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The giant resonance region from 9.5 MeV < Ex < 40 MeV in 48Ca has been studied with 

inelastic scattering of 240 MeV α particles at small angles, including 0º.  95±11% of E0 

energy weighted sum rule (EWSR), 10
1683+

− % of E2 EWSR and 137±20% of E1 EWSR 

were located below Ex = 40 MeV.  A comparison of the experimental data with calculated 

results for the isoscalar giant monopole resonance, obtained within the mean-field based 

random phase approximation, is also given.  
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I. Introduction 

The location of the isoscalar giant monopole resonance (ISGMR) is important 

because it can be directly related to the incompressibility coefficient of nuclear matter  

(NM) [1-3], an important ingredient in equation of state (EOS) of NM. Systematic studies 

of the ISGMR energy E0  in various nuclei lead to the value of  KNM  = 231±5 MeV [4] for 

the incompressibility coefficient of symmetric NM . This property of the ISGMR and the 

variation of the incompressibility coefficient with neutron number can also be used to 

extract the asymmetry coefficient Ksym  in the EOS of asymmetric NM [5]. In the analysis 

of experimental data on E0  it is common to employ two approaches: (i) Adopting a 

semiclassical model to relate  E0 to an incompressibility coefficient KA of the nucleus and  

carry out a Leptodermous (A-1/3) expansion of KA, similar to a mass formula, to 

parameterize KA into volume, surface, symmetry and Coulomb terms [6,7]; and   

(ii) Carrying out microscopic calculations of the strength function S(E) of the ISGMR, 

within a fully self consistent mean-field based random phase approximation (RPA), with 

specific interactions (see the review [8]) and comparing with the experimental data. The 

values of  KNM  and Ksym,  are then deduced from the interaction that best reproduced the 

experimental data.  

In early analysis of the experimental data on the ISGMR [7, 9, 10], the 

Leptodermous expansion of KA was used to determine the volume, surface, symmetry and 

coulomb coefficients.  However, the limitations of such an analysis were pointed out in 

Refs. [2,7,11,12]. In particular, Shlomo and Youngblood showed that this type of analysis 

could not provide a unique solution even including all available world data as of that 

time[7].   



In recent years, studies of the isotope dependence and the extraction of the 

symmetry term Ksym have been mostly concentrated in heavy nuclei [13-15], especially in 

Sn isotopes where the neutron excess ratio (N-Z)/A value changes from 0.107 in 112Sn to 

0.194 in 124Sn. This gives a relative large deviation in the isotope dependence. However, 

in the calcium isotopes, (N-Z)/A  is 0 in 40Ca and 0.167 in 48Ca, a much larger variation 

than in the Sn isotopes, even though the neutron excess in 48Ca is not as large as in 124Sn. 

Thus a study of 40-48Ca  might provide a more precise determination of the symmetry 

coefficient Ksym.  Strauch et al. studied giant resonances in 48Ca [16] using inelastic 

scattering of electrons in coincidence with neutron decay.  They extracted a strength 

function representing the combined isoscalar giant monopole and giant quadrupole 

resonance strengths as well as the strength function for the isovector giant dipole 

resonance. Due to similarity of the form factors in electron scattering between the 

ISGMR and isoscalar giant quadrupole resonance (ISGQR), they could not separate 

them. 

We have previously reported ISGMR strength in 40Ca [17-19] and here we report 

a study of 48Ca with small angle inelastic α scattering to obtain giant resonance strength 

distributions. We also compare our experimental results with theoretical calculations of 

Refs. [20, 21] and fully self-consistent Hartree-Fock based RPA calculations [22] with 

commonly used Skyrme type interactions, using the method of Refs. [23,24], and 

emphasize, in particular, the importance of self-consistency.   

 



 

II. Experimental technique and data analysis 

The experimental technique has been described thoroughly in Ref. [18,19,25] and 

is summarized briefly below.  Beams of 240 MeV α particles from the Texas A&M 

University K500 superconducting cyclotron bombarded self-supporting 48Ca foils 4.4 

mg/cm2 thick enriched to more than 95% in 48Ca, located in the center of the target 

chamber of the multipole-dipole-multipole  spectrometer.  The horizontal acceptance of 

the spectrometer was 4º and the vertical acceptance was set at ±2º.  Ray tracing was used 

to reconstruct the scattering angle.  The out–of-plane scattering angle was not measured. 

