-
sequences of increasing shear viscosity and shear pres-
sure relaxation time in the late hadronic stage on the
transverse momentum spectra and elliptic flow of soft
(pr <2 GeV/c) hadrons produced in Au+Au collisions at
RHIC. Our work differs from an earlier study by Bozek
[24] of the effects of temperature-dependent specific bulk
and shear viscosities by focusing on shear viscosity and
investigating situations in which the shear viscosity of the
hadron gas is larger than that of the QGP (rather than
the other way around [24]), as expected on basic theo-
retical grounds [25]. While the present work was being
completed, a related study appeared [26] which focusses
chiefly on the question whether recent data from Pb+Pb
collisions at the Large Hadron Collider (LHC) [27] re-
quire an increase of the QGP shear viscosity with rising
temperature.

The paper is organized as follows: In Sec. II we briefly
review the viscous hydrodynamic model and discuss the
specific ingredients used in the present study. The ef-
fects of a large hadronic specific shear viscosity (1/s)ug
on the fireball evolution are discussed in Sec. III. In



Sec. IV we discuss the dependence of the transverse mo-
mentum spectra and elliptic flow of emitted hadrons in
Au+Au collisions on (1/s)ucg, the decoupling tempera-
ture Tyec, and the collision centrality. Section V is dedi-
cated to a detailed discussion of the viscous corrections to
the freeze-out phase-space distribution and their effects
on spectra and elliptic flow. All results up to this point
assume a constant factor k=3 in the relation 7,71 = mg
between the specific shear viscosity 1/s and the micro-
scopic relaxation time 7,; in Sec. VI we explore the con-
sequences of making x(T) temperature dependent and
letting it grow during the quark-hadron phase transition.
A final discussion in Sec. VII concludes our paper.

II. VISCOUS HYDRODYNAMICS: SPECIFIC
INGREDIENTS FOR THE PRESENT STUDY

VISH2+1 [28] solves the second-order Israel-Stewart
equations for causal relativistic viscous fluid dynamics
[12] in the spatial plane transverse to the beam direction
and in time, assuming boost-invariance of the longitudi-
nal expansion. To avoid repetition we refer the reader
interested in the technical details to earlier descriptions
of the specific form of the evolution equations and the
equation of state s95p-PCE used here (see specifically
Sections IT and IIT in Ref. [29]). The energy-momentum
tensor is decomposed as TH = eutu” —pAHY + 7+ where
mH is the viscous pressure tensor. We consider only
shear viscosity and ignore bulk viscous effects; in this
situation the Israel-Stewart equations describe the evo-
lution of 7#*¥ towards it Navier-Stokes limit 2no*” on
a microscopic relaxation time scale 7., where 7 is the
shear viscosity and o"” is the velocity shear tensor which
evolves hydrodynamically in space and time. We initial-
ize " with its Navier-Stokes value ' =2noh" at ini-
tial time 7p, calculated from the initial velocity profile
ut = (u”, v u?,u) =(1,0,0,0).

The generation of hydrodynamic flow from the pres-
sure gradients in the system is controlled by the
fluid’s equation of state (EOS) for which we use s95p-
PCE [29, 30] with chemical decoupling temperature
Tehem = 165 MeV. This EOS interpolates between state-
of-the-art Lattice QCD data at high temperatures and a
chemically frozen hadron resonance gas at low temper-
atures. Chemical freeze-out at Tepem = 165 MeV guar-
antees that the final hadron yields, calculated by in-
tegrating the final hadron momentum spectra obtained
from the hydrodynamic output along an isothermal de-
coupling surface of temperature Tqec < Tehem Via the
Cooper-Frye procedure [31] followed by resonance de-
cay [32, 33|, agree with experimental measurements in
200 A GeV Au+Au collisions at RHIC [3, 34, 35]. At de-
coupling, we parametrize the local distribution function
in the Cooper-Frye formula by a local thermal equilib-
rium function plus a small viscous correction which de-
pends on the value of the viscous pressure tensor 7#¥ on
the freeze-out surface and increases quadratically with

particle momentum [29, 36]. Unless noted otherwise, we
use Tyec = 120 MeV.

