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Motivated by a recent experiment, the distribution of electric dipole strength in the neutron-rich
68Ni isotope was computed using a relativistic random phase approximation with a set of effective
interactions that—although well calibrated—predict significantly different values for the neutron-
skin thickness in 208Pb. The emergence of low-energy “Pygmy” strength that exhausts about 5-8%
of the energy weighted sum rule (EWSR) is clearly identified. In addition to the EWSR, special
emphasis is placed on the dipole polarizability. In particular, our results suggest a strong correlation
between the dipole polarizability of 68Ni and the neutron-skin thickness of 208Pb. Yet we find a
correlation just as strong and an even larger sensitivity between the neutron-skin thickness of 208Pb
and the fraction of the dipole polarizability exhausted by the Pygmy resonance. These findings
suggest that the dipole polarizability may be used as a proxy for the neutron skin.

PACS numbers: 21.10.-k,21.10.Re,21.60.Jz

I. INTRODUCTION

The determination of the neutron radius of a heavy nucleus is a problem of fundamental importance that has been
raised to a place of prominence due to its far reaching implication in areas as diverse as atomic parity violation [1, 2],
nuclear structure [3–7], heavy-ion collisions [8–12], and neutron-star structure [13–18]. Earlier attempts at mapping
the neutron distribution of heavy nuclei were met with skepticism as they relied on strongly-interacting processes that
are handicapped by large and controversial uncertainties in the reaction mechanism [19, 20]. Instead, the enormously
successful parity-violating program at the Jefferson Laboratory provides an attractive electroweak alternative. The
Lead Radius experiment (PREx) aims to determine the neutron radius of 208Pb accurately and model independently
using parity-violating electron scattering [21, 22]. Parity violation at low momentum transfers is particularly sensitive
to the neutron distribution because the neutral weak-vector boson Z0 couples preferentially to the neutrons. Moreover,
the parity-violating asymmetry, although very small, may be interpreted with as much confidence as conventional
electromagnetic scattering experiments that have been used for decades to map the proton distribution with exquisite
accuracy. The Lead Radius experiment was successfully commissioned in March of 2010. High quality data were
collected at the designed luminosity and with sufficient statistics to provide (likely by the Spring of 2011) a significant
first experimental constraint on the neutron radius of 208Pb [22].

A promising complementary approach to the parity-violating program relies on the electromagnetic excitation of
the electric dipole mode [23]. For stable (medium to heavy) nuclei with a moderate neutron excess the dipole response
is concentrated on a single fragment—the giant dipole resonance (GDR)—that exhausts almost 100% of the classical
Thomas-Reiche-Kunz (TRK) sum rule. For this mode of excitation—perceived as an oscillation of neutrons against
protons—the symmetry energy acts as its restoring force. Models with a soft symmetry energy, namely, ones that
change slowly with density, predict large values for the symmetry energy at the densities of relevance to the excitation
of this mode. As a consequence, the stronger restoring force of the softer models generates a dipole response that
is both hardened (i.e., pushed to higher excitation energies) and quenched relative to its stiffer counterparts. Given
that the neutron radius of a heavy nucleus is also sensitive to the density dependence of the symmetry energy, the
peak position of the GDR may be used as a (mild) constrain on the neutron radius.

A more stringent constrain on the neutron radius is expected to emerge as the nucleus develops a neutron-rich skin.
Concomitant with the development of a neutron skin is the appearance of low energy dipole strength—the so-called
pygmy dipole resonance (PDR) [24–30]. Thus, it has been suggested that the PDR—perceived as an excitation of the
neutron-rich skin against the symmetric core—may be used as a constraint on the neutron skin of heavy nuclei [31]. In
particular, the fraction of the energy weighted sum rule (EWSR) exhausted by the pygmy resonance has been shown
to be sensitive to the neutron-skin thickness of heavy nuclei [31–35]. Recent pioneering experiments on unstable
neutron-rich isotopes in Sn, Sb, and Ni seem to support this assertion [34, 36, 37].

The main goals of this manuscript are twofold. First, to use the recently measured distribution of Pygmy dipole
strength in 68Ni [37] to confirm our earlier assertion that models with overly large neutron skins—and thus stiff
symmetry energies—are in conflict with experiment [31]. Second, to explore possible correlations between the neutron-
skin thickness in 208Pb and the dipole polarizability. This is motivated by a recent work by Reinhard and Nazarewicz
that suggests that the neutron skin is strongly correlated with the dipole polarizability but very weakly correlated
with the low-energy electric dipole strength [38].

