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We use the continuum shell model approach to explore the resonance width distribution in unstable
many-body systems. The single-particle nature of a decay, the few-body character of the interaction
Hamiltonian, and the collectivity that emerges in non-stationary systems due to the coupling to the
continuum of reaction states are discussed. Correlations between the structures of the parent and
daughter nuclear systems in the common Fock space are found to result in deviations of decay width
statistics from the Porter-Thomas distribution.

PACS numbers: 24.60.Lz, 24.10.Cn 24.60.Dr

I. INTRODUCTION

The Porter-Thomas distribution (PTD) [1] of transi-
tion strengths is a central aspect of complex systems.
This statistical law was noted by many authors [2] to be
valid more generally than other predictions of the Ran-
dom Matrix Theory from which it originates. The PTD
emerges under the assumption that the relative orienta-
tion of the two states involved in the overlap describing a
transition covers the Ω-dimensional sphere in the Hilbert
space uniformly. While this is true by definition of the
Gaussian Orthogonal Ensemble (GOE), the validity of
the PTD extends much farther as it constitutes the cen-
tral limit theorem (CLT). Being a sum of a large number
of uncorrelated components, the transitional amplitude
is indeed expected to have a Gaussian (normal) distribu-
tion. There is a large volume of work on this subject;
see reviews [2–6] and references therein. Generally, there
is a consensus among authors that while the specifics
of an ensemble and the physics of transitions do mat-
ter for certain observables, any deviations from the PTD
are quickly defeated by even small stochastic components
due to the robust nature of the CLT; see for example Ref.
[7]. Any claims to the contrary, either experimental [8]
or theoretical [9, 10], have always ignited debates and
discussions [11].

Here we do not consider the data handling procedures
which, on many occasions, have been deemed to be the
most likely reasons for the deviations observed experi-
mentally [6, 12]. Instead, we analyze the feasible scenar-
ios with the help of the continuum shell model approach
[13, 14], which is one of the best equipped methods to ad-
dress the structure-reaction physics of interest microscop-
ically. In a unified picture we review the superradiance
(SR) effects [9, 15], the wave-function localization effects
in the two-, three-, and four-body ensembles [16], the
role of rotational symmetry, and other parent-daughter
structural correlations that emerge in a decay [7].

The dynamics of an unstable many-body system pro-
jected onto the intrinsic space spanned by the bound
(shell-model) states is generated by the effective, energy-

dependent Hamiltonian [13, 17, 18]

H = H − i
∑

c(open)

℘c |c〉〈c|. (1)

Here H is the Hermitian part that is identified with the
traditional shell model Hamiltonian. The second, imag-
inary term reflects the irreversible decays into the con-
tinuum of states excluded by the Feshbach projection.
This factorized operator contains the kinematic penetra-
bility factor ℘c and the set of channel vectors |c〉. For
simplicity we omit the angular momentum, isospin, and
other labelings; detailed notations can be found in Ref.
[13]. The problem is non-stationary; the Hamiltonian (1)
is understood as a component of the propagator and is
dependent on the scattering energy. The Hermitian com-
ponent includes the coupling to the continuum of reac-
tion states via virtual excitations; the penetrability also
depends on energy through the kinematics of the decay
process. Away from thresholds the energy dependence is
smooth, and its exact form mainly pertains questions of
the experimental data analysis [12]. We ignore this en-
ergy dependence here, and further assume that the pene-
trability ℘ is the same for all channels. The eigenvalues of
the effective Hamiltonian (1) are complex, E = E− iΓ/2,
and represent the poles of the scattering matrix in the
complex energy plane. These complex energies are asso-
ciated with resonances and their widths.

Let us first consider weak decays, for which the imag-
inary component in Eq. (1) can be treated perturba-
tively. In this case the shell model eigenstate |I〉 defined
by H |I〉 = EI |I〉 is not modified by the decay instability,
and the corresponding decay width is

ΓI = 2℘γI , where γI =
∑

c(open)

|〈I|c〉|
2

is the reduced width. The PTD of reduced widths,

Pν(γ) =
1

γ

(

νγ

2γ

)ν/2
1

Γ(ν/2)
exp

(

−
νγ

2γ

)

, (2)

emerges under the uniform Hilbert space coverage as-
sumption for |I〉. Here ν is the dimension spanned by the
channel vectors, and γ is the average reduced width. For
the orthogonal and normalized channels γ = ν/Ω.



