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Abstract

We extend our formulation of relativistic three-nucleon Faddeev equations to include both pairwise in-

teractions and a three-nucleon force. Exact Poincaré invariance is realized by adding interactions to the

mass Casimir operator (rest Hamiltonian) of the non-interacting system without changing the spin Casimir

operator. This is achieved by using interactions defined by rotationally invariant kernels that are functions

of internal momentum variables and single-particle spins that undergo identical Wigner rotations. To solve

the resulting equations one needs matrix elements of the three-nucleon force with these properties in a

momentum-space partial-wave basis. We present two methods to calculate matrix elements of three-nucleon

forces with these properties. For a number of examples we show that at higher energies, where effects of rel-

ativity and of three-nucleon forces are non-negligible, a consistent treatment of both is required to properly

analyze the data.

PACS numbers: 21.45.-v, 21.45.Ff, 25.10.+s, 24.10.Jv
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I. INTRODUCTION

High precision nucleon-nucleon potentials such as AV18 [1], CDBonn [2], Nijm I, II and 93 [3]

provide a very good description of the nucleon-nucleon data set up to about 350 MeV. When

these forces are used to predict binding energies of three-nucleon systems they underestimate the

experimental bindings of 3H and 3He by about 0.5-1 MeV [4, 5]. This missing binding energy can

be restored by introducing a three-nucleon force into the nuclear Hamiltonian [5].

Also the study of elastic nucleon-deuteron scattering and nucleon induced deuteron breakup

revealed a number of cases where the nonrelativistic description using only pairwise forces is in-

sufficient to explain the data. Generally, the studied discrepancies between a theory using only

nucleon-nucleon potentials and experiment become larger with increasing energy of the three-

nucleon system. Adding a three-nucleon force to the pairwise interactions leads in some cases to a

better description of the data. The elastic nucleon-deuteron angular distribution in the region of

its minimum and at backward angles is the best studied example [6, 7]. The clear discrepancy in

these angular regions at energies up to ≈ 100 MeV nucleon lab energy between a theory using only

nucleon-nucleon potentials and the cross section data can be removed by adding a modern three-

nucleon force to the nuclear Hamiltonian. Such a three-nucleon force must be adjusted with each

nucleon-nucleon potential separately to the experimental binding of 3H and 3He [6–8]. At energies

higher than ≈ 100 MeV current three-nucleon forces only partially improve the description of cross

section data and the remaining discrepancies, which increase with energy, indicate the possibility

of relativistic effects. The need for a relativistic description of three-nucleon scattering was also

raised when precise measurements of the total cross section for neutron-deuteron scattering [9] were

analyzed within the framework of nonrelativistic Faddeev calculations [10]. Nucleon-nucleon forces

alone were insufficient to describe the data above ≈ 100 MeV. The effects due to relativistic kine-

matics considered in [10] were comparable at higher energies to the effects due to three-nucleon

forces. These results showed the importance of a study taking relativistic effects in the three

nucleon continuum into account.

In [11, 12] the first results on relativistic effects in the three-nucleon continuum have been

presented. The dynamics was defined by a three-nucleon center of momentum Hamiltonian or

mass operator including only pairwise interactions. The mass operator was used to calculate three-

nucleon scattering observables. The input to that approach is a “Lorentz boosted” nucleon-nucleon

potential, which generates the nucleon-nucleon t-matrix in a moving frame by solving a standard

Lippmann-Schwinger equation. To get the nucleon-nucleon potential in an arbitrary moving frame
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one needs the interaction in the two-nucleon center of momentum system, which appears in the rela-

tivistic nucleon-nucleon Schrödinger or Lippmann-Schwinger equation. The relativistic Schrödinger

equation in the two-nucleon center of momentum system differs from the nonrelativistic Schrödinger

equation just by the relativistic form for the kinetic energy. Current realistic nucleon-nucleon po-

tentials are defined and fit by comparing the solution of the nonrelativistic Schrödinger equation

to experimental data. Up to now nucleon-nucleon potentials refitted with the same accuracy in

the framework of the relativistic nucleon-nucleon Schrödinger equation do not exist. Such refitting

can be, however, avoided by solving a quadratic integral equation whose solution is a relativistic

potential which is phase-equivalent to a given input high-precision nonrelativistic nucleon-nucleon

potential [13]. An alternative equivalent approach towards a relativistic nucleon-nucleon t-matrix

in another frame is provided in [14].

In our previous studies with only nucleon-nucleon interactions we found that when the non-

relativistic form of the kinetic energy is replaced by the relativistic one and a proper treatment of

the relativistic dynamics is included, the elastic scattering cross section is only slightly influenced

by relativity. Only at backward angles and higher energies are the elastic cross sections increased

by relativity [11]. It is exactly the region of angles and energies where the effects of three-nucleon

forces are also significant [8]. Also, for nucleon-deuteron breakup reactions regions of phase space

were found at higher energies of the incoming neutron where relativity significantly changes the

breakup cross sections [15, 16]. For some spin observables large effects due to relativity and three-

nucleon forces have been reported in nucleon-deuteron breakup for an incoming deuteron energy of

270 MeV, some of which seem to be supported by proton-deuteron data [17]. These observations call

for three-nucleon continuum relativistic Faddeev calculations which include three-nucleon forces.

Only such consistent calculations should be used to analyze the data in cases when both relativity

and three-nucleon force effects are large.

The paper is organized as follows. Sec. II provides the conceptual basis for the choice of the

momentum-space representation and the definition of spin in the relativistic context. In Sec. III

we summarize the formalism underlying relativistic three-nucleon Faddeev calculations with only

nucleon-nucleon interactions, presented in detail in [11, 12]. In Sec. IV we focus on the three-nucleon

Faddeev equation with an included three-nucleon force and discuss two methods to compute matrix

elements of the three-nucleon force in the partial wave basis used in our relativistic calculations. In

Sec. V we apply our formulation to elastic nucleon-deuteron scattering and breakup and show and

discuss the results. Sec. VI contains our conclusions and summary. Appendixes A and B formulate

three-nucleon forces in the momentum space representation adapted to Poincaré invariance.
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II. RELATIVISTIC DYNAMICS

Relativistic invariance of a quantum theory means that the Poincaré group (inhomogeneous

Lorentz group) is a symmetry group of the theory. This requires the existence of a unitary repre-

sentation of the Poincaré group [18]. The Poincaré group has ten generators, six Lorentz generators

Jµν , and four spacetime translation generators, Pµ. The dynamics of the system is given by the

Hamiltonian, H = P 0. The Lie algebra has two polynomial invariants,

M2 = −PµPµ W 2 = W µWµ (1)

where W µ is the Pauli-Lubanski vector [19]

W µ := −1

2
ǫµαβγPαJβγ . (2)

It satisfies

[Pµ,W ν ] = 0, PµWµ = 0, [W µ,W ν ] = iǫµναβPαWβ. (3)

Equation (1) implies that the Hamiltonian can be expressed in terms of the mass operator, H =
√

M2 + P 2, where P 2 := P2. Thus, given a representation for P, the dynamics is defined by the

mass operator M , which plays the same role in Poincaré invariant quantum mechanics as the center

of mass Hamiltonian h = H − P 2/2M does in Galilean invariant quantum mechanics.

In the absence of interactions the mass operator M becomes the invariant mass operator M0 of

three non-interacting relativistic particles. The full interaction is defined by

V := M − M0. (4)

For a system of three particles interacting with short-range interactions, two-body interactions

are defined by

V(ij)(k) := M(ij)(k) − M0 (5)

where M(ij)(k) is obtained from M by turning off all interactions in M that involve particle k. The

difference

V4 := V − V(12)(3) − V(23)(1) − V(31)(2) (6)

defines a three-body interaction. With these definitions the mass operator has the form

M = M0 + V(12)(3) + V(23)(1) + V(31)(2) + V4. (7)

4



This has the same form as the non-relativistic three-body center of mass Hamiltonian with two

and three-body forces, except the non-relativistic kinetic energy is replaced by the relativistic

invariant mass of the non-interacting system. As in the non-relativistic case, bound and scattering

eigenstates of this mass operator can be computed using the Faddeev equations with two and

three-body interactions. For identical nucleons the coupled relativistic Faddeev equations can be

replaced by a single equation. Details are discussed in the next section.

In addition to the constraints imposed by discrete symmetries, translational invariance, and

particle exchange symmetry, there are non-trivial constraints on the interactions due to both the

Poincaré symmetry and cluster properties. The constraints on the interaction due to Poincaré

invariance come from the commutator

[P j , J0k] = iδjkH, (8)

which means that interactions appearing in H must be generated by the operators in the commu-

tator. One way to satisfy the constraints due to Poincaré invariance was suggested by Bakamjian

and Thomas [20]. Their construction adds interactions to the mass Casimir operator that commute

with the spin Casimir operator

j2 := W 2/M2. (9)

The required interactions commute with and are independent of the total momentum and commute

with the non-interacting three-body canonical spin operator.

Spin is associated with rotational degrees of freedom that appear in the rest frame. Because

the Lorentz boost generators, J0i, do not form a closed sub-algebra, a sequence of Lorentz boosts

that map the rest frame to the rest frame can generate a rotation. Thus in order to obtain a well-

defined relativistic spin it is necessary to define a standard procedure for measuring the spin. This

normally requires the specification of a special frame where spins can be compared (usually the rest

frame) and a standard set of Lorentz transformations B−1(P )µ
ν , parameterized by momentum,

that transform arbitrary frames to the special frame. The three-body canonical spin is defined in

terms of the Pauli-Lubanski vector by [21]

(0, jc)
µ :=

1

M
B−1

c (P )µ
νW

ν (10)

where B−1
c (P )µ

ν is the rotationless Lorentz transformation-valued function of the four momentum

P ,

B−1
c (P )µ

ν :=







P 0/M −P/M

−P/M I + P⊗P
M(P 0+M)






. (11)
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This Lorentz transformation (11) satisfies

B−1
c (P )µ

νP ν = (M,0)µ. (12)

Equations (3) and (12) can be used to show that the components of jc satisfy SU(2) commutation

relations. The spin (0, jc)
µ is not a four vector because B−1

c (P )µ
ν is a matrix of operators, rather

than a constant Lorentz transformation. Under Lorentz transformation the canonical spin Wigner

rotates

(0, j′c)
µ := Rwc(Λ, P )µ

ν(0, jc)
ν (13)

where Rwc(Λ, P )µ
ν := (B−1

c (ΛP )ΛBc(P ))µ
ν . The spin Casimir operator j2 = jc · jc is independent

of the choice of boost (11) used to define the spin. The non-interacting (kinematic) canonical spin,

jc0, is obtained from (10) by replacing M → M0, W µ → W µ
0 in (10) and M → M0 in (11). Thus,

Poincaré invariance can be satisfied provided the interactions V(ij)(k) and V4 commute with jc0.

