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We investigate the effects of the light vector U-boson that couples weakly to nucleons in relativistic

mean-field models on the equation of state and subsequently the consequence in neutron stars. It

is analyzed that the U-boson can lead to a much clearer rise of the neutron star maximum mass in

models with the much softer equation of state. The inclusion of the U-boson may thus allow the

existence of the non-nucleonic degrees of freedom in the interior of large mass neutron stars initiated

with the favorably soft EOS of normal nuclear matter. In addition, the sensitive role of the U-boson

in the neutron star radius and its relation to the test of the non-Newtonian gravity that is herein

addressed by the light U-boson are discussed.

PACS numbers: 26.60.Kp, 21.60.Jz, 97.60.Jd

I. INTRODUCTION

Confronting nuclear physics, we should highlight the great importance of the equation of state

(EOS), for it being significantly important to study the structure of nuclei, the reaction dynamics

of heavy-ion collisions, and many issues in astrophysics [1–4]. The nuclear EOS consists usually

of two ingredients: the energy density for symmetric matter and the density dependence of the

symmetry energy. For the former, the saturation properties are quite clear nowadays, though its

high-density behavior remains to be revealed in more details. However, the density dependence of

the symmetry energy is still poorly known especially at high densities [4–7], and even the trend of the

density dependence of the symmetry energy can be predicted to be contrary. While most relativistic

theories [2, 3, 8–12] and some non-relativistic theories [5, 7, 13, 14] predict that the symmetry

energy increases continuously at all densities, many other non-relativistic theories (for instance, see

[5, 13, 15, 16]), in contrast, predict that the symmetry energy first increases, then decreases above

certain supra-saturation densities, and even in some predictions [4–6] becomes negative at high

densities, referred as the super-soft symmetry energy. Therefore, the experimental extraction is of

necessity.

Recently, by analyzing the FOPI/GSI data on the π−/π+ radio in relativistic heavy-ion colli-

sions [17], the evidence for a super-soft symmetry energy was found [18]. This finding can result

in many consequences, while a direct challenge is how to stabilize a normal neutron star with the
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super-soft symmetry energy. Conventionally, a mechanical instability may occur if the symmetry

energy starts decreasing quickly above the certain supra-saturation density [15, 19, 20]. To solve this

problem, one possible way is to take into account the hadron-quark phase transition which lifts up

the pressure in pure quark matter [21], while the transition is expected to occur at much higher den-

sities within a narrow region of parameters. Instead, one may consider the possible correction to the

gravity. Though the gravitational force was first discovered in the history, it is still the most poorly

characterized, compared to three other fundamental forces that can be favorably unified within the

gauge theory. For the further grand unification of four forces, the correction to the conventional

gravity seems necessary. The light U-boson, which is proposed beyond the standard model, can play

the role in deviating from the inverse square law of the gravity due to the Yukawa-type coupling, see

Refs. [20, 22–24] and references therein. This light U-boson was used as the interaction propagator

of the MeV dark matter and was used to account for the bright 511 keV γ-ray from the galactic

bulge [25–30]. As a consequence of its weak coupling to baryons, the stable neutron star can be ob-

tained in the presence of the super-soft symmetry energy [20]. In addition, it is noted that through

the reanalysis of the FOPI/GSI data with a different dynamical model another group extracted a

contrary density dependent trend of the symmetry energy at high densities [31]. The solution of the

controversy is still in progress.

In pursuit of the covariance in addressing neutron stars bound by the strong gravity, the relativistic

models are favorable to obtain the EOS, though the fraction, arisen from the relativistic effect of

fast particles in the compact core of neutron stars, is just moderate. Apart from the non-relativistic

models to obtain the EOS of neutron stars in Ref. [20], we will adopt the relativistic mean-field (RMF)

models in this work. The RMF theory which is based on the Dirac equations for nucleons with the

potentials given by the meson exchanges achieved great success in the past few decades [32–41]. The

original Lagrangian of the RMF model was first proposed by Walecka more than 30 years ago [32].