Regarding the first goal, a significant first step was recently taken by Carbone and collaborators [35]. Using the
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fraction of the EWSR exhausted by the Pygmy resonance in both 68Ni [37] and 132Sn [36], the slope of the symmetry
energy was constrained to the range L=64.8±15.7 MeV. This constrain appears to rule out about half of the 26 effective
interactions—including all relativistic ones—considered in their work. Viewed in this context, our contribution is a
modest one, as we will limit ourselves to a smaller set of exclusively relativistic mean-field interactions. However, we
will show that some modern relativistic effective interactions are soft enough to fall comfortably within the proposed
range of L. Concerning the second goal, the claim by Reinhard and Nazarewicz [38] is particularly intriguing given
that the dipole polarizability is proportional to the inverse energy weighted sum of the dipole response. As such, the
dipole polarizability weighs more heavily the low-energy (Pygmy) than the high-energy (Giant) part of the response.
So whereas the percentage of the EWSR exhausted by the Pygmy amounts to a meager 5-8%, its contribution to the
dipole polarizability can reach values as high as 20-25%. So how can the neutron-skin thickness of 208Pb be strongly
correlated to the dipole polarizability but weakly correlated to the low-energy dipole strength? This is a question well
worth exploring. Note that in this work we will not address whether the PDR is collective or not (for some recent
reviews see Refs. [39, 40]). We believe that independent of the nature of the mode, the emergence of low-energy dipole
strength as nuclei develop a neutron-rich skin is an incontrovertible fact.

The manuscript has been organized as follows. In Sec. II we introduce the formalism used in this work paying special
attention to the various moments of the dipole response. In Sec. III results are presented for the distribution of dipole
strength using relativistic effective interactions that span a wide range of values for the neutron-skin thickness of
208Pb. We end by summarizing our results in Sec. IV.

II. FORMALISM

The starting point for the calculation of the nuclear response is the interacting Lagrangian density of Ref. [41]
supplemented by an isoscalar-isovector term originally introduced in Ref. [13]. That is,

Lint = ψ̄
[
gsφ−

(
gvVµ+

gρ
2

τ · bµ+
e

2
(1+τ3)Aµ

)
γµ
]
ψ

− κ

3!
(gsφ)3− λ

4!
(gsφ)4+

ζ

4!
g4
v(VµV µ)2 + Λv

(
g2
ρ bµ · bµ

)(
g2
vVνV

ν
)
. (1)

The Lagrangian density includes an isodoublet nucleon field (ψ) interacting via the exchange of two isoscalar mesons,
a scalar (φ) and a vector (V µ), one isovector meson (bµ), and the photon (Aµ) [42, 43]. In addition to meson-nucleon
interactions the Lagrangian density is supplemented by four nonlinear meson interactions with coupling constants
denoted by κ, λ, ζ, and Λv. The first two terms (κ and λ) are responsible for a softening of the equation of
state of symmetric nuclear matter at normal density [44]. This softening results in a significant reduction of the
compression modulus of nuclear matter relative to the original Walecka model [42, 44, 45] that is demanded by the
measured distribution of isoscalar monopole strength in medium to heavy nuclei [46–49]. Further, omega-meson
self-interactions, as described by the parameter ζ, also serve to soften the equation of state of symmetric nuclear
matter but at much higher densities. Finally, Λv induces isoscalar-isovector mixing and is responsible for modifying
the poorly-constrained density dependence of the symmetry energy [13, 14]. Tuning this parameter has served to
uncover correlations between the neutron radius of a heavy nucleus (such as 208Pb) and a host of both laboratory
and astrophysical observables.

The first step in a consistent mean-field plus RPA (MF+RPA) approach to the nuclear response is the calculation
of various ground-state properties. This procedure is implemented by solving the equations of motion associated with
the above Lagrangian density in a self-consistent, mean-field approximation [42]. For the various meson fields one must
solve Klein-Gordon equations with the appropriate baryon densities appearing as their source terms. These baryon
densities are computed from the nucleon orbitals that are, in turn, obtained from solving the one-body Dirac equation
in the presence of scalar and time-like vector potentials. This procedure must then be repeated until self-consistency
is achieved. What emerges from such a calculation is a set of single-particle energies, a corresponding set of Dirac
orbitals, and scalar and time-like vector mean-field potentials. A detailed implementation of this procedure may be
found in Ref. [50].

Having computed various ground-state properties one is now in a position to compute the linear response of the
mean-field ground state to a variety of probes. In the present case we are interested in computing the electric dipole
(E1) response as probed, for example, in photoabsorption experiments. Although the MF+RPA calculations presented
here follow closely the formalism developed in much greater detail in Ref. [47], some essential details are repeated
here for completeness.

The isovector dipole response of interest may be extracted from the imaginary part of a suitable polarization tensor.
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That is,

SL(q, ω) =
∑
n

∣∣∣〈Ψn|ρ̂(q)|Ψ0〉
∣∣∣2δ(ω − ωn) = − 1

π
=Π00

33(q,q;ω) , (2)

where Ψ0 is the exact nuclear ground state and Ψn is an excited state with excitation energy ωn=En−E0. To excite
electric-dipole modes a transition operator of the following form is used:

ρ̂(q)=
∫
d3r ψ̄(r)e−iq·rγ0τ3ψ(r) . (3)

Here ρ̂(q) is the Fourier transform of the timelike-isovector density, τ3 = diag(1,−1) is the third isospin matrix, and
γ0 = diag(1, 1,−1,−1) is the zeroth (or timelike) component of the Dirac matrices. Such a transition operator is
capable of exciting all natural-parity states. In the present work we are interested in the study of electric dipole
modes so one must project out the Jπ=1− component of the transition operator. That is,