The other non-trivial constraint on the interactions is imposed by cluster properties. The prob-

lem arises due to the non-linear relation between the two-body interaction vij in the two-body

problem and the corresponding two-body interaction, V(ij)(k), in the three-body problem. Clus-

ter properties relate V(ij)(k) to the Poincaré generators for the interacting ij pair and spectator

k. Unfortunately each 2 + 1 mass operator constructed by requiring cluster properties commutes

with a different spin Casimir operator, which means that linear combinations of these interactions

will break Poincaré invariance. Coester [22] observed that these interactions could be replaced by

phase-equivalent interactions that commute with jc0. These interactions are designed to satisfy

cluster properties in the three-body rest frame. Using the Bakamjian-Thomas construction lin-

ear combinations of the phase equivalent V(ij)(k)’s can be added in a manner that preserves the

overall Poincaré invariance. While these interactions do not lead to generators that satisfy cluster

properties, cluster properties in the three-body rest frame and Poincaré invariance of the S matrix

ensures that the three-body S-matrix retains cluster properties in all frames.

To construct two-body interactions, the two-body interactions in the two-body problem that

commute with the two-body canonical spin are replaced by phase equivalent two-body interactions

in the three-body problem that commute with the three-body canonical spin. The phase equivalent

interactions are identified in the rest frame of the three-body system. They are determined in all

other frames by the requirement that the three-body spin remains kinematic (in the Bakamjian-

Thomas construction this choice fixes the representation of the boost generators).

To construct interactions that commute with the three-body kinematic canonical spin it is

useful to introduce momenta and spin variables that have the same Wigner rotation properties
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as the three-body kinematic canonical spin. This is because the kinematic canonical spin can

be constructed out of these degrees of freedom using conventional methods for adding angular

momenta.

The desired momentum operators are the relativistic analog of Jacobi momenta. In the non-

relativistic case Jacobi momenta can be defined using Galilean boosts to the two and three-body

rest frames. In the relativistic case the Galilean boosts are replaced by the rotationless boost (11)

and the relevant Jacobi momenta are [22]

qµ
i = B−1

c (P )µ
νpν

i Pµ = pµ
1 + pµ

2 + pµ
3 qµ

i = (
√

q2
i + m2,qi) (14)

kµ
ij = B−1

c (qij)
µ

νq
ν
i qµ

ij := qµ
i + qµ

j . (15)

In terms of these variables

M0 =
3

∑

i=1

√

m2 + q2
i =

√

m2
ij0 + q2

k +
√

m2 + q2
k (16)

where the two-body invariant mass is

mij0 =
√

−(qi + qj)µ(qi + qj)µ =
√

m2
i + k2

ij +
√

m2
j + k2

ji. (17)

The vector variables satisfy

3
∑

i=1

qi = 0 kij + kji = 0. (18)

The relevant property of these momentum vectors is that they experience the same Wigner rotations

as the three-body kinematic canonical spin (13),

qµ
i → qµ′

i = (B−1
c (ΛP )ΛBc(P )B−1

c (P ))µ
νp

ν
i = Rwc(Λ, P )µ

νq
ν
i . (19)

Similarly,

kµ
ij → kµ′

ij = B−1
c (q′ij)

µ
νq

ν′
i = (B−1

c (Rwc(Λ, P )qij)Rwc(Λ, P ))µ
νq

ν
i =

(B−1
c (Rwc(Λ, P )qij)Rwc(Λ, P )Bc(qij))

µ
νk

ν
ij = Rwc(Λ, P )µ

νk
ν
ij (20)

where the last line follows from the property of the rotationless boosts (11) that the Wigner rotation

of a rotation is the rotation [21]

Rwc(R,P )µ
ν = Rµ

ν (21)
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for any P. Thus the qi and kij all undergo the same Wigner rotations as the three-body kinematic

canonical spin.

Next we introduce single-particle spins with the same property. Single-particle canonical spins

can be constructed from single-particle Poincaré generators using

(0, jci)
µ :=

1

m
B−1

c (pi)
µ

νW
ν
i (22)

where the operators on the right side of (22) are constructed by replacing all of the three-body

generators in (2), (10) and (11) by the corresponding one-body generators.

Under kinematic Lorentz transformations the single-particle canonical spins experience Wigner

rotations, Rwc(Λ, pi)
µ

ν , that depend on the single-particle momenta. These rotations differ from

the Wigner rotations experienced by qi, kij and jc0. This can be changed by introducing new

single-particle spin operators that replace the rotationless boost in (22) by a two step boost,

B−1
c (pi)

µ
ν → (B−1

c (qi)B
−1
c (P ))µ

ν . (23)

These two boosts agree when P = 0. Note that both of these boosts transform pµ
i → (m, 0, 0, 0)µ,

so they differ by momentum dependent rotations. We call these spins three-body constituent spins

to distinguish them from single-particle canonical spins. The constituent spin operators are defined

by [22]

(0, j3csi)
µ :=

1

m
(B−1

c (qi)B
−1
c (P ))µ

νW
ν
i . (24)

When P = 0, B−1
c (pi) → B−1

c (qi) which means that single-particle canonical spins and three-body

constituent spins agree in the three-body rest frame. For a three-body system the total spin is

identified with total angular momentum in the three-body rest frame, which is the sum of the

single-particle angular momenta. The angular momentum of a single particle in the three-body

rest frame is the sum of the single-particle constituent spin and a contribution from the single

particle orbital angular momenta.

A calculation, using the property (21), shows that under Lorentz transformations

(0, j′3csi)
µ := Rwc(Λ, P )µ

ν(0, j3csi)
ν , (25)

Wigner rotates with the same rotation as the vectors qi and kij and the three-body kinematic

canonical spin. The three-body kinematic canonical spin is the sum of the orbital angular momenta

associated with qk and kij and the single-particle three-body constituent spins. The requirement

that an interaction commutes with the kinematic three-body canonical spin is equivalent to the
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requirement that the interaction have a rotationally invariant kernel when expressed in terms of

these variables. Thus the required interactions in the Bakamjian-Thomas construction are given

by kernels of the form

〈P,qi,kjk, µ1, µ2, µ3|V |P′,q′
i,k

′
jk, µ

′
1, µ

′
2, µ

′
3〉 = δ(P −P′)〈qi,kjk, µ1, µ2, µ3‖V ‖q′

i,k
′
jk, µ

′
1, µ

′
2, µ

′
3〉

(26)

where the reduced kernel is a rotationally-invariant function of qi,kjk and the three-body con-

stituent spins.

Two-body interactions in the two-body problem v12 have a similar form

〈P12,k12, µ1, µ2|v12|P′
12,k

′
12, µ

′
1, µ

′
2〉 = δ(P12 − P′

12)〈k12, µ1, µ2‖v12‖k′
12, µ

′
1, µ

′
2〉 (27)

where

kµ
12 = B−1

c (p1 + p2)µ
νp

µ
i (28)

is the two-body relative momentum and the magnetic quantum numbers are associated with the

two-body constituent spins

(0, j2csi)
µ =

1

m
(B−1(kij)B−1(pi + pj))

µ
νW

ν
i . (29)

When these interactions are embedded in the three-body Hilbert space the kernels (27) are

replaced by kernels that are rotationally invariant functions of the three-body Jacobi momenta

and the three-body constituent spins. In order to satisfy cluster properties kij given by (28) is

replaced by the kij given by (15), the pi are replaced by the corresponding qi, and the two-body

constituent spins (29) are replaced by

(0, j2(3)csi)
µ =

1

m
(B−1(kij)B

−1(qi + qj)B
−1(P ))µ

νW
ν
i . (30)

These operators represent two-body constituent spins in the three-body rest frame. They agree

with the two-body constituent spins (29) that they replace in the three-body rest frame, but are

defined so they remain unchanged by canonical boosts out of the three-body rest frame. This

ensures that they undergo the same Wigner rotations as the kinematic three-body canonical spin

under kinematic Lorentz transformations. Thus, the kernels (27) are related by

〈P,qi,kjk, µ1, µ2, µ3|vjk|P′,q′
i,k

′
jk, µ

′
1, µ

′
2, µ

′
3〉 =

δ(P − P′)δ(qi − q′
i)δµiµ′

i

∑

D
1/2
µj µ̄j

[Bc(qj)Bc(qj + qk)Bc(kjk)]D
1/2
µkµ̄k

[Bc(qk)Bc(qj + qk)Bc(−kjk)]×
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〈kjk, µ̄j , µ̄k‖vjk‖k′
jk, µ̄

′
j, µ̄

′
k〉×

D
1/2
µ̄′

j
µ′

j

[B−1
c (k′

jk)B−1
c (q′j + q′k)B−1

c (q′j)]D
1/2
µ̄′

k
µ′

k

[B−1
c (−k′

jk)B−1
c (q′j + q′k)B−1

c (q′k)]. (31)

Here the unbarred magnetic quantum numbers are three-body constituent spins while the barred

magnetic quantum numbers are the two-body constituent spins in the three-body rest frame.