Position resolution of approximately 0.9 mm and scattering angle resolution of about 

0.09º were obtained.  The target thickness was verified by measuring the energy loss of 

the 240 MeV α beam at 0º.   Cross sections were obtained from the charge collected, 

target thickness, dead time, and known solid angle.  The cumulative uncertainties in the 

above parameters result in about a ± 10% uncertainty in absolute cross sections.  24Mg 

spectra were taken before and after each run, and the 13.85 ± 0.02 MeV L=0 state [26] 

was used as a check on the calibration in the giant resonance region.  

Giant resonance data were taken with the spectrometer at 0.0º (0.0º < θ < 2.0º), 

4.0º (2.0º < θ < 6.0º) and at 6.0º (4.0º < θ < 8.0º).  Sample spectra obtained for 48Ca are 

shown in Fig. 1.  The giant resonance peak can be seen extending up to Ex ~ 40 MeV, but 

the peak to continuum ratio at higher excitation is much smaller than that in the main 

giant resonance peak between 12 and 25 MeV. The spectrum was divided into a peak and 

a continuum, where the continuum was assumed to have the shape of a straight line in the 

high excitation region, joining onto a Fermi shape at low excitation to model particle 



threshold effects [25].  Samples of the continua used in the analysis are also shown in 

Fig. 1. Elastic scattering data and inelastic scattering data for low-lying states were taken 

over the range 2o≤θlab≤32o to obtain optical parameters and test them by comparing 

B(EL) values obtained for known states with adopted values.     

 

III Multipole analysis 

Single-folding density-dependent distorted-wave Born approximation (DWBA) 

calculations (as described in Refs. [18, 25, 27, 28]) were carried out assuming a Fermi 

mass distribution for 48Ca having c = 3.7231 fm and a = 0.523 fm [29].  The transition 

densities, sum rules, and DWBA calculations were discussed thoroughly in Refs. [18, 

19,25] and except for the ISGDR, the same expressions and techniques were used in this 

work.  The transition density for inelastic alpha-particle excitation of the ISGDR given by 

Harakeh and Dieperink [30] (and described in Refs. [18, 25]) is for only one magnetic 

substate, so that the transition density given in Ref. [30] must be multiplied by √3 in the 

DWBA calculations. 

Folding model parameters for 48Ca were obtained by fitting data for elastic 

scattering of 240 MeV α particle from 48Ca over the range of center-of-mass angles 2.5o – 

40o and are listed in Table I.  The fit obtained to the elastic scattering data with these 

parameters is shown in Fig. 2. DWBA calculations for the 3.832 MeV 2+ and 4.507 MeV 

3- states in 48Ca are shown superimposed on experimental data in Fig. 3.  The extracted 

B(EL) values for the 2+ and 3- states are listed in Table II and compared to the values 

from other  measurements [31-36].  The B(E2) value for the 3.832 MeV 2+ state is 

consistent with the recent measurement using 6Li inelastic scattering [31] and is within 



the errors of the adopted value [32].  The B(E3) value obtained for the 4.507 MeV 3- state 

is lower than the adopted value [33] and  is just outside the combined 1σ errors. The 

adopted value is from the measurement of inelastic scattering of polarized protons at 500 

MeV, however, the value we obtain is in good agreement with 3 other measurements [31-

36].  

The multipole components of the giant resonance peak were obtained [18,19,25] 

by dividing the peak into multiple regions (bins) by excitation energy and then comparing 

the angular distributions obtained for each of these bins to distorted wave Born 

approximation (DWBA) calculations.  The uncertainty from the multipole fits was 

determined for each multipole by incrementing (or decrementing) that strength, then 

adjusting the strengths of the multipoles to minimize total χ2.  This continued until the 

new χ2 was one unit larger than the total χ2 obtained for the best fit. 

A sample of the angular distributions obtained for the giant resonance (GR) peak 

and the continuum are shown in Fig. 4.  Fits to the angular distributions were carried out 

with a sum of isoscalar 0+, 1-, 2+, 3-, and 4+ strengths. The isovector giant dipole 

resonance contributions were calculated from 40Ca parameters [37] by shifting the energy 

assuming an A-1/3 dependence and were held fixed in the fits.  Sample fits obtained, along 

with the individual components of the fits, are shown superimposed on the data in Fig. 4.  

The continuum distributions are similar over the entire energy range, whereas the angular 

distributions of the cross sections for the peak change as the contributions of different 

multipoles dominate in different energy regions. 

Several analyses were carried out to assess the effects of different choices of the 

continuum on the resulting multipole distribution, as described in Ref. [38], where the 



continuum was systematically varied and the data were reanalyzed.  The strength 

distributions obtained from these analyses using different choices of continuum and from 

those obtained with the continua shown in Fig. 1 were then averaged, and errors were 

calculated by adding the errors obtained from the multipole fits in quadrature to the 

standard deviations between the analyses with different continua.   