We initialize the hydrodynamic evolution with an en-
ergy density profile obtained from the optical £KLN model
[37-39]. The model yields the initial gluon density dis-
tribution which, after thermalization, gives directly the
initial entropy density which is then converted to energy
density using the EOS s95p-PCE. The normalization of
the initial entropy density is adjusted in the most cen-
tral collisions to reproduce the finally measured charged
hadron multiplicity. Due to viscous entropy production,
changing 7n/s requires a readjustment of this normaliza-
tion to keep the final multiplicity fixed. After normal-
ization in central collisions, the centrality dependence of
the final charged hadron multiplicity is obtained directly
from the £KLN model, without further adjustment of pa-
rameters.

The key ingredients whose influence on the genera-
tion of radial and elliptic flow we want to study here
are the temperature dependence of the specific shear vis-
cosity /s and of the proportionality constant between
n/s and the temperature-scaled microscopic relaxation

time 7,1, k= 7;]"/5 Specifically, we will explore scenar-

ios where 1/s=0.16 is a constant in the QGP phase but
increases by variable amounts during the transition from
QGP to hadrons, using the following parametrization for
its temperature dependence:
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FIG. 1. (Color online) Five choices for the temperature de-
pendent (n/s)(T") studied in this work. The constant values
1

at low T" are multiples of 0.08 ~ +-.

are (different) constants for the QGP and HG (hadron
gas) phases. We will explore the range 0.16 <(n/s)ug



<0.48, as illustrated in Figure 1. In the next three sec-
tions x will be held constant at = 3;[50] consequences
of a temperature dependent x(T") = (e+p)/p will be ex-
plored in Sec. VI.

III. HYDRODYNAMIC EVOLUTION

In order to study how the fireball evolves with a tem-
perature dependent (n/s)(T") that increases in the HG
phase, we graph the time evolution for the average trans-
verse flow velocity (v, )) (the average over the transverse
plane being defined with the lab-frame energy. deznsity
Qy"—a") ¢

~vie as weight), the spatial eccentricity e, = Tzramy ©

the lab-frame energy density distribution, the flow mo-
(Tg" —T3")
(T5=+15")
simple integration over the transverse plane and T} is
the ideal fluid part of the energy-momentum tensor, with-

out viscous pressure contributions), and the total momen-

tum anisotropy 5; = % for different choices of the

temperature dependence of 7/s.

Since shear viscosity leads to viscous heating which
generates entropy, holding the finally observed hadron
multiplicity fixed requires that an increase in (n/s)(T)
must be accompanied by a decrease of the initial entropy
of the fireball. We implement this by a decrease of the
normalization of the initial entropy density distribution,
keeping its shape fixed. Whereas for fixed initial condi-
tions an overall increase of 1)/ s leads to stronger radial ac-
celeration due to a positive contribution from the viscous
pressure tensor ¥ to the transverse pressure gradients
[36, 40-43], this effect is largely compensated [26, 29, 44]
after rescaling the initial entropy density to ensure fixed
final multiplicity. For our temperature-dependent 7/s
this compensation no longer works in the same way: af-
ter rescaling the initial entropy density profile, to com-
pensate for increased viscous heating in the hadronic
phase, the QGP core shrinks and the HG corona grows
in size. Since the viscous pressure is relatively larger in
the hadronic phase than in the QGP, the effective trans-
verse pressure gradient is reduced when increasing n/s
only in the hadronic phase, leading to weaker radial ac-
celeration. This can be seen in Fig. la, where we see a
reduction oof the growth rate of the average radial flow
velocity (v ) with increasing values of (n/s)ug, holding
(n/S)QGP =0.16 fixed.