2

II. NUMERICAL STUDIES

A. Superradiance

In this work we examine situations with only one open
channel. The strength of the continuum coupling is de-
fined as the average decay width relative to the level spac-
ing. Here we quantify this coupling by the parameter
κ = ℘/λ, where λ2 = Ω−1Tr

(

H2
)

is the variance of the
density of states distribution of H .

In Fig. 1 we consider an example where H in (1) is
that of the GOE. Here the PTD is reproduced numeri-
cally in the limit ℘ → 0. The imaginary component in
(1) is factorized, which is pertinent to the unitarity of
the scattering matrix. This non-Hermitian component,
when large, gives rise to the collectivity often referred
to as superradiance (SR). A similar collectivity due to
the factorized Hermitian interaction describes giant res-
onances. The resulting deformed random ensembles are
discussed in Refs. [2, 19, 20]. As coupling to the con-
tinuum increases, and κ becomes large, the resonances
start to overlap, thus reorienting the intrinsic structure.
This could be hypothesized to result in the PTD being
violated [9]. We find, to the contrary, that the SR mech-
anism alone is unlikely to cause a significant change to
the PTD. Indeed, for κ ≪ 1, the PTD simply follows
from the definition of GOE. For κ ≫ 1, in analogy to
the deformed ensembles, the Hilbert space is separated
into the SR channel space, which is one-dimensional here
with a single eigenstate E = −i℘, and the orthogonal sta-
tistical (compound resonance) space of dimension Ω− 1.
Because H is orthogonally invariant, the reduced-space
dynamics is represented by the GOE. With the perturba-
tion theory built in this limit one finds that the reduced
widths for the compound resonances follow the PTD with
γ = 1/(Ωκ2). For large Ω the single SR state with a re-
duced width γSR = 1 − κ

−2 has no effect on the PTD.
Numerical studies shown in Fig. 1 confirms the PTD for
both small and large values of κ. The slight deviation for
κ between 0.5 and 2 is due to a small fraction of very
broad states with γ > 10γ. This localized effect is shown
in the inset of Fig. 1. This subset of exceptionally broad
states is difficult to identify experimentally.

B. Two-body embedded random ensemble

In recent studies [8, 9] the deviations from the PTD
have been inferred from the observation that the fit of
distribution of the level widths with Eq. (2) results in
an unphysical parameter ν < 1. This, however could
be a misleading criterion because the effective ν de-
pends on the region being fitted. In figures that fol-
low, for a better visual perspective, we show distribu-
tions of absolute values of amplitudes x =

√

γ/γ instead
of γ/γ. The PTD follows from the Gaussian distribu-

tion PG(x) =
√

2/π exp
(

−x2/2
)

of amplitudes. Curves,
highly peaked (leptokurtic) compared to the Gaussian,

10-3

10-2

10-1

100

101

10-3 10-2 10-1 100 101

P
( γ
 /
γ- )

γ /γ-

=0.5
=1.0
=2.0

=5.0

0.01

0.05
4 10 20

PTD

Figure 1: (Color online) The normalized distribution of prob-
abilities of the reduced widths for ensemble with H in Eq.
(1) being that of GOE; Ω = 104. The curves for different
continuum couplings κ = 0.5, 1, 2, and 5 are compared with
the PTD. The corresponding average widths Ωγ = 0.76, 0.40,
0.20, and 0.05, are computed after the very broad state(s) are
removed from consideration. For κ > 2 this amounts to ex-
clusion of a single superradiant state in which case Ωγ = κ

−2.
With the exception of very broad states, there is perfect agree-
ment with PTD, the differences being magnified in the inset
where the region of γ > 4γ is shown. The largest deviation
is observed for the transitional coupling strength κ = 1. For
κ = 5 the distribution is already indistinguishable from the
PTD.

correspond to an unphysical ν < 1. One possible lep-
tokurtic distribution, that we include in figures for the
purposes of comparison, is provided by the Bessel func-
tion PB(x) = (2/π)K0(x). In contrast to the Gaus-
sian, the Bessel distribution emerges when the transi-
tional overlap is possible only due to a single component
in the wave-function along some direction in the Hilbert
space given by a vector |1〉. Therefore 〈I|c〉 = 〈I|1〉〈1|c〉,
where both 〈I|1〉 and 〈1|c〉 are distributed normally.