The isoscalar E0, E1, E2, and E3+E4 distributions obtained for the GR peak are 

shown in Fig. 5, and the energy moments and sum-rule strengths obtained are 

summarized in Table III.  A single Gaussian was fit to the E2 strength distribution and 

two Gaussians were fit to the E1 distribution.  These Gaussians are shown in Fig. 5 and 

the parameters obtained are listed in Table III.  The E0, E1, E2 and E3+E4 strength 

distributions obtained from fits to the continuum are shown in Fig. 6.  

 

IV. Description of Microscopic Calculations 

 The microscopic mean-field based RPA provides a good description of collective 

states in nuclei [1,8]. It is common to calculate the RPA states |n> with the corresponding 

energies En, and obtain the strength function  

S(E) =  Σn |<0|F|n>|2 δ(E-En),  

for a certain single particle scattering operator F = Σ f(i), and then determine the energy  

moments 

mk = � Ek S(E) dE. 

The constrained energy, Econ, centroid energy, Ecen, and the scaling energy, Es, of the 

resonance are then obtained from  

 Econ = ( m1/m-1)1/2,                    Ecen = m1/m0,                      Es = ( m3/m1)1/2. 



The energy moment m1 can also be calculated using the Hartree-Fock (HF) ground state 

wave function, leading to an energy weighted sum rule (EWSR). In a fully self-consistent 

mean-field calculation of the response function, one adopts an effective two-nucleon 

interaction V, usually fitted to ground states properties of nuclei, and determines the 

mean-field. Then, the random-phase approximation (RPA) calculation is carried out with 

all the components of the two-body interaction using a large configuration space. In this 

sense, the calculations are fully self-consistent. Employing the numerical approach of 

[23, 24], we have carried out fully self-consistent HF based RPA calculations of the 

ISGMR strength functions, for the scattering operator f = r2 Y00 ,  for 40Ca and for 48Ca, 

using various Skyrme type effective interactions, see Ref. [22] for details.   

             Hamamoto et al. [20], using the Green's function method [39] and various 

skyrme type interactions, carried out HF based continuum RPA (CRPA) calculations of 

the ISGMR strength distributions in a number of Ca isotopes from A=34 to A=60. 

Although the important effects of the continuum (due to particle decay) were taken into 

account, the RPA calculations were not fully self-consistent due to the neglect of the 

particle-hole, spin-orbit and Coulomb interactions. Kamerdzhiev et al. [21] have carried 

out microscopic calculations in continuum random-phase approximation (RPA) including 

one particle-one hole (1p1h) coupled to phonon configurations for several nuclei 

including 48Ca. Unfortunately, Kamerdzhiev’s calculations were done with effective 

interactions (Migdal type interactions) which are unrelated to the adopted  mean-fields 

(Wood-Saxon potentials) and therefore cannot be used to determine the nuclear matter 

incompressibility coefficient. In the next section we will compare our experimental data 

with results of microscopic RPA calculations. 



 

V. Results and Discussion 

11
1595+

− % of the E0 energy-weighted sum rule (EWSR) strength was located in 48Ca 

between 9.5 MeV to 40 MeV centered (m1/m0) at 14.0
18.088.19 +

−  MeV. The shape of the 

strength distribution is asymmetric with a Gaussian-like shape in the low excitation 

region but with large tailing on the high excitation side extending to 40 MeV.  

A total of 10
1683+

− % of the E2 EWSR was found between 9.5 MeV and 40 MeV. There is 

an almost Gaussian peak below 25 MeV contributing around 65% of E2 EWSR and the 

rest is distributed roughly uniformly between 25 and 40 MeV. The combined E0 + E2 

distributions from our work are compared to the electron scattering data [16] in Fig. 7. 

The shape of the distributions are in reasonable agreement between these two sets of data, 

but the strength extracted from the electron scattering data is lower.    