The larger shear viscosity in the hadronic corona leads
to a more rapid initial decay[51] of the spatial fireball ec-
centricity €, (see Fig. 2b) and a slower growth rate and
lower asymptotic value of the flow momentum anisotropy
ep (Fig. 2¢, open symbols). The spatial eccentricity
curves in Fig. 2b all cross around 7—79=4.5fm/c, in-
dicating the transition from stronger decay of ¢, at early
times to weaker decay at late times for larger values
of (n/s)uc. This is a consequence of the reduced flow
anisotropy ¢, shown in Fig. 2c.

The lines with filled symbols in Figure 2c¢ show that
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FIG. 2. (Color online) The average radial flow ((v.)), spatial
eccentricity €, and the flow and total momentum anisotropies
ep and €, for Au+Au collisions at b= 7.5 fm as functions of hy-
drodynamic evolution time 7—7o, for 70 = 0.4 fm/c and kinetic
freeze-out temperature Tgec = 120 MeV. Lines with different
symbols correspond to different temperature dependences of
n/s as shown in Fig. 1.

the effects of increased hadronic viscosity on the asymp-
totic values of the total momentum anisotropy e, are
much stronger than on the flow anisotropy e,: while
the latter decreases by about 25% from (n/s)ug =0.16
to (n/s)uc =0.48, the corresponding decrease for ¢, is
almost twice as large. Also, most of the effect on ¢,
happens at late times 7—79 > 4.5 fm/c¢ when most of the
matter has converted into hadron gas. This reflects the
growth of the Navier-Stokes value mig = 2no*” of the vis-
cous pressure contribution to 7" in the hadronic phase
where nuc increases. In contrast to €, the total momen-
tum anisotropy 5; does not saturate at late times after
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FIG. 3. (Color online) (a): Transverse momentum spectra for charged hadrons, pions, and protons from VISH2+1 for the 5%
most central Au+Au collisions (b=2.33fm). (b-c): Differential elliptic flow va2(pr) for charged hadrons (b), pions (c) and
protons (d) from Au+Au collisions at 20-30% centrality (b=7.49fm). Lines with different symbols correspond to different
values of (1/s)uc as shown in Fig. 1; Tyec = 120 MeV. Decay products from all strong resonance decays are included. Charged

hadrons include 7%, K, p, ©*, 2=, Q~, and their antiparticles.

the spatial eccentricity (which drives the flow anisotropy)
has essentially decayed to zero; its continued increase is
due to the continuing decrease of the magnitude of the
71" components whose contribution to e/, is negative [43].

The large difference between the late-time values of
ep and 5; for high values of nyg shows that, for strong
hadronic viscosity, the viscous corrections to the local
thermal equilibrium distribution on the kinetic decou-
pling surface at Ty, are big. We will explore this in
more detail in Sec. V.

IV. SPECTRA AND ELLIPTIC FLOW
A. Central and semi-peripheral Au+Au collisions

Figure 3 shows the transverse momentum spectra for
charged hadrons, pions and protons from central Au+Au
collisions (0—5% centrality) and their elliptic flows v (pr)
for semiperipheral Au+Au collisions (20—30% central-
ity) for different choices of the hadronic shear viscosity
(n/s)uc. The pr-spectra in Fig. 3a are seen to be com-
pletely insensitive to the value of (7/s)ug. From the
reduction of the radial flow seen in Fig. 2a one would
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FIG. 4. (Color online) Similar to Fig. 3, for fixed (n/s)uc =0.48 and different decoupling temperatures Tgec ranging from 160
to 100 MeV. In panels (b)-(d), dotted lines show vz (pr) calculated without the ¢ f correction whereas the solid lines show the

full calculations.

have expected steeper spectra for larger (n/s)ug since
Taee = 120MeV is held fixed; clearly, for pr < 2GeV/c,
the viscous correction ¢ f to the local equilibrium distri-
bution at freeze-out (which will be analyzed in greater
depth in Sec. V) happens to almost exactly compensate
for the loss of radial flow, over the entire range of (n/s)ug
values studied here.