Even though the spins in (30) transform the same way as the three-body constituent spins, they

differ from the three-body constituent spins (24) by the Wigner rotation

(0, j2(3)ics)µ = ((B−1(kij)B
−1(qi + qi)B

−1(qi))
µ

ν(0, j3ics)µ. (32)

When the two-body interactions are embedded in the three-body system the spins are identified

with the two-body constituent spins in the three-body rest frame, as would be expected by cluster

properties, but in other frames they are defined to remain unchanged with respect to canonical

boosts out of the three-body rest frame. The Wigner rotations (44) and (A2) arise because the

two-body subsystem is moving in the three-body rest frame; however because the Wigner rotations

in (32) are functions of the qi rather than the pi, both spins in (32) undergo the same Wigner

rotations under kinematic Lorentz transformation. Because of this it is also possible to construct the

three-body canonical spin using partial wave methods directly in a mixed representation involving

the barred spins in the interacting pair and the unbarred spin for the spectator. In the mixed

representation the two-body interaction in the three-body Hilbert space has the simple form

〈P,qi,kjk, µ̄1, µ̄2, µ3|vjk|P′,q′
i,k

′
jk, µ̄

′
1, µ̄

′
2, µ

′
3〉 =

δ(P − P′)δ(qi − q′
i)δµiµ′

i
〈kjk, µ̄j , µ̄k‖vjk‖k′

jk, µ̄
′
j , µ̄

′
k〉 (33)

For the two-body problem in the three-body Hilbert space it is advantageous to use (33) because

spins (30) do not require Wigner rotations. However, with this choice each interacting pair of

particle must be treated using a permuted basis which requires Wigner rotations in the permutation

operators. The three-body forces are naturally expressed by a rotationally invariant kernel in the

three-body constituent spins. When they are transformed to a mixed basis that involves the spin

(30) for one pair, then it is necessary to transform two of the three-body constituent spins with the

Winger rotations in (32). The calculations performed in this work use a partial wave projection

of the mixed basis (33), although the Wigner rotations in the three body-interaction are not yet

included.

10



III. RELATIVISTIC THREE-NUCLEON FADDEEV EQUATIONS WITH NUCLEON-

NUCLEON FORCES

The nucleon-deuteron scattering with neutron and protons interacting through only a nucleon-

nucleon interaction vNN is described in terms of a breakup operator T satisfying the Faddeev-type

integral equation [23, 24]

T |φ〉 = tP |φ〉 + tPG0T |φ〉. (34)

The two-nucleon t-matrix t is the solution of the Lippmann-Schwinger equation with the interaction

vNN . The permutation operator P = P12P23 + P13P23 is given in terms of the transposition

operators, Pij , which interchanges nucleons i and j. The incoming state |φ〉 = |q0〉|φd〉 describes

the free nucleon-deuteron motion with relative momentum q0 and the deuteron state vector |φd〉.
Finally G0 is resolvent of the three-body center of mass kinetic energy. Transition operators for

the elastic nd scattering, U , and breakup, U0, are given in terms of T by [23, 24]

U = PG−1
0 + PT ,

U0 = (1 + P )T . (35)

This is our standard nonrelativistic formulation, which is equivalent to the nonrelativistic three-

nucleon Schrödinger equation plus boundary conditions. The formal structure of these equations

in the relativistic case remains the same but the ingredients change. As explained in [25] the

relativistic three-nucleon rest Hamiltonian (mass operator) has the same form as the nonrelativistic

one, only the momentum dependence of the kinetic energy and the relation of the pair interactions

in the three-body problem to the pair interactions in the two-body problem change. Consequently

all the formal steps leading to (34) and (35) remain the same.

The free relativistic invariant mass of three identical nucleons of mass m has the form [12] (see

Eq.(16))

M0 =
√

m2
230 + q2 +

√

m2 + q2 (36)

with spectator momentum q := q1 and the free two-body mass operator m230 expressed in terms

of the relative momentum k := k23 in the 2 − 3 center of momentum frame by (see Eq.(17))

m230 ≡ 2
√

k2 + m2 ≡ 2ωm(k) . (37)

As introduced in [22] and in Eq.(5) the pair forces in the relativistic three-nucleon 2 + 1 mass

operator are related to the two-body forces in the two-body problem, vij , by

V(ij)(k) =
√

(mij0 + vij)2 + q2 −
√

m2
ij0 + q2 , (38)
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where V = V (q2) reduces to the interaction v for q = 0, which acts in the two-body center of

momentum frame. The momentum dependence ensures that the resulting three-nucleon scattering

matrix satisfies space-like cluster properties in all frames [22].

The transition matrix t that appears in the kernel of the Faddeev equation (34) is obtained by

solving the relativistic Lippmann-Schwinger equation as a function of q2

t(k,k′; q2) = V (k,k′; q2) +

∫

d3k′′ V (k,k′′; q2)t(k′′,k′; q2)
√

(2ωm(k′))2 + q2 −
√

(2ωm(k′′))2 + q2 + iǫ
. (39)

The input two-body interaction V is computed by solving the nonlinear equation [13]

{
√

m2
ij0 + q2, V(ij)(k)} + V 2

(ij)(k) = 4mvNN , (40)

where vNN is a nonrelativistic nucleon-nucleon potential fitted to the nucleon-nucleon data basis

and where anticommutator {A,B} ≡ AB + BA. In case of q = 0 that equation reduces to a

nonlinear equation for the relativistic two-body interaction v. Therefore the problem of refitting

all two-nucleon data when changing from a nonrelativistic to a relativistic Lippmann-Schwinger

equation is avoided. The nonlinear equation (40) can be solved by iteration [13]. An alternative

approach to determine t(k,k′; q2) is described in [14].

The new relativistic ingredients in (34) and (35) will therefore be the t-operator (39) (expressed

in partial waves) and the resolvent of the three-nucleon invariant mass

G0 =
1

E + iǫ − M0
, (41)

with M0 given by (36). E is the total three-nucleon invariant mass expressed in terms of the initial

neutron momentum q0 relative to the deuteron by

E =
√

M2
d + q 2

0 +
√

m2 + q 2
0 , (42)

with Md the deuteron rest mass. Related to the choice of the permutation operator P the pair i− j

is chosen as 2 − 3.

Currently the Faddeev equation (34) in its nonrelativistic form is numerically solved for any

nucleon-nucleon interaction using a momentum space partial-wave decomposition. Details are

presented in [23]. Projecting (34) on such a basis turns it into a coupled set of two-dimensional

integral equations. As shown in [11, 12], in the relativistic case we can keep the same formal

structure, though the permutation operators are replaced by the corresponding Racah coefficients

for the Poincaré group which include both Jacobians and Wigner rotations that do not appear in

the nonrelativistic permutation operators [24, 26].
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In the nonrelativistic case the partial-wave projected momentum-space basis is

|pq(ls)j(λ
1

2
)IJ(t

1

2
)T 〉, (43)

where p and q are the magnitudes of standard Jacobi momenta (see [24, 26]), obtained by trans-

forming single particle momenta to the rest frame of a two- or three-body system using a Galilean

boost, and (ls)j are two-body quantum numbers with obvious meaning, (λ1/2)I refer to the third,

spectator nucleon, taken as the nucleon 1 and described by the momentum q, J is the total three-

nucleon angular momentum and the rest are isospin quantum numbers. In the relativistic case this

basis is replaced by the Poincaré irreducible states defined as [12]

〈p1, µ
′
1,p2, µ

′
2,p3, µ

′
3|(J, q)P = 0, µ; λ, I, j23, k23, l23, s23〉 =

δ(0 − q1 − q2 − q3)
1

N(q2, q3)

δ(q1 − q)

q2

δ(k( q2,q3 ) − k)

k2

∑

µ2µ3µs

∑

µlµλµI

(
1

2
, µ2,

1

2
, µ3|s, µs)(l, µl, s, µs, |j, µj)(λ, µλ,

1

2
, µ′

1|I, µI)(j, µj , I, µI |J, µ)

Yλµλ
(q̂1)Ylµl

(k̂(q2,q3))D
1

2

µ′

2
µ2

[Rwc(Bc(−q1), k2(q2,q3))]D
1

2

µ′

3
µ3

[Rwc(Bc(−q1), k3(q2,q3))] ,(44)

where N(q2, q3) is given by (A3) in Appendix A and ~k(~q2, ~q3) by (B1) in Appendix B. These states

are labeled by the same quantum numbers as the corresponding non-relativistic basis states.

The basis states (44) are used for the evaluation of the partial wave representation of the

permutation operator P with Wigner rotations of spin states for nucleons 2 and 3 included. In the

relativistic case we adopt the following short-hand notation for the Poincaré irreducible three-body

states, which also includes isospin quantum numbers coupled in the same order:

|k, q, α〉 := |kq(ls)j(λ,
1

2
)IJ(t

1

2
)T 〉 = |(J, q)P = 0, µ; λ, I, j23, k23, l23, s23〉|(t

1

2
)T 〉 . (45)

Equipped with that, projecting (34) onto the basis states |k, q, α〉 one encounters, using the non-

relativistic notation of Ref. [26]

1〈kqα|P |k′q′α′〉1 = 1〈kqα|k′q′α′〉2 +1 〈kqα|k′q′α′〉3 = 2 1〈kqα|k′q′α′〉2. (46)

This is evaluated by inserting the complete basis of single-particle states |p1, µ1,p2, µ2,p3, µ3〉 and

using (44). It can be expressed in a form which resembles closely the corresponding non-relativistic

expression [24, 26]

1〈k q α| P |k′ q′ α′〉1 =

∫ 1

−1
dx

δ(k − π1)

k2

δ(k′ − π2)

k′2

1

N1(q, q′, x)

1

N2(q, q′, x)
GBB

αα′(q, q′, x), (47)
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where all ingredients are defined in Appendix A2 of Ref. [12]. The rotational invariance of the

nucleon-nucleon interaction in this basis ensures that all three nucleon-nucleon interactions com-

mute with the spin Casimir operator of the non-interacting three-nucleon system. This allows the

interactions to be added in a manner that preserves the underlying Poincaré symmetry.