Experience with the realistic nuclear structure and
some theoretical arguments [2–6] suggest that the effec-
tive Hamiltonian involves only few-nucleon interactions,
thus, the two-body random ensembles (TBRE) appear
to be more appropriate. While many features of these
ensembles are different from those of GOE, numerical
studies, in agreement with the CLT, confirm PTD of
transition strengths toward an uncorrelated channel vec-
tor [7]. This, however, does not take into account the
correlations that exist in the variable particle-number
Fock space. Strong parent-daughter correlations emerge
due to the microscopic physics of decay. Indeed, in the
single-particle reaction processes all nucleons, except for
one, are spectators, and the decay channels |c;N〉 for the
N−particle system are built from the (N − 1)-particle
eigenstates of the daughter nucleus |F ;N − 1〉 that fol-
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Figure 2: (Color online) The normalized distribution of prob-
abilities of decay amplitudes in the TBRE ensemble with de-
cay. The decay of a 7-particle system to the ground state
of a 6-particle system is considered. There are 16 single-
particle states, thus Ω = 11440. The curves for different
continuum couplings κ = 0, 1, and 2 are compared with the
Gaussian and Bessel distributions. The curves are normal-
ized so that the average widths do not include the single SR
state. Ωγ = 1, 0.19, and 0.06 for κ = 0, 1 and 2 respectively.
The region of very narrow widths is shown in the inset us-
ing a log-log scale. While all observed distributions for very
narrow states seem to approach a constant, they are still not
described by Gaussian distribution of different variances (or
γ’s). The inset includes two Gaussian curves with variances
1 and 0.02 as labeled.

low from the same two-body Hamiltonian. Thus,

|c;N〉 =
{

a†|F ;N − 1〉
}

, (3)

where a† is a single-particle creation operator correspond-
ing to the decaying nucleon, and brackets {...} indicate
normalization to unity and appropriate symmetry cou-
pling. The correlation between eigenstates and channels
leads to the violation of PTD. Single-particle removal
amplitudes are related to the independent-particle basis,
where departure from the PTD has been demonstrated
in the past [10].

In Fig. 2 we consider an ensemble where H in Eq. (1)
is given by TBRE and does not include any symmetries.
From Fig. 2 we find that none of the results follow the
PTD. In contrast to the Gaussian curve PG(x) the dis-
tributions have sharp peaks at low amplitudes and an
extended exponential tail. In the SR limit of large κ the
distributions appear to approach the one given by the
Bessel function PB(x).

C. k-BRE in single j model

The rank of the force beyond the two-body interaction,
and symmetries, such as rotational, may have additional
influences. To examine this we consider a model where N
identical fermions occupy a single-j level. This has been
a popular model for exploring the properties of TBRE
with symmetries [3, 4, 21]. The resemblance of the low-
lying spectra to those observed in realistic nuclei is the
most intriguing feature. For our demonstration we select
j = 19/2 and discuss widths of the decay of many-body
states in 9-particle systems. The final state is the ground
state of the system with 8 nucleons. All states, in both
parent and daughter nuclei, are eigenstates of the same
Hamiltonian given by the k−body Random Ensemble (k-
BRE) [22]. In this work we restrict our consideration to
the two-, three-, and four-body forces, i.e. k = 2, 3, and
4, respectively. We select only those realizations where
the daughter system has ground state spin F = 0; and
thus the channel spin is I = 19/2. The fractions of such
realizations are 42%, 64%, and 83% for k = 2, 3, and 4
respectively.

The resemblance between random ensembles with sym-
metries and realistic nuclei extends to parentage rela-
tions. The low-lying states in the odd-particle parent
nucleus are predominantly of the single-particle nature.
If F = 0 for the even-particle core then the ground state
of a system with an extra nucleon is likely to carry the
single-particle quantum numbers j = I = 19/2. This
is indeed observed, and the corresponding probabilities
are 21%, 47%, and 37% for k = 2, 3, and 4 respectively.
The correlation between the parent and daughter ground
states is demonstrated in Fig. 3 which shows the distri-
bution of reduced widths for the decay from ground state
to ground state when F = 0 and I = 19/2. Both parent
and daughter systems have correlated structures because
they are eigenstates of the same Hamiltonian for different
number of particles. In the distribution of spectroscopic
factors this correlation is seen as a peak near γ = 1. As
the rank of interaction k becomes higher, more remote
configurations can be admixed, which reduces the ground
state to ground state transitional collectivity. For totally
uncorrelated systems the transitional strength due to the
CLT is expected to follow the PTD.