ρ̂µ(q) = −4πiY ∗1µ(q̂)
∫
d3r ψ̄(r)j1(qr)Y1µ(r̂)γ0τ3ψ(r) , (4)

where j1 is a spherical Bessel function and Y1µ are spherical harmonics. To compare against experiment and to make
contact with the classical TRK sum rule we compute the response in the long-wavelength approximation. Namely,
we assume j1(qr)≈qr/3 so that the transition density reduces to

ρ̂µ(q) =
qr�1

−4π
3
iqY ∗1µ(q̂)

∫
d3r ψ̄(r)rY1µ(r̂)γ0τ3ψ(r) ≡ −4π

3
ıqY ∗1µ(q̂)M (E1, µ) , (5)

where M (E1, µ) is the isovector-dipole moment [23]. In the long-wavelength limit, the distribution of isovector dipole
strength R(ω;E1) may be directly extracted from the longitudinal response. That is,

lim
q→0

SL(q, ω;E1) =
4π
9
q2R(ω;E1) . (6)

where

R(ω;E1) = 3
∑
n

〈1;n||M (E1)||0〉2δ(ω − ωn) =
∑
n

B(E1; 0→ n)δ(ω − ωn) . (7)

The cornerstone of the theoretical approach used here is the polarization tensor introduced in Eq. (2). For the
purposes of the present work, the relevant polarization tensor is defined in terms of a time-ordered product of two
timelike-isovector densities [see Eq. (3)]. That is,

iΠ00
33(x, y) = 〈Ψ0|T

[
ρ̂(x)ρ̂(y)

]
|Ψ0〉 =

∫ ∞
−∞

dω

2π
e−iω(x0−y0)Π00

33(x,y;ω) . (8)

Connecting the nuclear response to the polarization tensor is highly appealing as one can then bring to bear the full
power of the many-body formalism into the calculation of an experimental observable [51]. It is worth mentioning
that the polarization tensor contains all information about the excitation spectrum of the system. For example, in the
uncorrelated case the spectral content of the polarization tensor is both simple and illuminating [51]. The polarization
tensor is an analytic function of the excitation energy ω—except for simple poles located at ω=εp−εh, where εp(εh) are
single-particle (single-hole) energies. Moreover, the residues at these poles correspond to the transition form-factors.
Of course, selection rules enforce that only particle-hole excitations with the correct quantum numbers can be excited.
To build collectivity into the nuclear response, all these single-particle excitations must be correlated (or mixed) via
the residual particle-hole interaction. This is implemented by iterating the uncorrelated polarization tensor to all
orders. Such a procedure yields the RPA (Dyson’s) equations whose solution embodies the collective response of the
ground state [51]. However, the consistency of the MF+RPA approach hinges on the use of a residual particle-hole
interaction that is identical to the one used to generate the mean-field potentials. Only then can one ensure the
preservation of important symmetries, such as the conservation of the vector current and the decoupling of various
spurious modes [47, 52]. A more detailed discussion of the relativistic MF+RPA approach may be found in Ref. [47]
(see Ref. [31] for a discussion limited to the dipole response). In the next section results will be presented for the
distribution of dipole strength in 68Ni. Particular attention will be placed on the various moments of the distribution
and on their relation to the corresponding moments of the photoabsorption cross section. Hence, we close this section
with a few essential definitions and relations.
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We start by introducing the photoabsorption cross section σ(ω) [23]:

σ(ω) =
4π2e2

~c
∑
n

ωn〈1;n||D̂||0〉2δ(ω − ωn) =
16π3

9
e2

~c
ωR(ω) . (9)

Here D̂ is the standard dipole operator and note that the “E1” label has been suppressed from R(ω;E1). Having
established the connection between the dipole response and the photoabsorption cross section we now proceed to
compute their various moments. These are defined as follows:

mn ≡
∫ ∞

0

ωnR(ω)dω . (10a)

σn ≡
∫ ∞

0

ωnσ(ω)dω =
16π3

9
e2

~c
mn+1 . (10b)

In particular, the photoabsorption cross section satisfies the model independent TRK sum rule (σ0) which is related
to the EWSR (or m1 moment) as follows:

m1 =
∑
n

ωnB(E1; 0→ n) =
9~2

8πm

(
NZ

A

)
≈ 14.8

(
NZ

A

)
fm2MeV , (11a)

σ0 =
16π3

9
e2

~c
m1 = 2π2 e

2

~c
(~c)2

mc2

(
NZ

A

)
≈ 60

(
NZ

A

)
MeV mb . (11b)