This is not true for the elliptic flow which is
strongly reduced when the hadronic viscosity is increased
(Figs. 3b-d). For protons a striking effect is seen for
(n/s)nc >0.32: The proton elliptic flow turns negative
(i.e. protons show stronger flow perpendicular than par-
allel to the reaction plane) for low pp. This effect is
caused entirely by the df correction. §f grows not only
with pr, as is well known, but also with the mass of the

hadron. For massive hadrons, the shear viscous 0 f cor-
rection can be a strong effect even at pr=0. In Fig. 3
negative va(pr) caused by 0 f at low pp is not visible for
pions, but for protons and would be much stronger for 2
hyperons or J/1 mesons [45] if they also followed viscous
hydrodynamical evolution down to Tge. = 120 MeV.

The effect of the § f correction is studied in Fig. 4, for
various choices of the decoupling temperature Tye. . We
hold the hadronic shear viscosity fixed at (n/s)ug = 0.48,
the largest value studied here. The effect of variations
in Tyec on the spectra in Fig. 4a is similar to what we
observed in [29]: lower decoupling temperatures cause
flatter proton spectra due to larger radial flow, steeper
pion spectra due to the cooling effect which dominates
for light particles, and almost no change in the charged



hadron spectra whose mix of light and heavy particles
effectively balances the counteracting cooling and radial
flow effects.

In Figs. 4b-d we plot the differential elliptic flow for
charged hadrons, pions and protons. The dotted lines
show a calculation that ignores the viscous d f correction
at freeze-out and thus only includes the Tye.-dependence
of the pure flow effects. We see that lower Tye. values
suppress v (pr) for protons but increase it for pions at
low pp. This is really a consequence of the accompanying
change of the pp-spectra: Due to the large hadronic vis-
cosity, very little additional flow momentum anisotropy
is generated at temperatures below T.. However, due
to cooling, the pion spectra get steeper with decreas-
ing Tgec, moving more of their momentum anisotropy
to low transverse momenta which leads to the increase
of pion va(pr) at low pr. Conversely, the proton spectra
get flatter, in spite of cooling, due to additional radial
flow developing between T, and Tyec; consequently, their
total momentum anisotropy gets shifted on average to
larger transverse momenta, causing a reduction of pro-
ton ve(pr) at low pr (accompanied by an increase at
high pr < 2GeV/c¢, beyond the range shown here). Both
the flattening of the proton spectra and the shifting of
their elliptic flow to larger py are stronger for the case
of large hadronic shear viscosity ((n/s)uc =0.48) stud-
ied here than for the case of temperature-independent
1/s=0.16 studied in [29]: The large hadronic viscosity
generates stronger additional radial flow but less addi-
tional momentum anisotropy in the hadronic stage than
does constant /s =0.16. Note that, without Jf, proton
va(pr) never turns negative, even for the largest hadronic
shear viscosity studied in this work.

The solid lines in Figs. 4b-d show the full calculation of
va(pr) including the Jf correction. We see larger df ef-
fects for protons than pions, due to their larger rest mass
[43]. The full calculations feature a non-monotonic vari-
ation of pion and charged hadron ve(pr) with decoupling
temperature Tge.: The suppression from ¢ f is smaller for
T4ec =160 MeV than for Tge. = 140 MeV. The like expla-
nation is that Tyec =160 MeV is so close to the inflec-
tion point Tt of the shear viscosity (n/s)(T") that, due to
the finite relaxation time 7, ~ 2fm/c at this tempera-
ture, the viscous pressure tensor has not yet had time to
fully evolve to its (larger) hadronic Navier-Stokes value
whereas at Tge. complete relaxation has been achieved.
At sufficiently low Tyec, 0 f decreases with decreasing the
decoupling temperature, since now 7/s has reached its
new, higher hadronic level and 7#¥ becomes smaller sim-
ply due to hydrodynamic expansion [43].