The Walecka model and its improved versions were characteristic of the cancellation between the

big attractive scalar field and the big repulsive vector field. To soften the EOS obtained with the

simple Walecka model, the proper medium effects were accounted with the inclusion of the nonlinear

self-interactions of the σ meson proposed by Boguta et. al. [33]. A few successful nonlinear RMF

models, such as NL1 [42], NL2 [43], NL-SH [44], NL3 [45], and etc., had been obtained by fitting

saturation properties and ground-state properties of a few spherical nuclei. Later on, an extension

to include the self-interaction of ω meson was implemented to obtain RMF potentials which were

required to be consistent with the Dirac-Brueckner self-energies [46]. In this direction, besides the

early model TM1 [46], there were recent versions PK1 [47] and FSUGold [48].

Although various RMF models reproduce successfully the saturation properties of nuclear matter
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and structural properties of finite nuclei, the corresponding EOS’s may behave quite differently at

high densities especially in isospin-asymmetric nuclear matter. It was reported in the literature [20,

23] that the light U-boson can significantly modify the EOS in isospin-asymmetric matter. However,

the further systematic work to analyze the effect of the light U-boson on various nuclear EOS’s is

still absent. In this work, we will investigate in detail the effect of light U-boson on the EOS and

properties of neutron stars with various RMF models. In particular, we will address the difference

of the effects induced by the U-boson in various RMF models.

The paper is organized as follows. In Sec. II, we present briefly the formalism based on the

Lagrangian of the relativistic mean-field models. In Sec. III, numerical results and discussions are

presented. At last, a summary is given in Sec. IV.

II. FORMALISM

In the RMF approach, the nucleon-nucleon interaction is usually described via the exchange of

three mesons: the isoscalar meson σ, which provides the medium-range attraction between the

nucleons, the isoscalar-vector meson ω, which offers the short-range repulsion, and the isovector-

vector meson b0, which accounts for the isospin dependence of the nuclear force. The relativistic

Lagrangian can be written as:

L = ψ[iγµ∂
µ −M + gσσ − gωγµω

µ − gργµτ3b
µ
0 ]ψ

−
1

4
FµνF

µν +
1

2
m2

ωωµω
µ −

1

4
BµνB

µν +
1

2
m2

ρb0µb
µ
0 (1)

+
1

2
(∂µσ∂

µσ −m2
σσ

2) + Ueff(σ, ωµ, bµ0 ) + Lu,

where ψ, σ, ω,b0 are the fields of the nucleon, scalar, vector, and neutral isovector-vector mesons, with

their masses M,mσ,mω, and mρ, respectively. gi(i = σ, ω, ρ) are the corresponding meson-nucleon

couplings. Fµν and Bµν are the strength tensors of ω and ρ mesons respectively,

Fµν = ∂µων − ∂νωµ, Bµν = ∂µb0ν − ∂νb0µ. (2)

The self-interacting terms of σ, ω mesons and the isoscalar-isovector coupling are given generally as

Ueff(σ, ωµ, bµ0 ) = −
1

3
g2σ

3 −
1

4
g3σ

4 +
1

4
c3(ωµω

µ)2

+4ΛV g
2
ρg

2
ωωµω

µb0µb
µ
0 . (3)

Here, the isoscalar-isovector coupling term is introduced to modify the density dependence of the

symmetry energy [2]. In addition, we include in Lagrangian Lu for the U-boson that is beyond the

standard model. A very light U-boson can be utilized to interpret the deviation from the Newton’s
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gravitational potential which is usually characterized in the form [20, 23]:

V (r) = −
G∞m1m2

r
(1 + αe−r/λ) (4)

where G∞ is the universal gravitational constant, α = −g2
u/4πG∞M

2
B is a dimensionless strength

parameter with gu and MB being the boson-nucleon coupling constant and baryon mass, respectively,

and λ = 1/mu is the length scale with mu being the boson mass. According to the conventional

view, the Yukawa-type correction to the Newtonian gravity resides at the matter part rather than

the geometric part. Thus, following the form of the vector meson, Lu is written as:

Lu = −ψguγµu
µψ −

1

4
UµνU

µν +
1

2
m2

uuµu
µ, (5)

with u the field of U-boson. Uµν is the strength tensor of U-boson,

Uµν = ∂µuν − ∂νuµ. (6)