We note that the above classical sum rules are only valid in the long wavelength approximation (i.e., in the limit in
which the photon wavelength is large relative to the nuclear radius) and in the absence of exchange and momentum-
dependent forces [23]. Such forces modify the classical sum rules and their impact is traditionally accounted for by
multiplying the right-hand side of Eqs. (11) by the factor (1 + κTRK), with κTRK ≈ 0.2 [23]. Also note that the
classical sum rules were derived using a non-relativistic formalism so one may also need to correct for relativistic
effects. We assume here that such relativistic effects may also be subsumed into κTRK (see Table III). In addition to
the fundamental TRK sum rule, a moment of critical importance to the present work because of its sensitivity to the
symmetry energy is the dipole polarizability. The dipole polarizability is particularly sensitive to low-energy dipole
strength given that it is directly proportional to the inverse energy weighted sum m−1 (or σ−2). That is,

αD = 2e2
∑
n

〈1;n||D̂||0〉2

ωn
=

~c
2π2

σ−2 =
8π
9
e2m−1 . (12)

III. RESULTS

We start this section by displaying in Fig. 1 the distribution of dipole strength for the three closed-shell (or at
least closed-subshell) nickel isotopes 56Ni, 68Ni, and 78Ni. Predictions are displayed using the accurately calibrated
FSUGold (or “FSU” for short) parametrization [53]. In order to resolve individual transitions to bound single-particle
states, a small artificial width of 0.5 MeV was included in the calculations. Note, however, that because the non-
spectral character of our RPA approach [47], particle-escape widths are computed exactly within the model. In panel
(a) we display the distribution of dipole strength for the doubly-magic nucleus 56Ni. Predictions for the neutron skin
of this N=Z nucleus yield a small negative value of Rn−Rp=−0.05 fm because of the Coulomb repulsion among the
protons. Consistent with the notion that the Pygmy dipole resonance represents an oscillation of the neutron-rich skin
against the symmetric core, no low-energy dipole strength is found. Instead, all the dipole strength is found in the
region of the Giant resonance (at excitation energies &12 MeV) which exhausts 114% of the classical TRK sum rule
(i.e., κTRK =0.14). In Fig. 1(b) we observe a significant qualitative change as one moves from 56Ni to the neutron-rich
68Ni isotope. In a mean-field approach such as the one adopted here, the 12 extra neutrons fill in the 1f5/2, 2p3/2,
and 2p1/2 orbitals. This leads to the development of a fairly large neutron-skin thickness of Rn−Rp = 0.21 fm.
Strongly correlated to the development of the neutron skin is the appearance of low-energy dipole strength. Indeed,
we now find that 6% of EWSR is contained in the low-energy region. Note that a model dependent choice must
be made on how to separate the low- and high-energy regions. In the present model—indeed in most MF+RPA
models—this separation is natural. Here we define ωt ≡ 11.25 MeV as the “Pygmy-to-Giant” transition energy [see
arrow on Fig. 1(b).] Finally, we display in Fig. 1(c) the distribution of dipole strength for the very exotic 78Ni nucleus.
Whereas the additional 10 neutrons filling the 1g9/2 orbital contribute to a further increase in the thickness of its
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neutron skin (from 0.21 to 0.34 fm) the fraction of the EWSR exhausted by the Pygmy resonance actually goes down;
from 6% to 4.8%. This anti-correlation is reminiscent of the one we reported in Fig. 4 of Ref. [31] for the case of the
Tin-isotopes. In the present case, as the “intruder” 1g9/2 orbital is pulled down by the strong spin-orbit force, we
observe a mild enhancement of the total EWSR. This enhancement is consistent with the few percent increase in the
NZ/A factor as one goes from 68Ni to 78Ni [see Eq. (11)]. However, such an increase is concentrated in the region of
the giant resonance because dipole excitations originating in the 1g9/2 orbital (and ending in the 1h11/2, 1h9/2, and
2f7/2 orbitals) lie high in energy. Thus, we conclude that 68Ni is as good—indeed better—than 78Ni in the search
for correlations between the neutron skin and low-energy dipole strength. The same conclusion applies for the case
of the Tin isotopes: the stable 120Sn isotope may be as useful as 132Sn [31].
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FIG. 1: Distribution of isovector dipole strength for the three closed-(sub)shell nickel isotopes: 56Ni, 68Ni, and 78Ni. Mean
field plus RPA predictions are shown using the FSUGold parameter set [53].

To search for correlations between the neutron-skin thickness of 208Pb and the development of Pygmy strength
in 68Ni we introduce—in addition to FSUGold [53]—the accurately-calibrated NL3 effective interaction [54, 55].
Parameter sets for these two models are listed in Table I. Although enormously successful in reproducing ground-
state energies and charge radii, NL3 predicts equations of state for both symmetric and pure neutron matter that
appear too stiff when compared against theoretical and experimental constraints [56–58]. To remedy this deficiency the
FSUGold parameter set includes two additional empirical constants, namely, ζ and Λv [see Eq. (1)]. To fully explore
the sensitivity of the low energy dipole strength to changes in the neutron-skin thickness of 208Pb we introduce a
“family” of NL3 and FSUGold models. These families are generated by following a procedure first introduced in
Ref. [13]. This procedure is implemented by changing the isovector parameters Λv and gρ in such a way that the value
of the symmetry energy remains fixed at ≈26 MeV at a baryon density of ≈0.1 fm−3. This prescription ensures—by
construction—that all isoscalar observables remain unchanged. Further, other well constrained observables—such as
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masses and charge radii of doubly-magic nuclei—remain consistent with their experimental values. We display in
Table II the appropriate isovector parameters Λv and gρ for the NL3 and FSUGold families of mean-field interactions.
Together with those parameters we display two observables that are particularly sensitive to these changes, namely,
the slope of the symmetry energy at saturation density (L) and the neutron skin thickness (Rn-Rp) of both 208Pb
and 68Ni (with the latter shown in parenthesis).