Due to the short-range nature of the nucleon-nucleon interaction it can be considered negligible

beyond a certain value jmax of the total angular momentum in the two-nucleon subsystem. Gen-

erally with increasing energy jmax will also increase. For j > jmax we set the t-matrix to zero,

which yields a finite number of coupled channels for each total angular momentum J and total

parity π = (−)l+λ of the three-nucleon system. To achieve converged results at incoming nucleon

laboratory energies below ≈ 250 MeV all partial wave states with total angular momenta of the

two-nucleon subsystem up to jmax = 5 and all total angular momenta of the three-nucleon system

up to J = 25/2 must be taken into account. This leads to a system of up to 143 coupled integral

equations in two continuous variables for a given J and parity. For the details of the numerical

performance we refer to [11, 24, 26]. The solution of these equations can be used to construct an

exactly Poincaré invariant scattering operator.

IV. RELATIVISTIC THREE NUCLEON FADDEEV EQUATIONS WITH A THREE-

NUCLEON FORCE INCLUDED

In the standard nonrelativistic formulation when in addition to pairwise interactions vNN be-

tween three nucleons also a three-nucleon force is included, a new term V4 appears in a potential

energy of the three-nucleon system

V4 = V
(1)
4 + V

(2)
4 + V

(3)
4 . (48)

Each V
(i)
4 is symmetric under exchange of the nucleons j and k (i, j, k = 1, 2, 3 and j 6= i 6= k).

In the 2π-exchange three-nucleon force V
(1)
4 is a contribution to the three-nucleon potential from

(off-shell) rescattering of a pion on nucleon 1.

When a three-nucleon force is acting then on top of rescatterings among three nucleons induced

by pairwise forces only, which are summed up in integral equation (34), additional rescatterings

induced by three-nucleon force and nucleon-nucleon force appear.

Therefore Faddeev equation (34) changes to

T |φ〉 = t P |φ〉 + (1+ tG0) V
(1)
4 (1+P ) |φ〉 + t P G0 T |φ〉 + (1+ tG0) V

(1)
4 (1+P ) G0 T |φ〉 , (49)
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with one new contribution in the leading term and in the kernel [24, 27]. While the breakup transi-

tion operator U0 preserves its form (35), in the elastic scattering operator U two new contributions

appear [24, 27]

U = PG−1
0 + V

(1)
4 (1 + P ) + PT + V

(1)
4 (1 + P ) G0 T . (50)

The second term is due to a single interaction of three-nucleons via a three-nucleon force and the

fourth results from rescattering among three nucleons induced by two- and three-nucleon forces

with a three-nucleon force as the final interaction.

After projecting on a partial-wave momentum-space basis equation (49) becomes a system of

2-dimensional coupled integral equations which can be solved numerically exactly for any nuclear

force. Since the three-nucleon force is short-ranged its inclusion needs to be carried through only

for all total angular momenta of the three nucleon system up to J = 13/2. As mentioned in section

III, the longer ranged two-nucleon interactions require states up to J = 25/2. For details of the

formalism and numerical performance in case of the nonrelativistic formulation when three-nucleon

force is included we refer to Refs. [23, 24, 28].

For relativistic calculations without a three-nucleon force, briefly described in previous section,

the details of the numerical treatment are given in [11, 12]. When a three-nucleon force is added

two new terms in (49) contain the free three-nucleon propagator G0. Since in the basis |k,q > (see

Appendix B) the three-nucleon invariant mass M0 is diagonal, G0 is given by

〈k,q|G0|k′,q′〉 = δ(k − k′)δ(q − q′)
1

E −
√

m2 + q2 −
√

4(k2 + m2) + q2 + iǫ
. (51)

That means that performing integrations over momenta k′ and q′ in the intermediate states

|k′, q′, α′〉 during the calculation of matrix elements for these new terms, the simple pole singularity

occurs for momenta q′ < qmax at k′ = k0, where qmax is given by the total three-nucleon center of

momentum energy E through E =
√

4m2 + q2
max +

√

m2 + q2
max.

For a given q′-value the momentum k0 is the solution of E =
√

4(m2 + k2
0) + q′2 +

√

m2 + q′2.

The treatment of that pole, as well as of the deuteron bound state pole in T , which occurs at

q′ = q0 for channels α′ containing the deuteron quantum numbers, was done using subtraction

method [23, 24].

The nonrelativistic treatment of (49) requires matrix elements of V
(1)
4 (1 + P ) calculated in a

partial-wave basis with standard Jacobi momenta: 〈p, q, α|V (1)
4 (1 + P )|p′, q′, α′〉. In the relativistic

calculations, however, one needs them in the new, relativistic basis |k, q, α〉. The generation of

three-nucleon force partial-wave matrix elements is the most time consuming part of three-nucleon
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continuum Faddeev calculations. One way to reduce the computer time is to perform a trans-

formation of the existing, standard Jacobi momenta matrix elements to the relativistic basis. In

Appendix A we give the expression (A17) for such transformation which is valid in the general

case, when in addition to boost also Wigner spin rotations are taken into account. The complex

structure of that transformation, where in addition to the summation over numerous intermedi-

ate states with geometrical coefficients, also involved are two integrations and two interpolations

over the momenta p and p′, prevents, due to the large amount of computing time and computer

resources required, the application of that transformation in fully converged calculations.

It seems thus unavoidable that in order to get matrix elements 〈k, q, α|V (1)
4 |k′, q′, α′〉 one must

start from a commonly given expression for a three-nucleon force in terms of individual nucleons

momenta and their spin and isospin operators and to apply to that expression the recently proposed

automatized partial wave decomposition [29, 30]. To that aim we derived in Appendix B relation

(B4) which allows to express matrix element of a three-nucleon force in a 3-dimensional relativistic

basis 〈k,q|V (1)
4 |k′,q′〉 by its matrix element in the individual nucleons momenta basis. In this basis

q and k undergo identical Wigner rotations under kinematic boost of the three-nucleon system. The

nucleon spins are defined to be the three-body constituent spins (canonical spins measured by using

a rotationless boost to the three-body center of momentum frame). To use them in the |k, q, α〉
basis the spins for the α pair must be Wigner rotated before they are coupled. The alternative is

to use the representation where three spins are three-body constituent spins; in this case all three

of the two-body interactions will have Wigner rotations that convert the two-body constituent

spins in the three body rest frame to three-body constituent spins. The three-nucleon force will

have no Wigner rotations. In this representation all of the spins can be coupled using standard

partial wave methods. For our calculations we work in the |k, q, α〉 basis, but do not account

for the Wigner rotations in the three-nucleon interaction for the reasons discussed in the previous

paragraph. This allows us to treat the spins in the three-nucleon force using conventional methods.

This assumes the Wigner rotations in the three-nucleon force can be neglected. Neglecting these

Wigner rotations has no effect on the relativistic invariance or S-matrix cluster properties.

V. RESULTS

To study the importance of a consistent treatment of both relativity and a three-nucleon force

we numerically solved the three-nucleon Faddeev equations for neutron-deuteron scattering at the

neutron laboratory energies Elab
n = 70, 135, 200 and 250 MeV. As dynamical input we took the
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nonrelativistic nucleon-nucleon potential CD Bonn [2] and TM99 three-nucleon force [31–33]. The

cut-off parameter Λ of that three-nucleon force was adjusted to Λ = 4.469 in units of the pion mass,

mπ, to give, together with the CD Bonn potential, the experimental binding energy of 3H. At each

energy we generated solutions of nonrelativistic and relativistic three-nucleon Faddeev equation,

without and with TM99 three-nucleon force included. For relativistic case we produced, starting

from the CD Bonn potential and solving nonlinear equation (40) at the required spectator nucleon

momenta q, the relativistic, on-shell equivalent interaction with boost effects incorporated exactly.

That interaction served as dynamical input to calculate, using the relativistic Lippmann-Schwinger

equation (39) the relativistic off-shell t-matrix t that appears in Faddeev equations.

Since in [12] it was found that effects of Wigner spin rotations are practically negligible in

the studied energy range, we neglected them in the present study. When performing relativistic

calculations with three-nucleon force included one requires matrix elements of the TM99 three-

nucleon force in a relativistic momentum space basis, where the relative momentum of two nucleons

in their c.m. system, k, replaces standard Jacobi momentum p. That momentum k together with

spectator nucleon momentum q, equal in magnitude and opposite to the total momentum of the

free pair in three-nucleon center of momentum system, unambiguously define the configuration of

three nucleons. Since it is the region of small and not large momenta which is most important when

solving Faddeev equations it seems reasonable to assume that the momenta k and p do not differ

substantially. Therefore, in order to avoid calculations of the TM99 three-nucleon force matrix

elements in a relativistic basis |k, q, α〉 we assumed, that the matrix elements in a relativistic and

nonrelativistic bases are equal:

〈k, q, α|V (1)
4 |k′, q′, α′〉 = 〈p = k, q, α|V (1)

4 |p′ = k′, q′, α′〉 . (52)

That assumption allowed us to use the existing matrix elements of the TM99 three-nucleon force.

To check quality of the approximation (52) we compared the matrix element of the TM99

3NF in the relativistic basis, 〈k, q, α|V (1)
4 |k′, q′, α′〉, calculated according to (B4) and using au-

tomatized partial wave expansion of Ref. [30] (what corresponds to neglection of Wigner spin

rotations in (B5)), with the corresponding matrix element in the standard, nonrelativistic basis,

〈p, q, α|V (1)
4 |p′, q′, α′〉, at a number of the spectator momentum values. In Figs. 1 and 2 we ex-

emplify the typical behavior showing at a number of q’ values and at a fixed p = k, taking two

different values of q, the k′(= p′) dependence of these matrix elements for a particular channel

α = α′ = |(00)0(01
2 )1

2 (11
2 )1

2 >. As expected, clear differences between these matrix elements occur

only at very large values of the spectator momentum q, where magnitudes of these matrix elements
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are small. This justifies application of the approximation (52) in the present study.