       Strength corresponding to 137±20% of the ISGDR EWSR was identified between 

9.5 to 40 MeV with a centroid at 27.3 ± 1.3 MeV.  The distribution shows roughly two 

components.  Gaussian fits to the distribution resulted in a small component at 16.7 MeV 

that exhausts 20% of EWSR and a much larger component at around 37 MeV that 

exhausts 160% of EWSR. Much of this Gaussian second peak lies above 40 MeV where 

our analysis ended so that the total E1 strength from the Gaussian fits is much larger than 

the value obtained by direct integration of the data.  The strength of this second peak is 

extremely sensitive to the choice of continuum, as a large E1 component increasing 

rapidly with energy, is required to fit the angular distributions of the continuum as can be 

seen in Fig. 6, indicating that some processes responsible for the continuum have angular 

distributions similar to the E1 distribution. At Ex = 40 MeV the “E1” strength deduced 



from fits to the continuum is 5 times that in the peak(~ 55% of the EWSR/MeV in 

continuum and ~ 10% EWSR/MeV in the peak) so that a small change in the continuum 

would have a large effect on the strength attributed to E1 in the peak.   The total 

“E1”strength obtained from fits to the continuum corresponds to 5 times the E1 EWSR. 

A similar result has been seen in a number of other nuclei [38, 40, 41].   Therefore small 

changes in assumptions about the continuum will drastically affect the E1 strength 

obtained for the GR peak, particularly at high excitation energy, leading to large 

uncertainties in the E1 distribution.  

Due to the limited angular range of the data, E3 and E4 cannot reliably be 

separated from each other or from higher multipoles. The distribution shown in Fig. 5 has 

three regions of enhanced strength at about 10 MeV, 20 MeV and 33 MeV.  In nearby 

nuclei (46,48Ti[40] , 56Fe,58,60Ni[38]) the E3 distributions have a peak at low energy (~ 10 

MeV) and a broad distribution of strength extending from 15 MeV up to the highest 

excitation studied (~35 - 40 MeV),  though in 48Ti the E3 strength over this region has an 

almost Gaussian (but very broad) shape.  In 24Mg and 28Si [42-44] the E3 strength 

observed was small and highly fragmented. In 40Ca, E3 and higher multipoles could not 

be separated, and the resulting distributions were not reported [18].  The strength seen in 

48Ca below Ex = 15 MeV is similar to that seen in the E3 distributions in nearby nuclei 

and is most likely from the low energy octupole resonance, but the source of the structure 

seen above Ex = 15 MeV in 48Ca is not known.    

In general, the shape of the strength distributions in 48Ca are quite different from 

those for 40Ca [18], and they show less fine structure than in 40Ca.  They are also quite 

different from the strength distributions in 46,48Ti [40] which are more Gaussian-like.  The 



distributions in 48Ca are more like those in 58Ni [38]. The centroid (m1/m0) energies of the 

ISGMR obtained over the region Ex= 9.5 MeV to Ex= 40 MeV for nuclei between mass 

24 and mass 60 are plotted in Fig. 8.  While the general trend is down with increasing A 

and roughly going as 36/A1/6, 48Ca and 58Ni stand out as exceptions, both having 

considerably higher energies than some lighter nuclei.  In particular the 48Ca centroid is 

0.7 MeV higher than that for 40Ca, and if the data between 5.4 and 9.5 MeV for 40Ca is 

included [17], this increases to 1.5 MeV.  Fujita et al. [36] using inelastic proton 

scattering of 65 MeV protons, measured numerous states between the 3.832 MeV and 

13.493 MeV in 48Ca and assigned Jπ values to most of them. Only two 0+ states were seen 

below our energy threshold, at 4.284 and 5.461 MeV  exhausting 0.13% and 0.34% of the 

E0 EWSR, which would lower the ISGMR centroid for 48Ca by 80 keV.  This suggests 

that including the strength below 9.5 MeV, the 48Ca centroid is ~1.4 MeV higher than 

40Ca, however since some strength may have been missed in the proton scattering (there 

are several peaks below 9.5 MeV in the Fujita et al. data for which no assignments could 

be made), in our discussions below we will use centroids obtained with data above Ex = 

9.5 MeV for both 48Ca and 40Ca. 

While the continuum is likely from a number of (mostly) complex reactions, the 

strength contributions obtained by fitting the continuum angular distributions with a sum 

of E0-E4 multipole distributions provides an indication of  the sensitivity of the strength 

distributions obtained for the peaks to the continuum chosen. They (Fig. 6) show few 

distinct features except and the strengths increase with increasing excitation energy, 

which are quite different from the strength distributions obtained from the peak. At all 

energies the “E1” strength obtained from the continuum exceeds the sum of the other 



multipoles and the total represents 5 times the sum rule strength.  From this,  one can 

conclude that the total E1 strength in the peak will be quite sensitive to the continuum 

chosen, whereas the other multipoles will be affected much less by the choice of the 

continuum.  