B. Minimum bias collisions

In Figure 5 we show pr spectra and differential elliptic
flow for charged hadrons, pions and protons from min-
imum bias Au+Au collisions with Tye. =120 MeV. For
these we summed our calculated results over all collision

centralities <80%. The dependence on collision central-
ity is discussed in the next subsection.

Similar to what we saw in Fig. 3a for central Au+Au
collisions, the spectra shown in Fig. 5a exhibit almost no
sensitivity at all to variations of the specific shear vis-
cosity (n/s)ug in the hadron gas stage. We did observe
some flattening of the charged hadron spectrum in the
most peripheral (70—80%) centrality bin studied, where
the viscous effects are strongest and the §f correction is
largest. Due to its low weight in the average, this weak
effect is not visible in the minimum bias result.
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FIG. 5. (Color online) Transverse momentum spectra (a) and
differential elliptic flow va2(pr) for charged hadrons (b) and
pions and protons (c) from minimum bias Au+Au collisions
at RHIC, for various (n/s)(T") as indicated (c. f. Fig. 1).
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In Figures 5b and c, the minimum bias differential
va(pr) of all charged hadrons, pions and protons are
shown for different (n/s)ug. We see that the features
observed in Fig. 3 for the specific 20—30% centrality
bin carry over, qualitatively unchanged, to event sam-
ples without centrality selection: a significant increase
of /s in the hadron gas phase has a strong suppres-
sion effect on vy(pr). However, as shown in Sec. IV A,
the suppression arises mostly from the 0 f correction at
kinetic freeze-out, with a much smaller contribution ac-
counting for the lack of growth of the total momentum
anisotropy in the hadronic phase when (1/s)ug becomes
large. Hence, the strong suppression of differential ellip-
tic flow by large hadronic shear viscosity shown here is
critically dependent on the validity of viscous hydrody-
namics as the correct framework for evolving 0 f all the
way down to Tgec =120 MeV. This is assumed here, but
not supported by the analysis presented in [11].

C. Centrality dependence of elliptic flow

The centrality dependence of the eccentricity-scaled el-
liptic flow vy /e is shown in Fig. 6 where we graph this
quantity as a function of the final charged multiplicity
density (1/S)dN.,/dy. for different values of (n/s)uc.
(We obtain vy by integrating vs(pr) over all pp, with-
out regard to possible pr cuts imposed by experimental
constraints.) Strong suppression of vy /e by hadronic vis-
cosity is observed even in the most central collisions, but
the effect is stronger in peripheral collisions. An increase
of (n/s)uc thus not only decreases vy /e, but also changes
the slope of its centrality dependence. We note in pass-
ing that in recent studies with the hydro+cascade hybrid

code VISHNU [10] this slope was fixed and controlled by
the effective dissipation encoded in the hadron cascade,
and that in [11] an (unsuccessful) attempt was made to
extract the temperature-dependence of (1/s)uc (here as-
sumed to be T-independent) by matching the magnitude
and slope of the corresponding v /e vs. (1/5)dNen/dy
curves from VISH2+1 to those from VISHNU. We also ob-
serve that for the largest value of (n/s)ug studied here,
(n/s)ug =0.48, the total charged hadron elliptic flow
turns negative in the most peripheral (70—80%) central-
ity bin. We found that this is caused by negative pion
va(pr) around pr =0.5GeV/c (i.e. close to their average
pr), caused by large df corrections at freeze-out.[52]

V. éf CONTRIBUTIONS

Due to non-zero viscous pressure components 7#”, the
distribution function f;(x,p) for hadron species i must
deviate on the freeze-out surface from local equilibrium:

fi(xap) :fqu(ZC,p)"réfi(iC,p)- (2)
We use [36]
1pHpY
6fi:feq,i'§pT€ eipa (3)

noting that also other forms have been suggested in the
literature [46, 47]. The numerator can be written as