The approximation (52) can be investigated also directly for the three-dimensional matrix ele-

ments, comparing 〈k,q |V (1)
4 |k′,q′〉 and 〈p,q |V (1)

4 |p′,q′〉. The connection between these matrix

elements is given by (B4) in Appendix B. They depend on momentum vectors and spin-isospin

quantum numbers in the initial and final state. In Fig. 3 we show a particularly simple case, where

t = t′ = 0, all four momenta are parallel to the unit vector
(

1√
3
, 1√

3
, 1√

3

)

and all spin magnetic

quantum numbers are equal 1
2 . We display 〈k,q |V (1)

4 |k,q〉 and 〈p,q |V (1)
4 |p,q〉 for several q val-

ues as a function of k. We see how the difference develops gradually with increasing q, resembling

the picture seen for partial wave decomposed matrix elements.

Transition amplitudes for elastic neutron-deuteron scattering and breakup based on that set of

four solutions of three-nucleon Faddeev equations, are used to predict numerous observables for

both reactions. By comparing these observables conclusions on how strongly three-nucleon force

effects depend on relativity were drawn. In the following subsections we show and discuss results

for the cross section and numerous spin observables, separately for elastic scattering and breakup

reactions.

A. Elastic scattering

At higher energies of the incoming nucleon three-nucleon forces play significant role in deter-

mining the angular distribution of the elastic neutron deuteron scattering. The clear evidence

of three-body force effects start to develop at Elab
n ≈ 65 MeV for scattering angles close to a

minimum of the cross section, which at 65 MeV occurs at θc.m. ≈ 105o [6, 8]. With increasing

energy of the three-nucleon system not only the magnitude of predicted three-nucleon force effect

increases but it also influences the cross section in a wider range of angles, which at 250 MeV covers

90o ≤ θc.m. ≤ 180o [6, 8]. The standard 2π-exchange three-nucleon forces, such as TM99 [33] or

Urbana IX [34], are able to account for existing discrepancies between theoretical cross sections

obtained with realistic nucleon-nucleon potentials and data only up to Elab
n ≈ 135 MeV. Data at

larger energies in a region of angles ranging from the cross section minimum up to 180o are drasti-

cally underestimated even when 2π-exchange three-nucleon forces are included in the calculations.

This is exemplified on Fig. 4, where solid (red) lines are nonrelativistic predictions based on the

CD Bonn potential alone and dotted (blue) lines are results obtained when the CD Bonn potential

was combined with the TM99 three-nucleon force.

Since effects of relativity for predictions based on two-nucleon forces only are restricted to very
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backward angles θc.m. ≥ 160o [11] (see also Fig. 4 where dashed (blue) lines are relativistic predic-

tions based on the CD Bonn potential), the drastic discrepancy between data and theory seen at

250 MeV would indicate that at such large energies shorter-ranged three-nucleon force components,

not taken into account in these calculations, start to play significant role. The possibility, that in-

cluding such three-nucleon force contributions would indeed help to improve description of the cross

section data is further supported by an interesting pattern revealed when the TM99 three-nucleon

force is included into relativistic calculations. Namely, when a consistent treatment of relativity

and a three-nucleon force as described in the present study is made, then the resulting changes of

the cross section are not a simple incoherent sum of effects due to relativity, seen when two-nucleon

forces alone are acting, and three-nucleon force effects found in nonrelativistic calculations. The

relativity modulates effects exerted by the TM99 three-nucleon force on the cross section found

in nonrelativistic calculations and the magnitude of this modulation depends from the scattering

angle. While at backward angles the nonrelativistic cross section with a three-nucleon force in-

cluded is further enhanced by relativity, in a region of center of momentum angles near the cross

section minimum the magnitude of three-nucleon force effects seen in nonrelativistic calculations

is strongly reduced by relativity (dashed-dotted (brown) lines in Fig. 4).

Also elastic scattering polarization observables reveal such incoherent and angle-dependent mod-

ulation of three-nucleon force effects by relativity. The details, however, depend on the particular

spin observable under study and every conceivable scenario can be found.

For elastic scattering spin observables effects of relativity, when only two nucleon forces are

acting, were found to be small [11]. It is exemplified by nearly overlapping solid (red) and dashed

(blue) lines in Figs. 5-15. Adding three-nucleon force in nonrelativistic calculations leads to sub-

stantial effects for some polarization observables, especially at higher energies [7, 8]. The resulting

picture, however, is quite complex. Some of those three-nucleon force effects are supported by the

data. For some observables they deteriorate the data description.

For tensor analyzing powers Axx, Ayy and Axz relativistic effects are non-negligible even at

70 MeV (see Fig. 5) and clearly increase with increasing energy as seen in Figs. 6, 7 and 9. When

three-nucleon force is added in the relativistic calculations the resulting effect depends on the

observable and the energy.

For Axz large three-nucleon force effects remain. At 70 MeV and 135 MeV they are prac-

tically identical in magnitude to three-nucleon force effects found in nonrelativistic calculations

and nonrelativistic and relativistic predictions for Axz at these energies are practically overlapping

(see dotted (blue) and dashed-dotted (brown) lines in Figs. 5, 6 and 9). At 200 MeV, however,
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adding three-nucleon force in relativistic calculations leads to angle dependent modulations of the

magnitude of three-nucleon force effects, similar to that found for the cross section (see Fig. 9).

For Axx a drastically different scenario occurs. Large effects of the TM99 three-nucleon force

are seen for that observable in nonrelativistic calculations at 70 MeV and 135 MeV in wide range

of angles and they practically vanish when relativity is included. As a result the dashed-dotted

(brown) line practically overlaps with pure two-nucleon relativistic and nonrelativistic predictions

(see Fig. 5 and 6).

For Ayy (Fig. 5 and 6) the large effects of the three-nucleon force seen in nonrelativistic calcu-

lations are simply reduced by relativity. For the tensor analyzing power Azz, for which data exist

only at 135 and 200 MeV, the influence of relativity induces both modulation and reduction of

nonrelativistic three-nucleon force effects (Fig. 7).

The TM99 three-nucleon force acts differently on the nucleon, Ay(N), and deuteron, Ay(d),

vector analyzing powers. While three-nucleon force effects for Ay(N) are rather small even at

250 MeV (Fig. 8 and 15), for Ay(d) they are significant (Fig. 5, 6 and 8). For Ay(N) and Ay(d),

but more clearly displayed due to larger effects for the deuteron vector analyzing power, both

reduction and modulation of nonrelativistic three-nucleon force effects by relativity was found.

That reduction and modulation depend on angle and energy.

A similar picture was found for numerous spin correlation coefficients, as exemplified by different

theoretical predictions shown in Figs. 9-13. Again all scenarios are available: total reduction by

relativity of large three-nucleon force effects seen in nonrelativistic calculations (e.g. Cx,x at 135

and 200 MeV for 120o ≤ θc.m. ≤ 150o in Fig. 10, Cy,y at 135 and 200 MeV at 120o ≤ θc.m. ≤
150o in Fig. 11), practically the same three-nucleon force effects in nonrelativistic and relativistic

calculations (Cz,z at 135 MeV in Fig. 9, Cxz,y at 135 and 200 MeV in Fig. 12), angle dependent

modulation of nonrelativistic three-nucleon force effects by relativity (Cx,z at 135 MeV in Fig. 9,

Cz,x at 135 and 200 MeV in Fig. 10, Cxy,x and Cyz,x at 135 and 200 MeV in Fig. 13).

The polarization transfer coefficients are not exceptions; also for them a similar complex influ-

ence of relativity on nonrelativistic three-nucleon force effects have been found as shown in Figs. 14

and 15.

The comparison of nonrelativistic predictions based on 2π-exchange three-nucleon force’s re-

vealed for spin observables a complex, angle and energy dependent pattern of discrepancies between

data and theory [7, 8, 35–37]. The nontrivial interplay between the 2π-exchange three-nucleon

forces and relativity suggests that the inclusion of further three-nucleon force mechanisms, like

forces of shorter range, is needed to improve the description of elastic scattering polarisation data.
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B. Breakup

Theoretical study of exclusive breakup reaction performed at different incoming nucleon energies

revealed regions of breakup phase-space where large three-nucleon force effects have been found

[38]. The effects, similarly to elastic scattering, generally increase with energy. With increasing

energy also the effects of relativity increase [15, 16], revealing for exclusive breakup cross section

a characteristic pattern when viewed as a function of the angles of detected nucleons. Largest

effects where found when two of three outgoing nucleons are detected coplanarly on both sides of

the beam. Keeping one of the detectors at a constant position and changing the polar angle of

the second, regions of phase space were found in which nonrelativistic breakup cross section was

increased or decreased by relativity [16]. In these specific configurations effects of three-nucleon

force’s on breakup cross section, both in norelativistic as well as in relativistic calculations, are

practically negligible (see Fig. 16).

Due to richness of the breakup phase-space also geometrical configurations can be found where

both, three-nucleon force and relativistic effects are significant. Exclusive cross sections in some of

these configurations are shown as a function of the laboratory energy of one of the outgoing and

detected nucleons in Fig. 17 for neutron-deuteron breakup at 200 MeV. It is seen that including

relativity reduces slightly the magnitude of three-nucleon force effects observed in nonrelativistic

calculations.

Relativity changes also the magnitude of three-nucleon force effects seen in nonrelativistic calcu-

lations for breakup polarization observables. We exemplify that in Fig. 18 at three configurations of

exclusive dp breakup at Elab
d = 270 MeV, for which data have been taken [17]. Again, influence of

relativity on magnitude of three-nucleon force effects change with configuration as shown in Fig. 18

along the S-curve arc length. Especially interesting is the case of polarization-transfer coefficient

from the deuteron to the nucleon, Ky′

yy, for which inclusion of TM99 three-nucleon force changes

completely the S-dependence found in case when only two nucleon-forces were acting. The effect

of three-nucleon force is further modified slightly by relativity resulting in a better reproduction of

data.