With the standard Euler-Lagrange formala, we can deduce from the Lagrangian the equations of

motion for the nucleon and mesons. They are given as follows:

[iγµ∂
µ −M + gσσ − gωγµω

µ − guγµu
µ − gργµτ3b

µ
0 ]ψ = 0 (7)

(∂2
t −▽2 +m2

σ)σ = gσψψ − g2σ
2 − g3σ

3, (8)

(∂2
t −▽2 +m2

ω)ωµ = gωψγµψ − c3ω
3
µ − 8ΛV g

2
ρg

2
ωb0µb

µ
0ωµ, (9)

(∂2
t −▽2 +m2

ρ)b0µ = gρψγµτ3ψ − 8ΛV g
2
ρg

2
ωωµω

µb0µ, (10)

(∂2
t −▽2 +m2

u)uµ = guψγµψ. (11)

In the mean-field approximation, all derivative terms drop out and the expectation values of space-

like components of vector fields vanish (only zero components survive) due to translational invariance

and rotational symmetry of the nuclear matter. In addition, only the third component of isovector

fields survives because of the charge conservation. In the mean-field approximation, after the Dirac

field of nucleons is quantized [35], the fields of mesons and U-boson, which are replaced by their

classical expectation values, obey following equations:

m2
σσ = gσρs − g2σ

2 − g3σ
3, (12)

m2
ωω0 = gωρB − c3ω

3
0 − 8ΛV g

2
ρg

2
ωb

2
0ω0, (13)

m2
ρb0 = gρρ3 − 8ΛV g

2
ρg

2
ωω

2
0b0, (14)

m2
uu0 = guρB, (15)

where ρs and ρB are the scalar and baryon densities, respectively, and ρ3 is the difference between

the proton and neutron densities, namely, ρ3 = ρp − ρn. The set of coupled equations can be solved
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self-consistently using the iteration method. With these mean-field quantities, the resulting energy

density ε and pressure P are written as:

ε =
∑

i=p,n

2

(2π)3

∫ kFi

d3kE∗

i +
1

2
m2

ωω
2
0 +

1

2

g2
u

m2
u

ρ2
B +

1

2
m2

σσ
2
0 +

1

2
m2

ρb
2
0

+
1

3
g2σ

3 +
1

4
g3σ

4 +
3

4
c3ω

4
0 + 12ΛV g

2
ρg

2
ωω

2
0b

2
0. (16)

P =
1

3

∑

i=p,n

2

(2π)3

∫ kFi

d3k
k

2

E∗
i

+
1

2
m2

ωω
2
0 +

1

2

g2
u

m2
u

ρ2
B −

1

2
m2

σσ
2
0 +

1

2
m2

ρb
2
0

−
1

3
g2σ

3 −
1

4
g3σ

4 +
1

4
c3ω

4
0 + 4ΛV g

2
ρg

2
ωω

2
0b

2
0, (17)

with E∗
i =

√

k2 + (M∗
i )2.

Given above is the formalism for nuclear matter without considering the β equilibrium. For asym-

metric nuclear matter at β equilibrium, the chemical equilibrium and charge neutrality conditions

need to be additionally considered, which are written as:

µn = µp + µe, (18)

ρe = ρp, (19)

ρB = ρn + ρp, (20)

where µn, µp, µe are the chemical potential of neutron, proton and electron, respectively, and ρe is

the number density of electrons. In neutron star matter, the EOS is obtained by adding in Eqs.(16)

and (17) the contribution of the free electron gas.

The neutron star properties are obtained from solving the Tolman-Oppenheimer-Volkoff (TOV)

equation [49, 50]:

dP (r)

dr
= −

[P (r) + ε(r)][M(r) + 4πr3P (r)]

r(r − 2M(r))
, (21)

M(r) = 4π

∫ r

0

d̃rr̃2ε(r̃), (22)

where r is the radial coordinate from the center of the star, p(r) and ε(r) are the pressure and energy

density at position r, respectively, and M(r) is the mass contained in the sphere of the radius r.