Model ms mv mρ g2
s g2

v g2
ρ κ λ ζ Λv

NL3 508.194 782.501 763.000 104.3871 165.5854 79.6000 3.8599 −0.015905 0.00 0.000
FSU 491.500 782.500 763.000 112.1996 204.5469 138.4701 1.4203 +0.023762 0.06 0.030

TABLE I: Parameter sets for the two accurately calibrated relativistic mean-field models used in the text: NL3 [54, 55] and
FSUGold [53]. The parameter κ and the meson masses ms, mv, and mρ are all given in MeV. The nucleon mass has been fixed
at M=939 MeV in both models.

To illustrate the role of the various mean-field interactions we display in Fig. 2 the symmetry energy per nucleon
predicted by all these models. The density dependence of the symmetry energy is of central importance to this work
as it will be used to correlate the neutron-skin thickness of 208Pb to the dipole strength in 68Ni. The symmetry energy
represents the susceptibility of the system to changes in the neutron-proton asymmetry. It is defined as follows:

S(ρ) =
1
2

(
∂2E(ρ, α)
∂α2

)
α=0

≈ EPNM(ρ)− ESNM(ρ) , (13)

where ρ=ρn+ρp is the baryon density of the system and α=(ρn−ρp)/ρ the neutron-proton asymmetry. As indicated in
Eq. (13), the symmetry energy is to a very good approximation equal to the energy of pure neutron matter minus that
of symmetric matter. In Fig. 2 the convergence of all models at a density of ≈ 0.1 fm−3 (or ≈ 0.7 times the density
of nuclear matter at saturation) is clearly discernible. However, the departure from this common value is model
dependent. For example, models with a stiff symmetry energy—namely, those that change rapidly with density—
predict a large slope at saturation density and a correspondingly large value for the neutron-skin thickness of 208Pb.
Note that L is proportional to the pressure of pure neutron matter; hence, the larger the value of the neutron pressure
the larger the neutron skin. Also note that models with a stiff symmetry energy predict a lower symmetry energy
at low densities as compared to their softer counterparts. Given that the symmetry energy (S ∝ ∂2E/∂α2) acts as
the restoring force for isovector modes, we expect that as the symmetry energy stiffens, the distribution of isovector
dipole strength will become softer. These arguments suggest how to exploit the behavior of the symmetry energy to
correlate the neutron-skin thickness of 208Pb to the dipole strength in 68Ni.

Before doing so, however, we further validate the prescription used to generate the FSU family of mean-field
interactions by displaying in Fig. 3 charge and neutron densities for 208Pb (similar results are obtained in the case of
NL3). Whereas significant differences are easily discerned in the predictions of the (unknown) neutron density, the
model dependence is very small in the case of the charge density. For example, all models predict a mean-square
charge radius that is within 0.4% of the experimental value. In the case of the binding energy of 208Pb, the agreement
with experiment is even better (by about one order of magnitude). Yet a fairly simple modification to the isovector

Model Λv g2
ρ L (MeV) Rn-Rp (fm)

NL3 0.00 79.6000 118.189 0.280 (0.261)
0.01 90.9000 87.738 0.251 (0.241)
0.02 106.0000 68.217 0.223 (0.222)
0.03 127.1000 55.311 0.195 (0.203)
0.04 158.6000 46.607 0.166 (0.183)

FSU 0.00 80.2618 108.764 0.286 (0.265)
0.01 93.3409 87.276 0.260 (0.248)
0.02 111.5126 71.833 0.235 (0.223)
0.03 138.4701 60.515 0.207 (0.211)
0.04 182.6162 52.091 0.176 (0.189)

TABLE II: The NL3 and FSUGold “families” of mean-field interactions. The isovector parameters Λv and gρ were adjusted so
that all models have the same symmetry energy of ≈ 26 MeV at a density of ≈ 0.1 fm−3. Tuning Λv significantly affects the
slope of the symmetry energy at saturation density L and the neutron-skin thickness of 208Pb and 68Ni (the latter shown in
parenthesis).
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FIG. 2: (Color online) Symmetry energy per nucleon as a function of density (in units of the saturation density). The various
effective interactions are labeled according to their predictions for the neutron-skin thickness of 208Pb.

interaction allows one to generate a fairly wide range of values for the neutron-skin thickness of 208Pb: from 0.18 to
0.29 fm.
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FIG. 3: (Color online) Model predictions for the charge and neutron densities of 208Pb using the FSU family of effective
interactions. The experimental charge density is from Ref. [59].