VI. SUMMARY AND OUTLOOK

We extended our relativistic formulation of three-nucleon Faddeev equations to include also

three-nucleon force. The relativistic features are the relativistic form of the free propagator, the
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change of the nucleon-nucleon potential caused by the boost of the two nucleon subsystem, and the

modification of the permutation operators. In present study we neglected Wigner spin rotations

induced by these boosts since investigations based on two-nucleon forces only have shown that

their effects are negligible. For the momentum-space basis we used the relative momentum of two

free nucleons in their c.m. system together with their total momentum in the three nucleon c.m.

system, which in this frame is the negative momentum of the spectator nucleon. Such a choice

of momenta is adequate for relativistic kinematics and allows to generalize the nonrelativistic

approach used to solve the nonrelativistic three nucleon Faddeev equation to the relativistic case

in a more or less straightforward manner. That relative momentum in the two-nucleon subsystem is

a generalization of the standard nonrelativistic Jacobi momentum p. We numerically solved these

equations for neutron-deuteron scattering including relativistic features and/or three-nucleon force

at the neutron lab energies Elab
n = 70, 135, 200 and 250 MeV. As dynamical input we took the

nonrelativistic nucleon-nucleon potential CD Bonn and generated in the two nucleon center of

momentum system an exactly on-shell equivalent relativistic interaction. As a three-nucleon force

we took the 2π-exchange TM99 force.

By comparing our relativistic calculations without and with the three-nucleon force included

we studied influence of relativity on three-nucleon force effects. In studies with two-nucleon forces

only it was found that significant relativistic effects for the elastic scattering cross section appear at

higher energies and they are restricted only to the very backward angles where relativity increases

the nonrelativistic cross section. At other angles the effects are small. Also for spin observables,

analyzing powers, spin correlation coefficients and spin transfer coefficients, no significant changes

due to relativity have been found when only two-nucleon forces were acting. The similar picture

was found for breakup, however, in that case significantly larger effects for the cross section in

specific regions of the breakup phase-space have been found.

The results obtained in the present study document that this picture changes dramatically when

in addition to the two-nucleon force in a relativistic treatment also a three-nucleon force is acting.

For the elastic scattering large changes of the cross section at higher energies, caused by three-

nucleon force in large region of angles ranging from around minimum of the cross section up to very

backward angles, are further significantly modulated by relativity. Also such modulation in a large,

similar to that for the cross section, range of angles have been found for numerous polarization

observables. In that case every conceivable scenario of modulations was observed: from wiping

out large three-nucleon force effects found in nonrelativistic calculations to their modulations with

energy and angle, with strong amplification or reduction of their magnitude. Also for exclusive
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breakup cross section and polarisation breakup observables in some geometries the relativity influ-

ences effects induced by three-nucleon forces. Thus also for that reaction the relativistic treatment

when three-nucleon forces are acting is required for proper interpretation of data.

The comparison of our nonrelativistic theory with existing elastic scattering cross section and

polarisation data exhibits at the higher energies clear discrepancies. The discrepancies between

the theory based on pairwise forces only and data are largest in the region starting from the cross

section minimum around θc.m. ≈ 130◦ up to θc.m. ≈ 180◦. At energies up to about ≈ 135 MeV

these discrepancies can be removed when current three-nucleon forces, mostly of 2π-exchange

character [31, 34], are included in the nuclear Hamiltonian. At the higher energies, however, a

significant part of the discrepancy remains and increases further with increasing energy. Especially

complex picture exists for spin observables. Here adding 2π-exchange three-nucleon force into

nonrelativistic calculations leads to effects which depend on observable. They can be large or

negligible, change their magnitude with energy and angle. Similarly to the elastic scattering cross

section even after inclusion of three-nucleon force some of the discrepancies remain and increase

with increasing energy. This indicates that additional three nucleon forces should be added to

the 2π-exchange type forces. Natural candidates in the traditional meson-exchange picture are

exchanges like π − ρ and ρ − ρ. This has to be expected since in χPT [39] in the order in which

nonvanishing three-nucleon force’s appear the first time there are three topologies of forces, the

2π-exchange, a one-pion exchange between one nucleon and a two-nucleon contact interaction and

a pure three nucleon contact interaction. They are of the same order and have to be kept together.

Therefore it appears very worthwhile to pursue a strategy adding in the traditional meson exchange

picture further three nucleon forces. Results presented here show that relativistic effects based on

relativistic kinematics and boost effects of the nucleon-nucleon force play an important role in

building up the magnitude of three-nucleon force effects. That gives hope, that taking the proper

three-nucleon force into relativistic Faddeev calculations one will be able to improve the description

of higher energy data for cross section and polarization observables.
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Appendix A: Direct recalculation of the partial-wave projected three-nucleon force matrix

elements from (p, q)- to (k, q)- based basis

We start from the matrix element of a three-nucleon force
〈

p, q, α|V (1)
4 (1 + P )|p′, q′, α′

〉

in a

partial wave basis used in norelativistic calculations with standard Jacobi momenta (p,q) [26] and

would like to get the matrix element
〈

k, q, α|V (1)
4 (1 + P )|k′, q′, α′

〉

with p and p′ replaced by the

relative momenta of nucleons 2 and 3, k and k′, in their two-nucleon center of momentum system

[11, 12].

Using completeness of partial wave states one has

〈

k, q, α|V (1)
4 (1 + P )|k′, q′, α′

〉

=
∑

α̃

∫

dp̃p̃2
∫

dq̃q̃2
∑

α̃′

∫

dp̃′p̃′2
∫

dq̃′q̃′2 〈k, q, α|p̃, q̃, α̃〉
〈

p̃, q̃, α̃|V (1)
4 (1 + P )|p̃′, q̃′, α̃′

〉

〈

p̃′, q̃′, α̃′|k′, q′, α′〉 . (A1)

The partial wave state used in relativistic calculations |P, k, q, α〉 corresponding to the total three-

nucleon center of momentum, P = 0, is given by [11]

|P, k, q, α〉 = |P, k, q(l, s)j(λ
1

2
)I(jI)JM ; (t

1

2
)T 〉 =

∑

µ1µ2µ3

∑

µ′

2
µ′

3

∑

µsµlµλµI

∫

dq̂

∫

dk̂Ylµl
(k̂)N(q2,q3)

(
1

2

1

2
, s|µ2, µ3, µs)(l, s, j|µl, µs, µ)

D
1/2
µ′

2
µ2

(Rwc(Bc(−q), k2(q2,q3))D
1/2
µ′

3
µ3

(Rwc(Bc(−q), k3(q2,q3))

Yλµλ
(q̂)(λ,

1

2
, I|µλ, µ1, µI)(j, I, J |µ, µI ,M)

|q +
1

3
P, µ1〉|q2(k,−q) +

1

3
P, µ′

2〉|q3(−k,−q) +
1

3
P, µ′

3〉|(t,
1

2
), T 〉 (A2)

where

N2(q2,q3) ≡ | ∂(q2 q3)

∂(PNN k)
| =

M̄0

ωM̄0
(PNN )

ωq2

ωk

ωq3

ωk
(A3)

is the Jacobian for the Lorentz transformation from (q2,q3) to (PNN ,k) = (−q,k), ωk =
√

m2 + k2, M̄0 = 2ωk = ωq2
+ωq3

, and ωM̄0
(PNN ) =

√

M̄2
0 + P 2

NN . The momentum k2(q2,q3) = k

and k3(q2,q3) = −k2(q2,q3).

The nonrelativistic partial-wave state |P′, p̃, q̃, α̃〉 with standard Jacobi momenta is given by

|P′, p̃, q̃, α̃〉 =
∑

ν̃1,ν̃2,ν̃3

∑

ν̃s,ν̃l,ν̃λ,ν̃I

∫

dˆ̃p

∫

dˆ̃qYl̃ν̃l
(ˆ̃p)Yλ̃ν̃λ

(ˆ̃q)
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(
1

2
,

1

2
, s̃|ν̃2, ν̃3, ν̃s)(l̃, s̃, j̃|ν̃l, ν̃s, ν̃)(λ̃,

1

2
, Ĩ |ν̃λ, ν̃1, ν̃I)(j̃, Ĩ , J̃ |ν̃, ν̃I , M̃)

|q̃ +
1

3
P′, ν̃1〉|q̃nr

2 +
1

3
P′, ν̃2〉|q̃nr

3 +
1

3
P′, ν̃3〉|(t̃

1

2
)T̃ 〉 (A4)

where in the three-nucleon center of momentum system the nonrelativistic momenta q̃ nr
2 and q̃ nr

3

of the nucleons 2 and 3 are given by standard Jacobi momenta p̃ and q̃ as

q̃ nr
2 = p̃− q̃

2

q̃ nr
3 = −p̃− q̃

2
. (A5)

That leads to the scalar product 〈P, k, q, α|P′, p̃, q̃, α̃〉

〈P, k, q, α | P′, p̃, q̃, α̃〉 =
∑

µ1µ2µ3

∑

µ′

2
µ′

3

∑

µsµlµλµI

∫

dq̂

∫

dk̂Y ∗
lµl

(k̂)N(q2,q3)

(
1

2
,
1

2
, s|µ2, µ3, µs)(l, s, j|µl, µs, µ)

D
1/2∗
µ′

2
µ2

(Rwc(Bc(−q), k2(q2,q3))D
1/2∗
µ′

3
µ3

(Rwc(Bc(−q), k3(q2,q3))

Y ∗
λµλ

(q̂)(λ,
1

2
, I|µλ, µ1, µI)(j, I, J |µ, µI ,M)

∑

ν̃sν̃lν̃λν̃I

∫

dˆ̃p

∫

dˆ̃qYl̃ν̃l
(ˆ̃p)Yλ̃,ν̃λ

(ˆ̃q)(
1

2
,

1

2
, s̃|µ′

2, µ
′
3, ν̃s)(l̃, s̃, j̃|ν̃l, ν̃s, ν̃)

(λ̃,
1

2
, Ĩ |ν̃λ, µ1, ν̃I)(j̃, Ĩ J̃ |ν̃, ν̃I , M̃ )