PP ()

= 77 (0) [ eosty ) 1) + 2 S0

v? sin(2¢,)

‘2%7% Cosh(y—n)%]

+ 2(z) [—m% sinh?(y—n) + 7% (1 _ ZEE%)
+prma cosh(y—n)v l%}

+ A(z) {meT cosh(y—n)v L%

B sm<2<¢p—¢v>>}
2 sin(2¢y)

where X =7n""+7%, A=7n""—7%¥, Because of boost-
invariance, tracelessness and orthogonality to u”, only
three components of 7/ are independent; we take them
as X, A, and 777, mp =+/m? +p2T is the transverse
mass of the particles, ¢, is the azimuthal angle of pr,
and ¢, (x) is the azimuthal angle of the fluid velocity v
at point z.

We now discuss the individual contributions from
Eq. (4) to the pp-spectra and elliptic flow, for the
cases of constant 7/s=0.16 (Figure 7) and temperature-
dependent (n/s)(T) (Figure 8). In panels (a-c) we
show the fractional contribution N/Neq from Jf to the

(4)
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Cooper-Frye spectra of charged hadrons (a), pions (b)
and protons (c). At low pp, the contributions propor-
tional to 777 and A (first and last terms on the r.h.s. of
Eq. (4)) are small and overshadowed by the contribution
from the average transverse viscous pressure Y. The first
(negative) term ~ —m2 in the expression multiplying 3
dominates at low pr. It obviously grows with rest mass,
leading to large negative 0 N /N4 corrections at low pp for
heavy hadrons such as Q and J/v [45]. For protons the
effect remains below 10% in central Au+Au collisions,
i.e. §f corrections are small and the calculation is reli-
able. At larger pr, all three contributions in Eq. (4) turn
positive and 0 N/Neq switches sign (around 0.5 GeV/c for
pions and around 1 GeV/c for protons). Again, the term
~ % first dominates, but since it grows only linearly at
large pr it is eventually (at pr 22 GeV/c) overtaken by
the term ~777. For constant 7/s=0.16, |[§N/Neg| re-
mains below 25% up to pr =2 GeV/c for all three spec-

tra shown,[53] and the calculation is therefore reliable.
For large hadronic viscosity (1/s)uc =0.48 (Fig. 8) the
0 f corrections to the pp-spectra are larger, in particu-
lar the term ~777, and |0N/Ngq| reaches 70—80% at
pr =2 GeV /¢, indicating the imminent breakdown of the
viscous hydrodynamic expansion |§f| < feq-

In the lower panels of Figs. 7 and 8 we show the
df contributions to the differential vo(pr) for charged
hadrons (d), pions (e), and protons (f), again separated
into their individual contributions according to Eq. (3).
We see that for low pp all three terms in Eq. (4) con-
tribute to the suppression of elliptic flow, but that in
this case at high pp the term proportional to the vis-
cous pressure anisotropy A =mn"*—n¥%¥ plays the domi-
nant role, overshadowing the terms ~ % and (except for
the largest hadronic viscosities) also ~x7". The latter
grows quadratically with pr and eventually wins over the
term ~ 3; for large hadronic viscosity (Fig. 8) it even ex-
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FIG. 8. (Color online) Similar to Fig. 7, but for temperature dependent (n/s)(T'), Eq. (1), with (/s)nc =0.48.