          The E0 strength distributions obtained by Hamamoto et al. [20] and by 

Kamerdzhiev et al. [21] for 40Ca and 48Ca are compared to our measured distributions in 

Fig. 9. In Refs. [17, 18] calculations of cross sections for excitation of the E0 strength in 

40Ca at θc.m. = 1.08o by Kamerdzhiev et al. showed excellent agreement with the 

experimental data.  The E0 strength distributions shown in Fig. 9 for 40Ca are not in as 

good agreement, suggesting that the microscopic transition densities used by 

Kamerdzhiev et al. varied somewhat over the energy range of the data, whereas our 

analysis assumed a collective transition density which does not change. Kamerdzhiev et 

al.’s calculated distribution for 48Ca peaks at lower excitation than the data, and while 

there is strength predicted at higher excitation, it is considerably weaker than in the data.  

Hamammoto et al.’s calculations show an approximately 10 MeV wide bump (with some 

fine structure) in both 40Ca and 48Ca with little resemblance to the shape of the data. 

      The strength distributions obtained from our fully self-consistent HF based RPA 

calculations obtained using the Skyrme type, SGII [45],   SKM* [46], KDE0 [47] and 

SK255 [48] interactions are compared to experimental data in Fig. 10.  A 3 MeV 

Lorentzian smearing function has been applied to the predicted distributions to aid visual 

comparison to the data. The shapes of the calculated distributions for 40Ca are in fair 

agreement with the data but the calculated distributions peak 2-4 MeV higher than the 



data. For 48Ca, the data also peak several MeV below the calculations, and the 

calculations do not reproduce the large tailing seen at higher excitation. 

            In Table IV we compare the measured energies in 40,48Ca to those obtained in the 

calculations of Ref. [20], Ref. [21] and with fully self-consistent HF-based RPA obtained 

[22] with various Skyrme type, SGII [45], SKM* [46], KDE0 [47]and SK255 [48] 

interactions. The selected Skyrme interactions are associated with a wide range of nuclear 

matter [NM] incompressibility coefficients K = 215 - 255 MeV and a wide range of  NM 

symmetry energy coefficients J = 27 - 37 MeV. The values from Ref.[20] and [21] are 

calculated over the full energy range shown in the references, while those from our 

calculations are shown both for the experimental energy range (9.5 - 40 MeV) and over 

the full range of the calculations (0 - 60 MeV). In Figure 11 we show the centroid 

energies as a function of KNM. As can be seen in Fig. 11b, for 48Ca, the centroid obtained 

with  SKM* is in agreement with the data, while that for KDE0 is slightly outside the 

errors while those for the other two interactions are a few hundred keV outside the errors. 

For 40Ca (Fig. 11a) the centroid obtained with SkM* is high and ~ 600 keV outside the 

errors, while those for the other interactions are yet higher and over an MeV outside the 

errors.  

    Whereas in the Sn isotopes the ISGMR energy decreases with increasing mass, 

the measured 48Ca centoid energy is higher than that for 40Ca.   The measured centroid 

energy given in Table IV for 40Ca is 0.7 MeV below that of 48Ca.  It was obtained over 

the energy range we measured for 48Ca (Ex = 9.5 - 40 MeV) using the experimental 

results of Ref. [18] for 40Ca. Taking into account the known excitation strength below 10 



MeV in 40Ca [17], and in 48Ca [36], the centroid energy for 48Ca would be higher than that 

of 40 Ca by ~1.4 MeV, enhancing this difference.  

           The energies of the ISGMR in 48Ca obtained in our  fully self-consistent 

calculations using various Skyrme type interactions are all 0.7 to 1.2 MeV below those of 

40Ca (Fig. 11c). From Table IV it can be seen that when obtaining the centroids from the 

HF-RPA calculations, extending the range from that for the experimental data (9.5- 40 

MeV) to the full range of the calculations (0 - 60 MeV) changed the 48Ca-40Ca energy 

difference by at most 100 keV.   

      Kamerdzhiev et al.’s calculations [21] give a difference  -0.8 MeV (in the 

opposite direction of the data), and  Hamamoto et al.’s calculation [20] with the SKM* 

[47] interaction gives an energy difference of +0.8 MeV (close to that of the experimental 

data). Unfortunately, Hamamoto et al’s. calculations are not fully self-consistent.  The 

effects of self-consistency violation on transition densities and energies of giant 

resonances are discussed in Ref. [24, 49-52]. In particular, it was shown by Sil  et al. [24] 

that the effects of self-consistency violation associated with neglecting the particle-hole 

spin-orbit and Coulomb interactions in HF-based RPA calculations can shift giant 

resonance energies  by hundreds of keV.  Calculations following the description in 

Section IV above but neglecting the particle-hole Spin-orbit and Columb interactions [22] 

give 48Ca energies higher relative to 40Ca than those that include these interactions by 0.4 

to 1.2 MeV.  Leaving out these interactions, the predicted ISGMR centroid energies (Fig. 