δ(q − q̃ +
1

3
(P − P′))δ(q2(k,−q) − q̃ nr

2 +
1

3
(P − P′))

δ(q3(−k,−q) − q̃ nr
3 +

1

3
(P − P′))

〈

(t
1

2
)T |(t̃1

2
)T̃

〉

. (A6)

That matrix element should be proportional to δJJ̃δMM̃ and independent from M . Thus

〈P, k, q, α | P′, p̃, q̃, α̃〉 =
1

2J + 1

∑

M

∑

µ1,µ2,µ3

∑

µ′

2
µ′

3

∑

µs,µl,µλ,µI

∫

dq̂

∫

dk̂Y ∗
lµl

(k̂)N(q2,q3)

(
1

2
,
1

2
, s|µ2, µ3, µs)(l, s, j|µl, µs, µ)

D
1/2∗
µ′

2
µ2

(Rwc(Bc(−q), k2(q2,q3))D
1/2∗
µ′

3
µ3

(Rwc(Bc(−q), k3(q2,q3))

Y ∗
λµλ

(q̂)(λ,
1

2
, I|µλ, µ1, µI)(j, I, J |µ, µI ,M)

∑

ν̃sν̃lν̃λν̃I

∫

dˆ̃p

∫

dˆ̃qYl̃ν̃l
(ˆ̃p)Yλ̃ν̃λ

(ˆ̃q)(
1

2
,

1

2
, s̃|µ′

2, µ
′
3, ν̃s)(l̃, s̃, j̃|ν̃l, ν̃s, ν̃)

(λ̃,
1

2
, Ĩ |ν̃λ, µ1, ν̃I)(j̃, Ĩ , J |ν̃, ν̃I ,M)

δ(q − q̃ +
1

3
(P − P′))δ(q2(k,−q) − q̃ nr

2 +
1

3
(P − P′))

δ(q3(−k,−q) − q̃ nr
3 +

1

3
(P − P′))〈(t1

2
T )|(t̃1

2
)T̃ 〉 . (A7)

The momenta of nucleons 2 and 3 in the three-nucleon center of momentum system are given

through their two-nucleon center of momentum relative momentum k and the momentum of the
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spectator nucleon 1, q, by

q2(k,−q) = k− q

2
+

k · q
2ωk(2ωk + M̄0)

q (A8)

and

q3(−k,−q) = −k− q

2
− k · q

2ωk(2ωk + M̄0)
q . (A9)

That allows to write the three δ-functions in the form

δ(q − q̃ +
1

3
(P − P′))δ(q2(k,−q) − q̃ nr

2 +
1

3
(P − P′))δ(q3(−k,−q) − q̃ nr

3 +
1

3
(P − P′)) =

δ(q − q̃ +
1

3
(P − P′))δ(−p̃ + k +

k · q
2ωk(2ωk + M̄0)

q +
1

3
(P − P′))

δ(p̃ − k− k · q
2ωk(2ωk + M̄0)

q +
1

3
(P − P′)) =

δ(q − q̃)δ(p̃ − k− k · q
2ωk(2ωk + M̄0)

q)δ(P −P′) . (A10)

In the following we assume the three-nucleon center of momentum system (P = P′ = 0) and

drop the δ(P − P′) in all expressions. Performing the integration over dˆ̃q one gets

〈k, q, α|p̃, q̃, α̃〉 =
1

2J + 1

∑

M

∑

µ1µ2µ3

∑

µ′

2
µ′

3

∑

µsµlµλµI

δ(q − q̃)

qq̃

∫

dq̂

∫

dk̂

∫

dˆ̃pY ∗
lµl

(k̂)

N(q2,q3)(
1

2
,
1

2
, s|µ2, µ3, µs)(l, s, j|µl, µs, µ)

D
1/2∗
µ′

2
µ2

(Rwc(Bc(−q), k2(q2,q3))D
1/2∗
µ′

3
µ3

(Rwc(Bc(−q), k3(q2,q3))

Y ∗
λµλ

(q̂)(λ,
1

2
, I|µλ, µ1, µI)(j, I, J |µ, µI ,M)

∑

ν̃s,ν̃l,ν̃λ,ν̃I

Yl̃ν̃l
(ˆ̃p)Yλ̃ν̃λ

(q̂)

(
1

2
,

1

2
, s̃|µ′

2, µ
′
3, ν̃s)(l̃, s̃, j̃|ν̃l, ν̃s, ν̃)(λ̃,

1

2
, Ĩ|ν̃λ, µ1, ν̃I)(j̃, Ĩ , J |ν̃, ν̃I ,M)

δ(p̃ − k− k · q
2ωk(2ωk + M̄0)

q)〈(t1

2
)T |(t̃1

2
)T̃ 〉 . (A11)

That matrix element is a scalar which depends on the angles between the vectors q, k and p̃. These

angles are fixed by the δ-function δ(p̃ − k − k·q
2ωk(2ωk+M̄0)

q). Namely, while p̃ = k + k·q
2ωk(2ωk+M̄0)

q

it follows that

k · p̃ = k · k +
(k · q)2

2ωk(2ωk + M̄0)
,

q · p̃ = q · k +
(q · q)(k · q)

2ωk(2ωk + M̄0)
,

p̃ · p̃ = p̃ · k +
(p̃ · q)(k · q)

2ωk(2ωk + M̄0)
. (A12)

Therefore one can take q̂ pointing in z-direction, what for given k, q, and p̃ values, defines all

angles between the appearing vectors. That allows to perform the integration over dq̂ resulting in

〈k, q, α|p̃, q̃, α̃〉 =
8π2

2J + 1

+1
∫

−1

dx
δ(q − q̃)

qq̃

δ(p̃ − |k + k·q
2ωk(2ωk+M̄0)

q|)
p̃2

∑

M

∑

µ1µ2µ3

∑

µ′

2
µ′

3

∑

µsµlµλµI

Y ∗
lµl

(k̂)
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N(q2,q3)(
1

2
,

1

2
, s|µ2, µ3, µs)(l, s, j|µl, µs, µ)

D
1/2∗
µ′

2
µ2

(Rwc(Bc(−q), k2(q2,q3))D
1/2∗
µ′

3
µ3

(Rwc(Bc(−q), k3(q2,q3))

Y ∗
λµλ

(q̂)(λ,
1

2
, I|µλ, µ1, µI)(j, I, J |µ, µI ,M)

∑

ν̃sν̃lν̃λν̃I

Yl̃ν̃l
(ˆ̃p)Yλ̃ν̃λ

(q̂)

(
1

2
,
1

2
, s̃|µ′

2, µ
′
3, ν̃s)(l̃, s̃, j̃|ν̃l, ν̃s, ν̃)(λ̃,

1

2
, Ĩ |ν̃λ, µ1, ν̃I)

(j̃, Ĩ , J |ν̃, ν̃I ,M)〈(t, 1

2
), T |(t̃, 1

2
), T̃ 〉 (A13)

with x ≡ q̂ · k̂. We have chosen the coordinate system with q parallel to the z axis which leads to

the components of q, k, p̃

q = (0, 0, q) ,

k = (k
√

1 − x2, 0, kx) ,

p̃ = (k
√

1 − x2, 0, kx(1 +
q2

2ωk(2ωk + M̄0)
)) . (A14)

The isospin factor is

〈

(t,
1

2
), T |(t̃, 1

2
), T̃

〉

= δtt̃δT T̃ δMT M
T̃
δνtνt̃

. (A15)

Taking that all together gives

〈k, q, α|p̃, q̃, α̃〉 = δtt̃δT T̃

2π
√

(2λ + 1)(2λ̃ + 1)

2J + 1

+1
∫

−1

dx
δ(q − q̃)

qq̃

δ(p̃ − |k + k·q
2ωk(2ωk+M̄0)

q|)
p̃2

∑

M

∑

µ1µ2µ3

∑

µ′

2
µ′

3

Y ∗
l,M−µ1−µ2−µ3

(k̂)N(q2,q3)

D
1/2∗
µ′

2
µ2

(Rwc(Bc(−q), k2(q2,q3))D
1/2∗
µ′

3
µ3

(Rwc(Bc(−q),−k3(q2,q3))

(
1

2
,
1

2
, s|µ2, µ3, µ2 + µ3)(lsj|M − µl − µ2 − µ3, µ2 + µ3,M − µ1)

(λ,
1

2
, I|0, µ1, µ1)(j, I, J |M − µ1, µ1,M)Yl̃,M−µ1−µ′

2
−µ′

3

(ˆ̃p)

(
1

2
,
1

2
, s̃|µ′

2, µ
′
3, µ

′
2 + µ′

3)(l̃, s̃, j̃|M − µ1 − µ′
2 − µ′

3, µ
′
2 + µ′

3,M − µ1)

(λ̃,
1

2
, Ĩ |0, µ1µ1)(j̃, Ĩ , J |M − µ1, µ1,M) . (A16)

The resulting expression for the matrix element 〈k, q, α|V (1)
4 (1 + P ) |k,′ q′, α′〉 is given by

〈k, q, α|V (1)
4 (1 + P )|k′, q′, α′〉 =

∑

α̃

δtt̃δT T̃

2π
√

(2λ + 1)(2λ̃ + 1)

2J + 1
+1
∫

−1

dx
∑

M

∑

µ1µ2µ3

∑

µ̄2µ̄3

Y ∗
l,M−µ1−µ2−µ3

(k̂)N(q2,q3)

D
1/2∗
µ̄2µ2

(Rwc(Bc(−q), k2(q2,q3))D
1/2∗
µ̄3µ3

(Rwc(Bc(−q), k3(q2,q3))

(
1

2
,
1

2
, s|µ2, µ3, µ2 + µ3)(l, s, j|M − µl − µ2 − µ3, µ2 + µ3,M − µ1)
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(λ,
1

2
, I|0, µ1, µ1)(j, I, J |M − µ1, µ1,M)Yl̃,M−µ1−µ̄2−µ̄3

(ˆ̃p)