Note that here we use units for which the gravitation constant is G∞ = c = 1. The radius R and

mass M(R) of a neutron star are obtained from the condition p(R) = 0. Because the neutron star

matter, consisting of neutrons, protons, and electrons (npe) at β equilibrium in this work, undergoes

a phase transition from the homogeneous matter to the inhomogeneous matter at the low density

region, the RMF EOS obtained from the homogeneous matter does not apply to the low density

region. For a thorough description of neutron stars, we thus adopt the empirical low-density EOS in

the literature [51, 52].
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TABLE I: Parameters and saturation properties for various parameter sets. Here, the NL3ΛV is the same
as the original parameter set NL3 but with the readjusted gρ after the ΛV is included to modify the density
dependence of the symmetry energy, and the TM1ΛV to the TM1 is the same as the NL3ΛV to the NL3.
Meson masses, incompressibility and symmetry energy are in units of MeV, and the density is in unit of
fm−3.

gσ gω gρ mσ mω mρ g2 g3 c3 ΛV ρ0 κ M∗/M Esym

NL1 10.138 13.285 4.976 492.250 795.359 763 12.172 -36.265 - - 0.153 211.3 0.57 43.7
NL-SH 10.444 12.945 4.383 526.059 783.000 763 6.910 -15.834 - - 0.146 355.4 0.60 36.1
NL3 10.217 12.868 4.474 508.194 782.501 763 10.431 -28.890 - - 0.148 271.8 0.60 37.4
TM1 10.029 12.614 4.632 511.198 783.000 770 7.233 0.618 71.31 - 0.145 281.2 0.63 36.9

FSUGold 10.592 14.302 5.884 491.500 782.500 763 4.277 49.934 418.39 0.03 0.148 230.0 0.61 32.5
NL3ΛV 10.217 12.868 5.664 508.194 782.501 763 10.431 -28.890 - 0.03 0.148 271.8 0.60 31.8
TM1ΛV 10.029 12.614 5.720 511.198 783.000 770 7.233 0.618 71.31 0.03 0.145 281.2 0.63 32.1

III. RESULTS AND DISCUSSIONS

Among a number of nonlinear RMF parametrizations, we select several typical best-fit parameter

sets, for instance NL1 [42], NL-SH [44], NL3 [45], TM1 [46] and FSUGold [48], to investigate the

effects of the U-boson on the EOS of isospin-asymmetric nuclear matter and properties of neutron

stars. The nonlinear RMF models usually include the nonlinear self-interactions of the σ meson

to simulate appropriate medium dependence of the strong interaction. This is typical in RMF

parameter sets NL1, NL-SH and NL3. In addition to the nonlinear σ meson self-interactions, in

TM1 and FSUGold the nonlinear self-interaction of the ω meson is also included. Parameters and

saturation properties of these parameter sets are listed in Table I.

In Fig. 1, the energy density and pressure of npe matter at β equilibrium are shown as a function of

nucleon density for various models without the inclusion of the U-boson. It is seen that the EOS with

parameter sets TM1 and FSUGold is clearly softer than that with the NL1, NL-SH and NL3 with

the increase of the density. The softening stems from the inclusion of the nonlinear self-interaction

of the ω meson that lowers the repulsion provided by the ω meson at high densities, while the excess

softening with the FSUGold as compared to that with the TM1 can be attributed dominately to the

larger parameter c3 in FSUGold.

Shown in Fig. 2 is the correlation between the pressure and the energy density given in Fig. 1. This

correlation is usually regarded as the EOS that is used as the input of the Tolman-Oppenheimer-

Volkoff (TOV) equation [49, 50] for the evaluation of the neutron star properties. Once again, we

see the large deviations in the EOS with different RMF models especially at high densities. In the

following, it is thus interesting to see how the U-boson affects the EOS produced by various RMF

models that differs largely at high densities.