11d) in 48Ca are higher than those in 40Ca by ΔEcen = 0.5, 0.3 and 1.0 MeV for the SGII, 

KDE0 and SkM* interactions, and SK255 gives a 48Ca energy below 40Ca by 0.4 MeV. 

 



VI. CONCLUSION 

Close to 100% of the isoscalar E0, E1 and E2 strengths have been located 

between 9.5 and 40 MeV in 48Ca. The angular distributions of the continuum are similar 

to those for E1 excitation, so the E1 strength distribution obtained for the GR peak is very 

sensitive to the choice of continuum.  The E0 distribution is very asymmetric with a 

strong tail at higher excitation, more like 58Ni than 40Ca or 48Ti, and thus the centroid 

energy (m1/m0) in 48Ca  is higher than the 36/A1/6 trend for most nuclei between 24Mg to 

60Ni.  The experimental energy (m1/m0) of the ISGMR  in 48Ca is 0.7 MeV to 1.4 MeV 

higher that in 40Ca, in rough agreement with non self consistent calculations by 

Hamamoto et al. but self consistent  microscopic calculations with SGII, KDE0, SKM*, 

and SK255 Skyrme interactions all predict a lower centroid in 48Ca than in 40Ca.  On the 

other hand, the microscopic calculations do not reproduce the experimental strength 

distributions, particularly for 48Ca, and the predicted centroids are generally higher than 

experiment, so that nuclear structure issues not taken into account in the calculations may 

be a serious issue in these relatively light nuclei.   

In summary, the ISGMR has been found at somewhat higher energy in 48Ca than in 

40Ca, whereas self consistent HF-RPA calculations predict a lower centroid energy in this 

neutron rich Ca isotope. The calculations do not reproduce the strength distributions, and 

it would be interesting to extend them beyond the RPA to include coupling to more 

complex configurations.  Also an analysis of the experimental data using microscopic 

transition densities in the DWBA calculations should be undertaken [53]. Experimentally 

it would be useful to use small angle α scattering to look for 0+ strength in 48Ca below the 

Ex= 9.5 MeV lower limit of this experiment which might lower the 48Ca centroid. Better 



knowledge of the continuum could reduce uncertainties, particularly at higher excitation 

where the ISGMR cross section is low, and the use of microscopic transition densities 

could also change the energy dependence of the extracted strength which could affect 

centroid energies in both 40Ca and 48Ca.  
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Table I. Folding model parameters for 48Ca used in the DWBA calculations. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Table II. B(EL) values for 2+ and 3- states of 48Ca obtained in present work and from other references. 

 Ex = 3.832 MeV Jπ = 2+ 
B(E2) (e2b2) 

Ex = 4.507 MeV Jπ = 3- 
B(E3) (e2b3) 

Present Work 0.0140±0.0015 0.0054±0.0008 

240 Mev 6Li [31] 0.0116±0.0012 0.0075±0.0008 

Adopted value 0.0095±0.0032 [32] 0.0083±0.0020 [33] 

25 - 40 MeV p [34]  0.0054 

800 MeV p [35]  0.0063 

65 MeV p [36]  0.0048 

 
 
 
 
 
 
 

V (MeV) W (MeV) ri Ai  (fm) 

47.392 31.495 0.959 0.677 



 
 
 
 
Table III. Parameters obtained for isoscalar multipoles in 48Ca. 