(
1

2
,
1

2
, s̃|µ̄2, µ̄3, µ̄2 + µ̄3)(l̃, s̃, j̃|M − µ1 − µ̄2 − µ̄3, µ̄2 + µ̄3,M − µ1)

(λ̃,
1

2
, Ĩ |0, µ1, µ1)(j̃, Ĩ , J |M − µ1, µ1,M)

∑

α̃′

δt′ t̃′δT ′T̃ ′

2π
√

(2λ′ + 1)(2λ̃′ + 1)

2J + 1
+1
∫

−1

dx′
∑

M

∑

µ′

1
µ′

2
µ′

3

∑

µ̄′

2
µ̄′

3

Yl′,M−µ′

1
−µ′

2
−µ′

3
(k̂′)N(q′

2,q
′
3)

D
1/2
µ̄′

2
µ′

2

(Rwc(Bc(−q′), k′
2(q′

2,q
′
3))D

1/2
µ̄′

3
µ′

3

(Rwc(Bc(−q′), k′
3(q′

2,q
′
3))

(
1

2
,
1

2
, s′|µ′

2, µ
′
3, µ

′
2 + µ′

3)(l′, s′, j′|M − µ′
l − µ′

2 − µ′
3, µ

′
2 + µ′

3,M − µ′
1)

(λ′,
1

2
, I ′|0, µ′

1, µ
′
1)(j′, I ′, J |M − µ′

1, µ
′
1,M)Yl̃′,M−µ′

1
−µ̄′

2
−µ̄′

3

(ˆ̃p
′
)

(
1

2
,
1

2
, s̃′|µ̄′

2, µ̄
′
3, µ̄

′
2 + µ̄′

3)(l̃′, s̃′, j̃′|M − µ′
1 − µ̄′

2 − µ̄′
3, µ̄

′
2 + µ̄′

3,M − µ′
1)

(λ̃′,
1

2
, Ĩ ′|0, µ′

1, µ
′
1)(j̃′, Ĩ ′, J |M − µ′

1, µ
′
1,M)

〈|k +
k · q

2ωk(2ωk + M̄0)
q |, q, α|V (1)

4 (1 + P )||k′ +
k′ · q′

2ωk′(2ωk′ + M̄0)
q′|, q′, α̃′〉 . (A17)

Appendix B: Transformation of a 3-dimensional three-nucleon force matrix element from

(p,q) to (k,q) momenta

We would like to express directly the matrix element 〈k,q |V (1)
4 |k′,q′〉 by that matrix element

given in terms of single-nucleon momenta 〈q1,q2,q3|V (1)
4 |q′

1,q
′
2,q

′
3〉. For momenta q2 and q3 of

nucleons 2 and 3 in three-nucleon center of momentum system their relative momentum k(q2,q3)

in the two-nucleon center of momentum subsystem of nucleons 2 and 3 is

k(q2,q3) =
1

2
[q2 − q3 − (q2 + q3)

E2 − E3

E2 + E3 +
√

(E2 + E3)2 − (q2 + q3)2
] (B1)

with Ei =
√

m2 + q 2
i .

Using completeness of |q1q2q3〉 states one gets

〈k,q|V (1)
4 |k′,q′〉 =

∫

dq1dq2dq3δ(q1 + q2 + q3)〈k,q|q1,q2,q3〉〈q1,q2,q3|V (1)
4

∫

dq′
1dq

′
2dq

′
3|q′

1q
′
2q

′
3〉〈q′

1,q
′
2,q

′
3|k′,q′〉δ(q′

1 + q′
2 + q′

3)

=

∫

dq1dq2dq3δ(q1 + q2 + q3)δ(q − q1)δ(k − k(q2,q3))
∫

dq′
1dq

′
2dq

′
3δ(q′

1 + q′
2 + q′

3)δ(q′ − q′
1)δ(k′ − k′(q′

2,q
′
3))

1

N(q2,q3)

1

N(q′
2,q

′
3)
〈q1q2q3|V (1)

4 |q′
1q

′
2q

′
3〉

=

∫

dq2dq3δ(q + q2 + q3)δ(k − k(q2,q3))
∫

dq′
2dq

′
3δ(q′ + q′

2 + q′
3)δ(k′ − k′(q′

2,q
′
3))
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1

N(q2,q3)

1

N(q′
2,q

′
3)
〈q,q2,q3|V (1)

4 |q′,q′
2,q

′
3〉

=

∫

dk(q2,q3)d(q2 + q3)δ(q + q2 + q3)δ(k − k(q2,q3))
∫

dk′(q′
2,q

′
3)d(q′

2 + q′
3)δ(q′ + q′

2 + q′
3)δ(k′ − k′(q′

2,q
′
3))

N(q2,q3)N(q′
2,q

′
3)〈q,q2,q3|V (1)

4 |q′,q′
2,q

′
3〉 . (B2)

For given vectors k(q2,q3) = k0 and q2 + q3 = −q0 the vectors q2 and q3 are given by: q2 =

−q0 − q0
3 and q3 = q0

3 with q0
3 being the solution of the equation

k0 − k(−q0 − q0
3,q

0
3) = 0 (B3)

and similarily for the primed quantities.

Thus one gets

〈kq|V (1)
4

∣

∣k′q′〉 = N(−q− q0
3,q

0
3)N(−q′ − q0

3
′
,q0

3
′
)

〈

q,−q − q0
3,q

0
3

∣

∣

∣ V
(1)
4

∣

∣

∣q′,−q′ − q0
3
′
,q0

3
′〉

= N(−q− q0
3,q

0
3)N(−q′ − q0

3
′
,q0

3
′
)

〈

p = −1

2
q − q0

3,q

∣

∣

∣

∣

V
(1)
4

∣

∣

∣

∣

p′ = −1

2
q′ − q0

3
′
,q′

〉

. (B4)

Starting from (44) and following the same steps as in (B2) one gets for the partial wave projected

matrix elements

〈k, q, α|V (1)
4 |k′, q′, α′〉 =

∫

dk̂dq̂1

∑

µ̄2µ̄3

∑

µ2µ3µs

∑

µlµλµI

(
1

2
, µ2,

1

2
, µ3|s, µs)(l, µl, s, µs, |j, µj)

(λ, µλ,
1

2
, µ1|I, µI)(j, µj , I, µI |J, µ) Y ∗

λµλ
(q̂1)Y ∗

lµl
(k̂)

D
1

2
∗

µ̄2µ2
[Rwc( Bc(−q1), k2( q2,q3) )]

D
1

2
∗

µ̄3µ3
[Rwc( Bc(−q1), k3( q2,q3) )]

∫

dk̂′dq̂′
1

∑

µ̄′

2
µ̄′

3

∑

µ′

2
µ′

3
µ′

s

∑

µ′

l
µ′

λ
µ′

I

(
1

2
, µ′

2,
1

2
, µ′

3|s′, µ′
s)(l

′, µ′
l, s

′, µ′
s, |j′, µ′

j)

(λ′, µ′
λ,

1

2
, µ′

1|I ′, µ′
I)(j′, µ′

j , I
′, µ′

I |J, µ)Yλ′µ′

λ
(q̂′

1)Yl′µ′

l
(k̂′)

D
1

2

µ̄′

2
µ′

2

[Rwc( Bc(−q′1), k′
2( q′

2,q
′
3) )]

D
1

2

µ̄′

3
µ′

3

[Rwc( Bc(−q′1), k3( q′
2,q

′
3) )]

N(q2,q3)N(q′
2,q

′
3)〈q,q2,q3|V (1)

4 |q′,q′
2,q

′
3〉 , (B5)

where q1 ≡ qq̂1, k2(q2,q3) ≡ kk̂, k3(q2,q3) = −k2(q2,q3), and q2 together with q3 result from

(B3) and similarily for primed quantities. These partial wave matrix elements can be obtained

using automatized partial wave expansion of Ref. [30].
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FIG. 1: (color online) The matrix element of the TM99 3NF in relativistic- (〈k, q, α|V (1)
4 |k′, q′, α〉 - blue

dashed line) and nonrelativistic-basis (〈p, q, α|V (1)
4 |p′, q′, α〉 - red solid line) for the total angular momentum

and parity of the 3N system Jπ = 1
2

+
and channel α = |(00)0(0 1

2 )1
2 (1 1

2 )1
2 >. The momenta p = k =

0.132 fm−1 and q = 0.132 fm−1.
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FIG. 2: (color online) The same as in Fig. 1 but for the momenta p = k = 5.25 fm−1 and q = 8.24 fm−1.
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FIG. 4: (color online) The elastic nd scattering angular distributions at the incoming neutron lab. energy

E = 135 and 250 MeV. The solid (red) and dotted (blue) lines are results of the non-relativistic Faddeev

calculations with the CD Bonn potential alone and combined with TM99 three-nucleon force, respectively.

The relativistic predictions based on CD Bonn potential without Wigner spin rotations are shown by the

dashed (blue) lines. The dashed-dotted (brown) lines show results of relativistic calculations with the TM99

three-nucleon force included. The pd data (x-es) at 135 MeV are from ref. [7] and at 250 MeV from ref. [37].

At 250 MeV also nd data of ref. [36] are shown by circles. The inserts and figures in the right column display

details of the cross sections in specific angular ranges.
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nd scattering at the incoming neutron lab. energy E = 70 MeV. For description of lines see Fig.4. The pd

data (open circles) are from [7].
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data (open circles) are from [7].

37



A
xx

-A
yy

0 40 80 120 160
θ

c.m.
 [deg]

A
zz

0 40 80 120 160
θ

c.m.
 [deg]

E=135 MeV

E=135 MeV

E=200 MeV

E=200 MeV
0

-1.0

-0.5

0

00

0

-0.4

-0.8

-1.2

-1.6

0.2

-0.2

-0.4

-0.6

-0.8
-0.4

-0.4

-0.8

-1.2
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see Fig.4. The pd data (open circles) are from [40].
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FIG. 13: (color online) The spin correlation coefficients Cxy,x and Cyz,x in elastic nd scattering at the
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