In the RMF approximation, the contribution of the U-boson in a linear form is just decided by the

ratio of the coupling constant to its mass, i.e., gu/mu, as seen in Eqs.(16) and (17). In Figs. 3 and 4,
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FIG. 1: Energy density ε (upper panel) and pressure P (lower panel) as a function of density with various
RMF parameter sets, NL3, NL1, NL-SH, TM1, and FSUGold in npe matter at β equilibrium.

the EOS’s with various models are depicted for a set of ratios (gu/mu)2. It is shown in Figs. 3 and 4

that the inclusion of the U-boson stiffens the EOS. This is physically obvious since the vector form of

the U-boson provides an excess repulsion in addition to the vector mesons, whereas an interestingly

large difference appears for different types of models. As shown in Figs. 3 and 4, the EOS’s with

the TM1 and FSUGold acquires a much more apparent stiffening than that with the NL1, NL-SH

and NL3 by including the U-boson. This phenomenon can be understood by the inherent feature

of these models. In models NL1, NL-SH and NL3, the repulsion is quadratic in the density because

the nonlinear self-interaction of the ω meson is not considered. With the increase of the density,

the repulsion provided by the ω meson dominates the attraction provided by the σ meson. The

cancellation between the repulsion and attraction in the pressure (see Eq.(17) is not prominent at

high densities so that the U-boson plays a similar role in the energy density and pressure. Thus,

these EOS’s are just moderately modified by the U-boson, as shown in Fig. 3. For models TM1 and

FSUGold that feature a clearly softer EOS at high densities, the cancellation between the repulsion

and attraction becomes significant and thus sharpens the importance of the U-boson in the pressure.

Comparing to the addition of the big repulsion and attraction in the energy density, the U-boson just

plays a marginal role in modifying the energy density. Thus, the U-boson can modify appreciably the
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FIG. 2: The correlation between the pressure and the energy density in npe matter at β equilibrium with
various RMF models.

correlation between the pressure and energy density in the high-density region in favorably softened

models, for instance, the TM1 and FSUGold, as shown in Fig. 4. Because in TM1 and FSUGold the

nonlinear term of the ω meson plays a decisive role in softening the EOS, the larger the parameter

c3, the more apparent the modification, as shown comparatively in the upper and lower panels of

Fig. 4.

In addition, it is interesting to examine whether the significant difference in the U-boson-induced

modification to the EOS can be created by softening the symmetry energy. The symmetry energy is

softened by including the isoscalar-isovector coupling term in RMF models (see Eq.(3)). In Fig. 5,

we depict the EOS without (upper panels) and with (lower panels) the softening of the symmetry

energy in NL3 and TM1. However, no visible difference in two cases with the NL3 is observed,

and with the TM1 the difference is not significant. This observation seems to show a contrast with

that in Ref. [20] where the fluffy EOS due to the super-soft symmetry energy can be lifted up by

the U-boson to support a normal neutron star. In deed, the magnitude of the modification to the

EOS caused by the U-boson relies on the softness of the EOS. As long as the EOS is modified

significantly by softening the symmetry energy, the stiffening role of the U-boson in the EOS can

be considerably enhanced accordingly. Given that the stiff EOS with the NL3 is little modified by

softening the symmetry energy, as shown in the inset of the left lower panel in Fig. 5, the softening

of the symmetry energy can scarcely affect the role of the U-boson. For models with a softer EOS,
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FIG. 3: Equation of state of neutron star matter with three RMF models, NL3, NL1 and NL-SH with the
inclusion of the U-boson. The numbers in the legend are the values of (gu/mu)2 in units of GeV −2.

the situation can turn out to be different when the EOS is modified appreciably by softening the

symmetry energy. Indeed, the vital role of the U-boson in the EOS of the non-relativistic MDI model

with a super-soft symmetry energy [20] is a typical case that the role of the U-boson can be largely

amplified due to the softening of the symmetry energy. In RMF models, for instance, the TM1 whose

EOS is softer than that with the NL3, the softening of the symmetry energy can also result in some

visible difference in the EOS and thereby the role of the U-boson, as shown in right panels of Fig. 5.

Next, we turn to the consequences in hydrostatic neutron stars with the EOS modified by the

U-boson. Using Eqs.(21) and (22), the mass and radius of hydrostatic neutron stars can be obtained

with the given EOS. In Fig. 6, the mass-radius (M-R) relation of neutron stars is depicted with

different ratio parameter (gu/mu)2 for the U-boson in various models. With the inclusion of the

U-boson, we can see that both the maximum mass and radius of neutron stars increase significantly.