   Moments  

 E0 E1 E2 E3+E4 

m1 (Frac. EWSR) 11
1595+

−  137±20 10
1683+

−  55±13 

m1/m0 (MeV) 14.0
18.088.19 +

−  27.30±1.30 13.0
34.061.18 +

−  20.90±0.14 

rms width (MeV) 31.0
36.068.6 +

−  8.27±0.22 26.0
66.096.7 +

−  9.34±0.16 

(m3/m1)1/2 (MeV) 27.0
33.064.22 +

−  31.20±0.90   

(m1/m-1)1/2 (MeV) 11.0
14.004.19 +

−  25.30±0.60   

   Gaussian Fits  

  E1 peak 1 E1 peak 2 E2 

Centroids (MeV)  19.0
13.069.16 +

−  71.0
98.128.37 +

−  14.0
12.079.16 +

−  

FWHM (MeV)  49.1
11.024.6 +

−  49.3
11.095.14 +

−  11.0
35.095.6 +

−  

Frac. EWSR  12.0
08.020.0 +

−  90.0
50.060.1 +

−  09.0
11.065.0 +

−  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table IV. Experimental  results for ISGMR energies in 40Ca [18] and  48Ca (present work) are compared with theoretical 
predictions. The results of fully self-consistent calculations [22] with Skyrme interactions SGII, SKM*, KDE0, and SK255, 
which are associated with the nuclear matter incompressibility coefficients  KNM = 215, 217, 230 and 255 MeV, respectively, 
are shown using the experimental excitation range of E = 9.5-40 MeV (first line) and the extended range E = 0-60 MeV 
(second line). 
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ΔEcen 
 

 (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) 
Experiment 18.3±0.3 19.2±0.4 20.6±0.4 19.0±0.1 19.9±0.2 22.6±0.3 0.7 

        
Hamamoto et al. [20] 20.5 20.8 22.0 21.4 21.6 22.6  0.8 
        
Kamerdzhiev et al. [21]   16.9 18.5 23.2 16.8 17.7 21.3 -0.8  

 
SGII [45] 21.0 21.3 22.0 20.4 20.6 21.2 -0.7 
 21.1 21.4 22.7 20.5 20.7 21.6 -0.7  

 
SKM* [46] 20.3 20.5 21.3 19.9 20.1 20.7 -0.4 
 20.4 20.7 22.0 19.9 20.2 21.1 -0.5  

 
KDE0 [47] 20.8 21.1 21.9 19.9 20.2 21.0 -0.9 
 20.9 21.3 22.7 20.0 20.3 21.5 -1.0  

 
SK255 [48] 21.7 22.0 22.9 20.5 20.8 21.7 -1.2 
 21.8 22.2 23.7 20.6 21.0 22.3 -1.2 



 
Figure captions 
 
Fig. 1 Inelastic α spectra obtained for 48Ca.  The solid lines show the continuum chosen 

for the analysis. 

 
Fig. 2. (color online) Angular distribution of the differential cross section for elastic 

scattering for 240 MeV α particles from 48Ca plotted vs c.m. angle.  The error bars 

include uncertainty from statistical as well as systematic error.  The solid line shows an 

optical model calculation with the parameters listed in Table I. 

 

Fig. 3. (Top) Angular distribution of the differential cross section for inelastic a scattering 

to the 3.832 MeV 2+ state in 48Ca.  The solid line is the calculated inelastic scattering 

cross section for B(E2) =  0.014e2b2. (Bottom) Angular distribution of the differential 

cross section for inelastic a scattering to the 4.507 MeV 3- state in 48Ca.  The solid line 

shows an L=3 DWBA calculation for B(E3) = 0.0054 e2b3. 

 

Fig. 4. (color online) The angular distributions of the 48Ca cross section for three energy 

bins of the GR peak and the continuum.  The excitation energy in MeV of the center of 

the bin is shown. The lines through the data points indicated the multipole fits.  

Contributions of each multipole are shown.   

 

Fig. 5. (color online) Isoscalar strength distributions obtained for 48Ca are shown by the 

histograms.  Error bars represent the uncertainty from the fitting of the angular 

distributions and different choices of the continuum, as described in the text.  Gaussian 



fits are shown as smooth lines. The vertical scale on the “E3+E4” distribution is in term 

of the E3 EWSR only. 

 

Fig. 6. “E0”,” E1”, “E2” and “E3+E4” strength distributions obtained for 48Ca from the  

fit to the continuum. The total fraction of the EWSR is indicated for each.  The vertical 

scale on the “E3+E4” distribution and the sum rule fraction given are in term of the E# 

EWSR only. 

  

Fig. 7. (Color online) The E0+E2 strength distribution obtained in the work for 48Ca is 

shown in the histogram with thin lines. The darker histogram is the E0+E2 strength 

distribution obtained from inelastic electron scattering [16]. The vertical scale indicates 

the fraction of the E0+E2 sum rule observed. 

 

Fig. 8. (color online) Centroid energies (m1/m0) for the ISGMR calculated over the 

energy range Ex=9.5 MeV to 40 MeV for 9 nuclei are plotted as a function of A. (See text 

for the references). A line representing 36/A1/6 shows the trend.  

 

Fig. 9. (color online) Experimental E0 strength distributions in 40,48Ca (histogram) are 

compared to calculations from Hamamoto et al. [20] (gray line) and Kamerdzhiev et al. 

[21] (black line). 