ceeds the anisotropy term ~ A at sufficiently large pr.
The term proportional to the average transverse viscous
pressure Y individually generates a positive elliptic flow
correction at large pr (i.e. at pr 22 GeV/c for constant
n/s=0.16 and at pr 2 (1—1.5) GeV/c for T-dependent
(n/s)(T) with (n/s)uc =0.48). Similarly the anisotropy
term ~ A by itself increases proton elliptic flow at low
pr if the hadronic viscosity is large enough (Fig. 8f). In
the sum, however, these positive individual corrections
are always overwhelmed by the remaining two negative
corrections, leading to an overall suppression of vs(pr)
at all pr in all cases. Interestingly, the negative proton
elliptic flow at low py and large (1/s)uc values noted
earlier (Figs. 3-5) is not caused by the viscous pressure
anisotropy A, but by the average transverse viscous pres-
sure X (green triangles in Fig. 8f). This phenomenon is
driven by the effect of ¥ on the proton spectra (Figs. 7c
and 8c): X suppresses the spectra at low pr, leading (in
extreme situations) to the formation of a shoulder in the
proton spectra which is known [48] to cause negative vs.

VI. LARGE HADRONIC RELAXATION TIMES

Motivated by the study of the VISHNU model in [11]
we explore in this section the consequences of very large
relaxation times 7, in the hadronic phase. Specifically,
we assume a relation proposed in [19],

e+p

k(T) = )

(1), ()

which can be easily worked out for our EOS s95p-PCE
and is shown in Fig. 9. In the massless limit (i.e. at large
T where the EOS approaches e = 3p), this expression ap-
proaches the value k = 4. To explore effects specifically
related to the T-dependence of x, we compare in this
section results from Eq. (5) with those for constant k =4
(and not k=3 as in the preceding sections). The QGP
viscosity is kept at (1/s)qap =0.16 throughout, but we
toggle (n/s)uc in Eq. (1) between the two values 0.16
and 0.48 (see Fig. 1).

Figure 10 shows a similar analysis as Fig. 2, but now



comparing constant with T-dependent s values. From
Fig. 10a we conclude that the temperature dependence
of k has no visible influence on the evolution of the spa-
tial eccentricity e,, irrespective of whether the specific
shear viscosity 7/s grows in the hadronic phase or not.
On the other hand we see in Fig. 10b that a (7)) that
grows around and below T as shown in Fig. 9 reduces sig-
nificantly the viscous suppression of the total momentum
anisotropy 5; that is otherwise caused by a large hadronic
shear viscosity.[54] Analyzing panel (b) of Fig. 10 in more
detail, we observe that during the early stage of the evo-
lution larger hadronic relaxation times have little effect
on the flow momentum anisotropy ¢,, consistent with the
almost unchanged decay rate of the spatial eccentricity
seen in panel (a) that drives the anisotropic flow. At late
times, however, the larger x(7T) is seen to have a small
positive effect on the generation of anisotropic collective
flow. Increasing the response time 7, with which the
viscous pressure tensor 7" can react to changes in the
velocity shear tensor apparantly allows the collective flow
anisotropy to grow more easily, with less viscous damp-
ing, than if 7" is allowed to relax to its Navier-Stokes
value 75§ = 2nc*” more quickly. This is a cumulative ef-
fect that becomes visible most clearly at late times when
most of the fireball matter is affected by the larger x(T)
values at lower temperatures.

The total momentum anisotropy a;, on the other hand,
is more strongly affected by a low-temperature growth of
#(T') (solid lines in Fig 10b). ¢, is suppressed relative to
the flow anisotropy ¢, by the non-equilibrium corrections
~ " in the energy-momentum tensor. When the relax-
ation time 7,7 is allowed to grow large in the hadronic
phase, this suppression is found to be reduced, and the
reduction is relatively larger for large values of (n/s)ug

20 T T T T T T T T T T

16 - -
— s95p-PCE

12 —— k=4 i

0.0 0.1 0.2 0.3 0.4 0.5 0.6
T (GeV)

FIG. 9. The temperature dependent x(7") from Eq. (5) for
EOS s95p-PCE (solid), compared with the massless limit
k=4 (dashed).
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(corresponding to a larger Navier-Stokes value 7{g) than
for smaller (n/s)uc. We also note that this suppression
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FIG. 10. (Color online) Same as Fig. 2b,c, but for x(T") from
Eq. (5) and constant k=4 instead of k=3. For the QGP
(n/s)qap =0.16 is used throughout whereas (n/s)uq is varied
between 0.16 and 0.48 as indicated in the legend.
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charged hadrons, using a temperature dependent x(7"). Same
parameters as in Fig. 10.