Having validated the choice of mean-field models employed in this work, we now proceed to display in Fig. 4 their
predictions for the distribution of dipole strength in 68Ni. Various moments of the distribution as well as the TRK
enhancement factor κTRK [23] have also been collected in Table III. Given that the m−1 moment is simply related
to the dipole polarizability αD [see Eq. (12)], it is the latter that is listed in Tables III. Also note that the various
curves have been labeled according to their prediction for the neutron-skin thickness of 208Pb. The distribution of
strength naturally separates into low-energy (Pygmy) and high-energy (Giant) regions. To compute the contribution
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Model Λv m1 (fm2MeV) κTRK m0 (fm2) αD (fm3)

NL3 0.00 284.548 0.163 17.428 4.716
0.01 284.190 0.162 17.151 4.570
0.02 283.320 0.158 16.832 4.412
0.03 281.948 0.153 16.454 4.235
0.04 279.749 0.144 15.984 4.026

FSU 0.00 283.364 0.158 17.270 4.664
0.01 282.667 0.156 16.976 4.511
0.02 281.535 0.151 16.627 4.339
0.03 279.784 0.144 16.199 4.138
0.04 276.857 0.132 15.635 3.887

TABLE III: Various moments of the distribution of dipole strength R(ω) for the two families of relativistic mean-field interactions
defined in the text. Note that αD is the dipole polarizability and κTRK denotes the enhancement factor of the TRK sum rule.

from these two regions to the various moments we have selected the Pygmy-to-Giant transition energy to be equal
to ωt ≡ 11.25 MeV, as indicated in the figure. Note that the dipole strength has been integrated up to a maximum
energy of ωmax ≡ 30 MeV. As argued earlier, models with a soft symmetry energy predict large symmetry energies
at the low densities of relevance to the excitation of the dipole mode (see Fig. 2). In turn, such a large restoring
force generates a significant hardening and quenching of the response. That is, models with a soft symmetry predict
a distribution of strength that is both hardened (i.e., pushed to higher excitation energies) and quenched relative to
their stiffer counterparts. These facts are readily discernible in Fig. 4. We now proceed to explore the consequences
of such a hardening and quenching on the various moments of the dipole response.
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FIG. 4: (Color online) Distribution of dipole strength in 68Ni computed in a MF+RPA approach using the NL3 (left panel)
and FSU (right panel) families of effective interactions.

Although the previous discussion suggests a correlation between the neutron-skin thickness of 208Pb and the distri-
bution of dipole strength, the alluded correlation may or may not extend to the various moments of the distribution.
This depends critically on whether the quenching and hardening work for or against each other. A prototypical case in
which they work against each other is the total m1 moment, i.e., the energy weighted sum. This expectation is based
on the existence of a classical, non-relativistic, and model independent TRK sum rule. That is, we expect that the
energy weighting enhances the hardened response as to exactly compensate for its original quenching. To appreciate
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Model Λv Ec (MeV) m1 (fm2MeV) m0 (fm2) αD (fm3)

NL3 0.00 8.602 20.680 (7.268) 2.404 (13.794) 1.185 (25.133)
0.01 8.643 19.231 (6.767) 2.225 (12.973) 1.099 (24.040)
0.02 8.675 17.713 (6.252) 2.042 (12.130) 1.011 (22.907)
0.03 8.700 16.074 (5.701) 1.848 (11.229) 0.919 (21.698)
0.04 8.715 14.248 (5.093) 1.635 (10.227) 0.819 (20.344)

FSU 0.00 8.525 21.592 (7.620) 2.533 (14.666) 1.241 (26.601)
0.01 8.565 20.185 (7.141) 2.357 (13.883) 1.151 (25.521)
0.02 8.603 18.628 (6.617) 2.165 (13.023) 1.055 (24.322)
0.03 8.640 16.871 (6.030) 1.953 (12.054) 0.950 (22.957)
0.04 8.676 14.732 (5.321) 1.698 (10.861) 0.825 (21.234)

TABLE IV: Contribution from the Pygmy-resonance region (0≤ω≤ 11.25 MeV) to the various moments of the distribution of
dipole strength. The centroid energy has been defined as Ec=m1/m0 and the quantities in parenthesis denote the fraction of
the total moment contained in the region of the Pygmy resonance.

this fact we display in Fig. 5(a) the energy weighted dipole response ωR(ω). Plotted in the inset is the cumulative
contribution of ωR(ω) to the energy weighted sum defined as

m1(ω) =
∫ ω

0

ω′R(ω′)dω′ . (14)

The cumulative sum m1(ω) displays what appears to be a mild model dependence as it starts to accumulate strength
in the region of the Pygmy resonance—with the largest model dependence developing around the main giant-resonance
peak. Yet any residual model dependence rapidly disappears as the sum rule is exhausted—as anticipated. However,
given that no classical sum rule protects the fraction of the energy weighted sum contained in the low-energy region, a
model dependence remains. This generates a correlation between the neutron-skin thickness in 208Pb and the fraction
of the EWSR exhausted by the Pygmy resonance (see Table IV).
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FIG. 5: (Color online) The energy weighted dipole response (a) and the inverse energy weighted dipole response (b) in 68Ni
computed with the FSU family of effective interactions. The insets display the cumulative sums as defined in Eqs. (14) and (15).