Since most of the transitional strength is concentrated
in a few states at the low end of the spectrum, here the
PTD is not expected; however, there is also no agree-
ment with this law for the widths of narrow compound
resonances higher in the excitation spectrum. In Fig. 4
the distribution of reduced decay amplitudes is shown for
the two-, three-, and four-body random ensembles with
rotational symmetry. The curves are quite close to each
other and are similar to the κ = 0 result in Fig. 2. All
findings indicate violation of the PTD.
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Figure 3: (Color online) Distribution of the reduced decay
widths (spectroscopic factors) for the ground state N = 9
spin I = 19/2 parent decaying to the ground state N = 8 spin
F = 0 daughter system. The k-BRE of identical nucleons in
j = 19/2 level is considered. Three curves correspond to two-
, three-, and four-body (k = 2, 3, and 4) random ensembles
with rotational symmetry.
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Figure 4: (Color online) Same model as in Fig. 3. The dis-
tribution of spectroscopic amplitudes for all 204 states with
spin I = 19/2 in the parent 9-nucleon system is shown for
the decay to the spin F = 0 ground state of the daughter nu-
cleus. The results are compared with the Gaussian and Bessel
distributions.

D. Distribution of electric B(E2) rates

We attribute the deviations from the PTD seen in our
numerical experiments to the parent-daughter relation
in the particle decay process, namely that the structure
of the parent eigenstate is correlated with that of the
channel via Eq. (3). A similar, but perhaps less pro-
nounced, behavior is expected for the electromagnetic
decays, where channel

|c;N〉 = {M|F ;N〉}

is constructed from a one-body multipole density oper-
ator M. This is confirmed by the results shown in Fig.
5 which shows the distribution of amplitudes for elec-
tric quadrupole transitions. For this simple model space
the effective charge and the radial overlap only define
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Figure 5: (Color online) Same j = 19/2 model as in Figs. 3

and 4. The distribution of reduced amplitudes x =
√

γ/γ
with γ = B(E2, 2 → 0) being the reduced electric quadrupole
transition rate from the I = 2 states to the F = 0 final ground
state. The system with 8 nucleons is considered. The dotted
curves correspond to two-, three-, and four-body (k = 2, 3,
and 4) random ensembles with rotational symmetry. The re-
sults are compared with the Gaussian and Bessel distribu-
tions.

an overall normalization, which is irrelevant for our pur-
poses. Thus the reduced width can be assumed to co-
incide with the reduced electric quadrupole transition
rate γ = B(E2, 2 → 0). Due to the presence of real-
izations with collective quadrupole transitions there are
a few broad states that lead to noticeable deviations from
the PTD in the x > 1 region. However, similar to the
particle decay in Fig. 4, the deviations are seen through-
out the entire range of widths.

III. ANALYSIS AND SUMMARY

The coefficient of variation t2 =
(

γ2 − γ2
)

/γ2 is com-

monly used as a measure of peakedness in a distribu-
tion of non-negative quantities. For PTD t2 = 2/ν; and
t2 = 2 for the Gaussian distribution of amplitudes can
be compared with t2 = 8 for the Bessel distribution. The
coefficient of variation is equivalent to the excess kurtosis
for the amplitudes x which is t2 − 2. The excess kurtosis
is positive for leptokurtic curves. In cases with collectiv-
ity, γ is disproportionately large due to the statistically
unimportant collective state(s) far in the tail of the dis-
tribution, which has an adverse effect on t being used as
a measure of peakedness [23]. To quantify the results we
use a coefficient of L-variation, also known as the Gini
coefficient,

τ =
1

2γ

∫∫ ∞

0

dγdγ′|γ − γ′|P (γ)P (γ′).

Although similar to the coefficient of variation, τ is less
sensitive to the extremes in a distribution’s tail [24]. τ
ranges from 0 to 1. For the PTD with ν = 1, 2, and 3 the
coefficient is τ =2/π, 1/2, and 3/(4π), respectively. Thus
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Figure 6: (Color online) The coefficient of L-variation for the
models discussed in this work. (a) τ as a function of contin-
uum coupling κ for the model in Sec. IIA; (b) τ in TBRE
discussed in Sec. IIB as a function of κ; (c) single j level
model with particle decay, Sec. II C, coefficient of L-variation
for the two-, three-, and four-body random ensembles; (d)
same model as in (c) but τ is for the electric quadrupole tran-
sitions discussed in Sec. IID. The uncertainty shown reflects
the finite sample size and sensitivity to the 1% of the data
in the tail of the distribution. Horizontal grid-lines show the
values of τ for PTD with ν = 2 and 1, and for the Bessel
distribution PB(x).

τ > 0.64 is considered unphysically peaked. The Bessel
distribution PB(x) with τ = 0.81 is peaked. In Fig. 6
we summarize our model studies using the coefficient of
L-variation. The uncertainty quoted is due to the finite
sample size and to sensitivity to 1% of the data in the
tail of the distribution. The results of the L-variation
analysis in Fig. 6 confirm deviations from PTD observed
in the models examined.