 



Fig. 10. (color online) HF-RPA calculations with 4 interactions after application of a 3 

MeV Lorentzian smearing function, are compared to experimental E0 strength 

distributions in  40,48Ca (histogram).  

 

Fig. 11.  Comparison of experimental data of the centroid energies Ecen of 40Ca (a), 48Ca 

(b), and the energy difference between 48Ca and 40Ca (c), shown as the regions between 

the dashed lines, with the results of fully self consistent HF based RPA calculations (full 

circles), using the SGII [45], SKM* [46], KDE0 [47], and SK255 [48]  Skyrme type 

interactions having nuclear matter incompressibility coefficients KNM = 215, 217, 230, 

and 255 MeV, respectively. The results obtained with violation of self-consistency by the 

neglecting the Coulomb and the spin orbit interactions in the RPA calculations, are 

shown in (d). The energies shown were calculated over the experimental excitation 

energy range of 9.5 - 40 MeV.  

 
 

 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Inelastic α spectra obtained for 48Ca.  The solid lines show the 

continuum chosen for the analysis. 



 

 
Figure 2.(color online) Angular distribution of the differential cross section for elastic 

scattering for 240 MeV α particles from 48Ca plotted vs c.m. angle.  The error bars 

include uncertainty from statistical as well as systematic error.  The  line shows an optical 

model calculation with the parameters listed in Table I. 
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Figure 3. (Top) angular distribution of the differential cross section for 

inelastic α scattering to the 3.832 MeV  2+ state in 48Ca. The solid line is 

the calculated inelastic scattering cross section for B(E2)= 0.014e2b2.  

(Bottom) Angular distribution of the differential cross section for inelastic 

a scattering to the 4.507 MeV 3- state in 48Ca.  The solid line shows an L=3 

DWBA calculation for B(E3)= 0.0054e2b3. 



 
Figure 4. (color online)The angular distributions of the 48Ca cross section for three 

energy bins of the GR peak and the continuum.  The excitation energy in MeV of the 

center of each bin is shown. The lines through the data points indicated the multipole fits.  

Contributions of each multipole are shown.  

 



 

    
Figure 5. (color online)Strength distributions obtained for 48Ca are shown by the histograms.  Error 

bars represent the uncertainty from the fitting of the angular distributions and different choices of 

the continuum, as described in the text.  Gaussian fits are shown as smooth lines. The vertical scale 

on the “E3+E4” distribution is in terms of the E3 EWSR only.  



 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 6.  “E0”, “E1”, “E2” and “E3+E4” strength distributions obtained for 48Ca  
from fits to the continuum. The total fraction of the EWSR is indicated for each. The 
vertical scale on the “E3+E4” distribution and the sum rule fraction given are in 
terms of the E3 EWSR only.  
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Figure 7. (color online) The E0+E2 strength distribution obtained in 

this work for 48Ca is shown in the histogram with thin lines. The dark 

histogram is the E0+E2 strength distribution obtained from inelastic 

electron scattering [16]. The vertical scale indicates the fraction of the 

E0+E2 sum rule observed.    
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Figure 8. (color online)  Centroid energies (m1/m0) for the ISGMR calculated 
over the energy range Ex=9.5 MeV to 40 MeV for 9 nuclei are plotted as a 
function of A. (See text for the references). A line representing 36/A1/6 shows 
the trend. 



 
 
 
 
 

 
Figure 9. (color online)Experimental E0 strength distributions in 40,48Ca 

(histogram) are compared to calculations from Hamamoto et al. [20](gray line) 

and Kamerdzhiev et al.[21] (black line). 
 



 
 
 
 
 
 
 
 

 
Figure 10. (color online) HF-RPA calculations with 4 interactions after application of a 3 
MeV Lorentzian smearing function, are compared to experimental E0 strength 
distributions in 40,48Ca (histogram).  
 



 

 
Figure 11. Comparison of experimental data of the centroid energies Ecen of 40Ca (a), 
48Ca (b), and the energy difference between 48Ca and 40Ca (c), shown as the regions 
between the dashed lines, with the results of fully self consistent HF based RPA 
calculations (full circles), using the SGII [45], SKM* [46], KDE0 [47], and SK255 [48]  
Skyrme type interactions having nuclear matter incompressibility coefficients KNM = 
215, 217, 230, and 255 MeV, respectively. The results obtained with violation of self-
consistency by the neglecting the Coulomb and the spin orbit interactions in the RPA 
calculations, are shown in (d). The energies shown were calculated over the 
experimental excitation energy range of 9.5 - 40 MeV. 