A particularly attractive case in which both the hardening and the quenching work in tandem is the inverse energy
weighted response ω−1R(ω) displayed in Fig. 5(b). First, given that the ω−1 factor enhances preferentially the low-
energy part of response, the Pygmy resonance now accounts for a significant fraction—of about 20-25%—of the m−1
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Model Λv Ec (MeV) m1 (fm2MeV) m0 (fm2) αD (fm3)

NL3 0.00 17.563 263.868 (92.732) 15.024 (86.206) 3.531 (74.867)
0.01 17.752 264.959 (93.233) 14.926 (87.027) 3.471 (75.960)
0.02 17.958 265.608 (93.748) 14.790 (87.870) 3.402 (77.093)
0.03 18.203 265.875 (94.299) 14.606 (88.771) 3.316 (78.302)
0.04 18.503 265.502 (94.907) 14.349 (89.773) 3.207 (79.656)

FSU 0.00 17.763 261.772 (92.380) 14.737 (85.334) 3.423 (73.399)
0.01 17.955 262.482 (92.859) 14.619 (86.117) 3.360 (74.479)
0.02 18.179 262.907 (93.383) 14.462 (86.977) 3.284 (75.678)
0.03 18.454 262.914 (93.970) 14.247 (87.946) 3.188 (77.043)
0.04 18.808 262.125 (94.679) 13.937 (89.139) 3.062 (78.766)

TABLE V: Contribution from the Giant-resonance region (11.25≤ω≤ 30 MeV) to the various moments of the distribution of
dipole strength. The centroid energy has been defined as Ec=m1/m0 and the quantities in parenthesis denote the fraction of
the total moment contained in the region of the Giant resonance.

moment. This should be contrasted against the EWSR where the Pygmy resonance exhausts merely 5-8% of the total
sum; see Tables III-V. Second, the inverse energy weighting enhances the softer responses even further. Pictorially,
this behavior is best illustrated in the inset of Fig. 5(b) which displays the cumulative m−1(ω) sum:

m−1(ω) =
∫ ω

0

R(ω′)
ω′

dω′ . (15)

The inset provides a clear indication that both the total m−1 moment as well as the fraction contained in the Pygmy
resonance are highly sensitive to the neutron-skin thickness of 208Pb. To heighten this sensitivity we display in Fig. 6
the fractional change in both the total and Pygmy contributions to the m1 moment and to the dipole polarizability
αD (we denote these fractional changes with a “tilde” in the figure). As alluded earlier, the m1 moment is fairly
insensitive to the density dependence of the symmetry energy (the minor sensitivity is due to differences in the TRK
enhancement factors). Instead, the total dipole polarizability is unprotected by a sum rule and changes by about 25%
over the range of values span by Rn−Rp. This sensitivity and the ensuing strong correlation that emerges between αD
and Rn−Rp is consistent with the results reported in Refs. [38, 60]. However, at least for the class of models employed
in this work, the sensitivity of the Pygmy resonance to the neutron-skin thickness of 208Pb is even higher—nearly
50%—for both of the moments.

We closed this section by displaying in Fig. 7 the percentage of the energy weighted sum and of the dipole polar-
izability exhausted by the Pygmy resonance in 68Ni. In both cases we find these quantities to be strongly correlated
to the neutron-skin thickness of 208Pb. The dashed line in Fig. 7(a) represents an upper limit on the fraction of
the EWSR of about 6.5% extracted from the analysis of Carbone and collaborators [35]. When combined with
the corresponding measurement on 132Sn [34, 36], the same analysis reports values for the neutron skin thickness
of 208Pb, 68Ni, and 132Sn of Rn−Rp = 0.194±0.024 fm, 0.200±0.015 fm, and 0.258±0.024 fm, respectively [35].
Note that the accurately-calibrated FSUGold parameter set predicts neutron-skin thickness for these three nuclei of
0.207 fm, 0.211 fm, and 0.271 fm, respectively, which fit comfortably within the above limits. However, although
strongly correlated, the FSUGold predictions appear consistently higher than the central values suggested above [35].
This may suggest a symmetry energy even slightly softer than the one predicted by FSUGold. Interestingly enough,
astrophysical constraints emerging from the study of neutron-star radii seem to support such a mild softening [61, 62].