To summarize, this study is motivated by the long-
standing debate in relation to the Porter-Thomas distri-
bution and possibility of its violation [7–11]. The PTD is
a robust prediction justified by the central limit theorem;
it is easily confirmed for different random matrix ensem-
bles. This, however, is a purely structural approach that
does not take into account the microscopic physics of re-
actions. To address this we use a continuum shell model
approach where violations of the PTD may result from
one or a combination of the following: coherence in struc-
ture due to the factorized nature of the effective Hamil-
tonian that reflects unitarity of the scattering matrix,
the so called superradiance mechanism; parent-daughter
relation between decaying systems in the common Fock
space; few-body low rank interaction forces; and signifi-
cant variations in the energy dependence of the effective
Hamiltonian. We examine all of these possibilities, with
the exception of the last, which is to be discussed else-
where.

The distribution, unambiguously different from the
PTD, is observed in random ensembles with a particle
and electromagnetic decays and with few-body intrin-
sic Hamiltonians. There are significant local deviations
from the PTD in the wide region of spectrum where the

strength function for the corresponding channel is sig-
nificant. The parent-daughter relation in the decay pro-
cess appears to be central to this phenomenon. From
the perspective of the compound nucleus reaction mech-
anism, which is associated with the PTD, this picture is
different because the two-body or other low-rank Hamil-
tonian does not lead to dynamical mixing of states strong
enough for the decaying system to lose all memory of its
creation. The formal analysis using the coefficient of L-
variation is summarized in Fig. 6.

The author is thankful to Kirby Kemper for motivating
discussions. Support from the U. S. Department of En-
ergy, grant DE-FG02-92ER40750 is acknowledged. The
computing resources were provided by the Florida State
University shared High-Performance Computing facility.



6

[1] C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483
(1956).

[2] T. A. Brody, J. Flores, J. B. French, P. A. Mello,
A. Pandey, and S. S. M. Wong, Rev. Mod. Phys. 53,
385 (1981).

[3] V. Zelevinsky and A. Volya, Phys. Rep. 391, 311 (2004).
[4] T. Papenbrock and H. A. Weidenmüller, Rev. Mod. Phys.

79, 997 (2007).
[5] G. E. Mitchell, A. Richter, and H. A. Weidenmüller, Rev.

Mod. Phys. 82 (2010).
[6] H. A. Weidenmüller and G. E. Mitchell, Rev. Mod. Phys.

81, 539 (2009).
[7] S. M. Grimes, Phys. Rev. C 28, 471 (1983).
[8] P. E. Koehler, F. Bečvář, M. Krtička, J. A. Harvey, and

K. H. Guber, Phys. Rev. Lett. 105, 072502 (2010).
[9] G. L. Celardo, N. Auerbach, F. M. Izrailev, and V. G.

Zelevinsky, Phys. Rev. Lett. 106, 042501 (2011).
[10] R. R. Whitehead, A. Watt, D. Kelvin, and A. Conkie,

Phys. Lett. B 76, 149 (1978).
[11] E. S. Reich, Nature 466, 1034 (2010).
[12] H. A. Weidenmüller, Phys. Rev. Lett. 105, 232501

(2010).

[13] A. Volya, Phys. Rev. C 79, 044308 (2009).
[14] A. Volya and V. Zelevinsky, Phys. Rev. C 67, 054322

(2003).
[15] A. Muller and H. L. Harney, Phys. Rev. C 37, 2435

(1988).
[16] L. Kaplan and T. Papenbrock, Phys. Rev. Lett. 84, 4553

(2000).
[17] H. Feshbach, Theoretical nuclear physics : nuclear reac-

tions (Wiley, New York, 1991).
[18] C. Mahaux and H. A. Weidenmüller, Shell-model ap-

proach to nuclear reactions (North-Holland Pub. Co.,
Amsterdam, London, 1969).

[19] A. Pandey and J. B. French, J. Phys. A 12, L83 (1979).
[20] V. V. Sokolov and V. G. Zelevinsky, Phys. Lett. B 202,

10 (1988).
[21] C. W. Johnson, G. F. Bertsch, and D. J. Dean, Phys.

Rev. Lett. 80, 2749 (1998).
[22] A. Volya, Phys. Rev. Lett. 100, 162501 (2008).
[23] F. J. Dyson, J. Royal Stat. Soc. 106, 360 (1943).
[24] J. R. M. Hosking, J. Royal Stat. Soc., Ser. B 52, 105

(1990).