of the m#”-contribution to 5; is visible already at early
times when the larger x(7T') values affect only the fireball
corona. In fact, for constant n/s=0.16 (solid squares
and circles) the low-temperature growth of x(7T') leads to
a bigger increase of 5; over g, at early than at late times;
this is due to the larger longitudinal expansion rates at
early times which lead to larger Navier-Stokes values for
A =7 —q¥%¥ everywhere, thus causing greater sensitiv-
ity to increased x(T') values in the fireball corona. In the
case of T-dependent 7/s (solid upright and inverted tri-
angles) the effects from a delayed response 7, are larger at
late times; in this situation, the Navier-Stokes values for
A =7 —q¥%¥ grow in the hadronic phase due the sudden
increase of n/s below T, clearly reflected by a “kink” in
the growth of €}, around 7—79 =4 fm/c (see upright green
solid triangles in Fig 10b). This kink is largely washed
out by a simultaneous rise of x(T") (inverted blue solid
triangles in Fig 10Db).

The behavior of the total momentum anisotropy 5;
is directly reflected in the charged hadron elliptic flow,
shown in Fig. 11. We point especially to the reduction
of the (negative) 7" contributions to ¢}, in the case of
T-dependent (n/s)(T), which manifests itself through re-
duced 4 f corrections to ve(pr) which again are most pro-
nounced at large pr (green triangles and blue inverted tri-
angles in Fig. 11). For constant 7/s, on the other hand,
the larger hadronic relaxation time has little effect on the
differential vo(pr), consistent with the very small effect
on the total momentum anisotropy 8; at late times seen
in Fig. 10b.

VII. DISCUSSION AND CONCLUSIONS

Figure 11 has important implications: Comparing the
blue line with inverted triangles to the case of constant
k and n/s (black squares), we conclude that the suppres-
sion of vy (pr) reflected in the blue line could have arisen
in two different ways: (i) by a large increase of n/s in the
hadronic phase, accompanied by a similarly large increase
of k, as shown here, or (ii) by a much less pronounced
increase of the hadronic shear viscosity, compensated by
a correspondingly reduced increase of the hadronic relax-
ation time. In other words, the hadronic shear viscosi-
ties and relaxation times extracted from a given charged
hadron ve(pr) are strongly correlated and impossible to
determine independently from a single elliptic flow mea-
surement. Whether and how the systematic exploration
of differential elliptic flow for different particle species
and different collision systems at different centralities can
help to resolve this ambiguity remains to be seen.

The study presented here shows that any discussion of
large dissipative effects in the hadronic phase of heavy-
ion collisions, reflected by specific shear viscosities and
(scaled) microscopic relaxation times that grow as the
system cools below the critical quark-hadron transition
temperature, is really a discussion of d f, i.e. of the devia-
tion of the freeze-out distribution function from its local
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equilibrium form and its reflection in the final hadron
spectra and anisotropies. As the system cools and ap-
proaches kinetic freeze-out, dissipative effects become
stronger and stronger, bringing the framework of vis-
cous hydrodynamics closer and closer to breakdown. In
this sense, our results have to be taken as qualitative
insights but should not be confused with quantitative
predictions. Their main value, as we see it, is that they
shed light on and help to classify and qualitatively under-
stand the late-stage dissipative effects on hadron spectra
and their elliptic flow as seen in a realistic microscopic
approach (as embodied, for example, by VISHNU). The
results presented here do provide support to the conclu-
sion of Ref. [11] that an effective viscous hydrodynamic
description of the hadronic stage in heavy-ion collisions,
if valid at all, likely requires both large shear viscosity
and long relaxation times below Tt.
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