It is clearly seen that the star maximum mass with the soft EOS is modified more significantly

by the U-boson. This is consistent with the corresponding modification to the high-density EOS

caused by the U-boson, as shown in Figs. 3 and 4. The consistency is established on the fact that

the maximum mass of neutron stars is dominated by the high-density behavior of the EOS. In the
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FIG. 4: The same as in Fig. 3 but for the RMF models TM1 and FSUGold.

past, a few neutron stars with large masses around 2M⊙ had been observed [53–55]. Though it can

have improvements in experimental aspects, the observation of neutron stars with large masses is

not so scarce. Recently, the mass of the LMXB 4U1608-52 is measured to be 1.74M⊙ [56], and most

recently a 2M⊙ neutron star J1614-2230 was measured through the Shapiro delay [57]. Note that

the model FSUGold which is well consistent with the nuclear laboratory constraints just produce

a maximum mass about 1.7M⊙ for the neutron star without hyperons, whereas the hyperonization

can further reduce the maximum mass to a value below 1.4M⊙. In this case, the role of the U-boson

is constructive in increasing the maximum mass of neutron stars, either as the EOS is softened by

the creation of new degrees of freedom, or the EOS is too soft to obtain a large maximum mass.

On the other hand, the radius of neutron stars is primarily determined by the EOS in the lower

density region of 1ρ0 to 2ρ0, see Refs.[1, 4] and references therein. Because the symmetry energy in

this density region offers the most important gradient of the pressure in pure neutron matter, the

density dependence of the symmetry energy plays a crucial role in determining the radius of neutron

stars. While in the present case the pressure in the lower density region is increased appreciably by

the U-boson, it is not surprising that the sensitive variation of the neutron star radius is obtained

accordingly. This is similar to the non-relativistic case in Ref. [20]. In fact, the radius of neutron

stars relies sensitively on the stiffness of the EOS. Thus, the stiffening of the EOS caused by the

U-boson gives rise to a significant increase of the radius. Concretely, we can see from Fig. 6 that

the larger rise of the radius comes up with the more apparent stiffening role of the U-boson in softer
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right panels are the results with the TM1 and TM1ΛV . Different density dependencies of the symmetry
energy are drawn in the insets of upper panels, while given in the insets of lower panels are the EOS of two
cases in the absence of the U-boson.

models. It is known that the radius of neutron stars extracted from the observation can have a

wide range due to the uncertainties of the distance measurement and theoretical models used for the

spectrum analyses [1, 58–60]. A more precise extraction of the neutron star radius, probably through

the coincident measurements, thus becomes very significant, because it can test the non-Newtonian

gravity due to its promising sensitivity to the star radius.

To stress the role of the U-boson in the maximum mass and radius of neutron stars, we depict in

Fig. 7 the M-R relation for various models with and without the U-boson. Here, for the case with

the inclusion of the U-boson, the calculation is performed with (gu/mu)2 = 100GeV −2. It is seen

clearly that the large difference in maximum masses with various types of models can be reduced

largely by the U-boson with suitable parameter (gu/mu)2. We can see once again that the reduction

of the difference is mainly attributed to the role of the U-boson in the models featuring much softer

EOS’s. Interestingly, we see that the uncertainty of the radius for a canonical neutron star (with the

mass 1.4M⊙) can also be reduced by the U-boson.

In view of interesting and significant roles of the U-boson, we may say that the task to look for the

U-boson and further confirm the non-Newtonian gravity is also confronted. The recent experimental

constraints on the relationship between parameters α (gu) and λ (mu) can be found in Ref. [23].