IV. CONCLUSIONS

Motivated by two recent publications—one experimental [37] and one theoretical [38]—the distribution of electric
dipole strength in the neutron-rich 68Ni isotope was computed using a relativistic RPA approach. Concerning the
experimental work, Pygmy dipole strength carrying about 5% of the total energy weighted sum was identified below
the main GDR peak [37]. This result is significant as it complements earlier work on the neutron-rich Tin isotopes
that suggests a correlation between the fraction of the TRK sum rule exhausted by the Pygmy resonance and the
neutron-skin thickness of 208Pb [31, 36]. This validates our earlier claim that models with overly large neutron skins
are in conflict with experiment [31]. In regard to the recent theoretical work by Reinhard and Nazarewicz, we find it
interesting as it has established a strong correlation between the dipole polarizability and the neutron-skin thickness
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FIG. 6: (Color online) Fractional change in the energy weighted sum (a) and dipole polarizability (b) for 68Ni as a function of
the neutron-skin thickness of 208Pb.

of 208Pb [38]. As interesting but more intriguing is the claim that the neutron-skin thickness of 208Pb is very weakly
correlated with the low-energy electric dipole strength. Such a claim is particularly intriguing given that the dipole
polarizability is proportional to the inverse energy weighted sum and, as such, the Pygmy resonance should exhaust a
large fraction of it. Thus, explaining how can the neutron-skin thickness of 208Pb be strongly correlated to the dipole
polarizability but weakly correlated to the Pygmy resonance became a major goal of this project.

To address these issues we relied on a variety of effective interactions that span a wide range of values for the
neutron-skin thickness of 208Pb. These effective interactions were derived from accurately calibrated models that
were suitably modified by following a procedure first outlined in Ref. [13]. Such a procedure enables one to modify
the density dependence of the symmetry energy without compromising the success of the models in describing well
constrained nuclear observables.

We have used these models to generate the distribution of dipole strength in 68Ni as well as various moments of
the distribution. In particular, values in the 5-8% range were generated for the fraction of the energy weighted sum
rule exhausted by the Pygmy dipole resonance. These values seem to fit comfortably within the experimental range
reported in Ref. [37]. Hence, by itself, the measurement of low-energy dipole strength in 68Ni does not seem to impose
a stringent constraint on the density dependence of the symmetry energy. However, when combined with an earlier
experiment on the neutron-rich Tin isotopes [36], the theoretical analysis presented in Ref. [35] argues for a tight
constrain on the slope of the symmetry energy (L) that excludes models with both very stiff and very soft symmetry
energies. It is significant that such an analysis appears consistent with other approaches—based on nuclear-structure
and heavy-ion experiments—that have also been used to constrain L. We note that to these approaches one can
add constrains obtained from both low- and high-density physics. Indeed, the equation of state of dilute neutron
matter (see Refs. [58, 63] and references therein) as well as neutron-star radii [61, 62] also favor values of L within the
range reported in Ref. [35]. In summary, whereas the measurement of the PDR in 68Ni by itself does not impose any
stringent constrain on the density dependence of the symmetry energy, it adds consistency to a picture that supports
our earlier claim that models with overly large neutron skins are in conflict with experiment [31].

The dipole polarizability played center stage in this contribution because of the expectation that it may act as
a surrogate for the neutron skin. Indeed, semi-classical arguments have been used to establish a direct correlation
between the neutron-skin thickness and the dipole polarizability [60]. From our perspective, this correlation emerges
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FIG. 7: (Color online) Percentage of the energy weighted sum (a) and dipole polarizability (b) exhausted by the Pygmy dipole
resonance in 68Ni as a function of the neutron-skin thickness of 208Pb.

from the realization that the symmetry energy acts as the restoring force of isovector oscillations. As such, models
with a soft symmetry energy—and thus a strong restoring force—generate distributions of dipole strength that are
both hardened and quenched relative to their stiffer counterparts. And whereas these two effects largely cancel out in
the case of the energy weighted sum, they work for each other in the case of the dipole polarizability. This produces
a strong linear correlation between the dipole polarizability of 68Ni and the neutron-skin thickness of 208Pb—thereby
confirming the assertion of Ref. [38]. But do we also support the claim of a weak correlation between the neutron-skin
thickness of 208Pb and low-energy dipole strength? Quite the contrary. To the extent that we can focus on the
dipole polarizability, we found a correlation just as strong and an even larger sensitivity. This appears to be a natural
consequence of the following two facts: (a) the Pygmy resonance accounts for about 20-25% of the dipole polarizability
and (b) the neutron-skin thickness of 208Pb is strongly correlated—with a correlation coefficient of nearly one—to
the total dipole polarizability of 68Ni [38]. Note that in our earlier work on the Tin isotopes the centroid energy of
the PDR was found to be insensitive to the density dependence of the symmetry energy [31]. There we found, as we
do now, centroid energies that are within 2% of each other. This should be contrasted to the nearly 50% sensitivity
displayed by the fraction of both the dipole polarizability and EWSR exhausted by the Pygmy resonance. So in an
attempt to confirm the assertions of Ref. [38] we obtained mixed results. On the one hand, we confirmed the strong
correlation between the dipole polarizability in 68Ni and the neutron-skin thickness of 208Pb. On the other hand, we
challenge the view—at least in regard to the dipole polarizability—that the neutron-skin thickness of 208Pb is very
weakly correlated to the low-energy dipole strength. Indeed, we suggest that the electromagnetic excitation of both
the Pygmy and Giant dipole resonances will continue to provide powerful constraints on the density dependence of
the symmetry energy.
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