To recover the stability of neutron stars using the EOS constrained by the FOPI/GSI data [18], the
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FIG. 6: The mass-radius relation of neutron stars with various models. The U-boson is included with various
ratio parameters of (gu/mu)2.
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FIG. 7: Mass-radius relations for various models with the (gu/mu)2 = 0GeV −2 (left panel) and the
(gu/mu)2 = 100GeV −2 (right panel).

ratio (gu/mu)2 ∼ 100GeV −2 was found to be needed [20]. In this work, the effect of the U-boson

is investigated within the parameter region (gu/mu)2 = 0 ∼ 100GeV −2. To avoid the visible effect

beyond low energy constraints in finite nuclei, with these values of the ratio parameter we may

estimate that the mass of the U-boson should be of order below 1MeV with the coupling strength
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being almost or at least three orders less than the fine-structure constant, while these estimated

orders can be compatible with parameter regions allowed by a few experimental constraints, see

Ref. [23]. We expect that more precision experiments will be performed to better determine or

exclude the parameter regions for the non-Newtonian gravity.

At last, it is interesting to discuss the relevance between the parameters of the non-Newtonian

gravity touched upon in this work and the solution to the dark matter problem. In order to explain

the flatness of the rotational curve of galactic spirals, one needs to assume the non-luminous dark

matter being the additional gravitational source. Alternatively, the Newtonian gravity that was well

tested in the solar system may be assumed to fail at the large distance scales of galaxies, and hence

the Newtonian gravity should be modified to be the non-Newtonian one [61]. The Yukawa-type

modification to the Newtonian gravity due to the boson exchange may possibly be considered as a

candidate to solve the dark matter problem. In this work, the vector coupling of the U-boson that

is restrained by the U(1) symmetry produces a repulsion other than the anticipated attraction. We

may thus suppose to solve the dark matter problem through the introduction of light scalar bosons.

However, since the flatness of the rotational curve requires a supplemental force roughly linear

inversely in the distance from the center of the galaxy, even if the light scalar boson is assumed to

provide the needed attraction in one region, the exponential suppression factor of the Yukawa-type

potential (see Eq.(4)) actually inhibits the reproduction of the rotational curve in other regions. In

deed, in addition to the introduction of the light scalar boson, more considerations are necessary to

solve the dark matter problem [62]. On the other hand, we may explore the constraints from the

effect of the U-boson on the dark matter. However, the coupling of the U-boson with the dark matter

candidates should be assumed to be much stronger than that with the normal particles to explain

the 511keV γ-ray observation while simultaneously compatible with the low-energy constraints [25–

28]. To sum up, we are presently not able to restrain the parameters of the non-Newtonian gravity

originated from the U-boson exchange in this work directly by using the effect of the U-boson on the

dark matter and/or the solution to the dark matter problem with the modified Newtonian dynamics.

Nonetheless, this deserves further exploration. For instance, the further first-principle understanding

of the underlying origin of the difference in the U-boson couplings to normal and dark matter particles

may open possibility to extract constraints on the parameters of the non-Newtonian gravity.

IV. SUMMARY

We have studied in this work the effects of the U-boson in RMF models on the equation of state

and subsequently the consequence in neutron stars. All RMF models are chosen to have similarly

nice reproduction of saturation properties and ground-state properties of finite nuclei, whereas they
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can give rise to a significantly large difference in EOS’s at high densities and mass-radius relations

of neutron stars. Interestingly, we find that the U-boson in models with much softer EOS plays a

much more significant role in increasing the maximum mass of neutron stars. The distinction can be

attributed analytically to the different modification caused by the U-boson in soft and stiff models

to the pressure. Thus, the inclusion of the U-boson may allow the existence of the non-nucleonic

degrees of freedom in the interior of large mass neutron stars initiated with the favorably soft EOS

of normal nuclear matter. In addition, it is worth notifying that the radius of canonical neutron

stars in all models can be sensitively modified by the U-boson due to its stiffening role in the EOS.

Meanwhile, the difference in the mass-radius relations predicted by various models can favorably be

reduced by increasing the coupling strength between the U-boson and baryons. At last, constraints

on the parameters of the non-Newtonian gravity are discussed. Presently, we have not found the

direct relevance between the parameters of the non-Newtonian gravity originated from the U-boson

exchange and its effect on the dark matter concerning the dark matter problem. Together with

the future coincident measurements and more precise extraction of the mass and radius of neutron

stars, the sensitive role of the U-boson in the M-R relation may be helpfully used to test the physics

beyond the standard model and consequently the existence of the non-Newtonian gravity in the

dense neutron star.
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