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A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A = 130
mass region. Highly deformed nuclei have been found in this region, providing opportunities to
study the deformed rotational bands. The description of the 125,127,129,131,133Pr isotopes with the
Projected Shell Model is presented in this paper. Good agreement between theory and experiment
is obtained and some characteristics are discussed, such as the dynamic moment of inertia J (2),
kinetic moment of inertia J (1), the crossing of rotational bands and back-bending effects.
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I. INTRODUCTION

The study of neutron-deficient nuclei in the A-130 mass region has been an interesting subject in nuclear structure
physics [1]. In this mass region a highly-deformed band was observed first in 132Ce [2], where a series of γ-ray
transitions with an energy separation of approximately 70 keV were found. This band was quantitatively described
by the Projected Shell Model [3]. 132Ce has played a central part for the investigation of superdeformed structure of
A−130 nuclei. The major interest to study A-130 nuclei is to understand the different contributions between neutrons
and protons. In these nuclei both neutrons and protons occupy the high-j h11/2 intruder orbitals. In odd-mass Pr
nuclei, for example, the neutron orbitals evolve in the middle of the h11/2 shell, while the proton Fermi surface lies in
the lower part of the shell. Rotation alignment of the h11/2 protons would drive the nucleus to a prolate shape, while
alignment of h11/2 neutrons would produce an opposite effect in deformation. This poses an interesting situation with
strong competition of neutrons and protons in a fast rotating system.

The yrast bands in odd-Pr nuclei are characterized by a decoupled h11/2 proton configuration for low spin states and
rotation alignment of an additional pair of nucleons for high spin states [4–7]. These bands have been investigated with
the Cranked Shell Model (CSM) in which the calculations predicted that the band crossing occurs around h̄ω ≈ 0.5
MeV while the experimental data suggested a lower value around h̄ω ≈ 0.4 MeV [6, 8]. The origin of the crossing
has not been well understood despite of many intensive studies. There have been suggestions that it is attributed to
the neutron alignment [6, 9–11], whereas other studies indicated an alignment of a pair of protons [5, 12]. We may
thus conclude that the configuration assignment for the high spin states in these odd Pr nuclei and the nature of the
rotation alignment are still open questions.

In the past two decades, the Projected Shell Model (PSM) [13] has been applied to study the structure of high
spin states. Different from the CSM which works in the intrinsic frame, the PSM transforms the configurations to
the laboratory frame by using the angular momentum projection, and further mixes them in the laboratory frame by
diagonalising a two-body Hamiltonian. Mixing of the configurations in the laboratory frame removes ambiguities in
the band crossing region in the CSM, which is a well-known problem of the cranking approximation first pointed out
by Hamamoto [14]. Thus the PSM is in principle better suited for the study of the band-crossing phenomenon. The
PSM has been extensively applied to study superdeformed as well as normal deformed bands in different mass regions
[3, 15–19]. The recent PSM calculations for the even-even 124−130Ce isotopes [20, 21], the 98−102Sr and 100−104Zr
isotopes [22], the neutron-rich 154−160Nd and 156−162Sm isotopes [23], as well as for very heavy nuclei [24] and light
nuclei [25], have shown satisfactory agreement with experimentally observed yrast bands and demonstrated the ability
of the PSM to describe the back-bending phenomenon.

The purpose of the present work is to carry out a systematical study on the yrast bands in the odd-mass 125−133Pr
nuclei, a set of isotopes which are difficult to describe. We demonstrate that it is possible to reproduce the experimental
data with the PSM by using the same set of parameters as in the even-even nuclei in the A = 130 mass region, and
further provide detailed analysis for the structure of these isotopes. The paper is arranged as follows. An outline of
the PSM is given in section II. Theoretical discussion and comparison with experimental data are presented in section
III. Finally, conclusions are drawn in section IV.

II. OUTLINE OF THE PROJECTED SHELL MODEL

The PSM has been developed as a shell model truncation scheme which is implemented in a deformed single
particle basis [13]. Pairing correlations are included in this basis, which is constructed by the quasiparticle (qp) states
obtained from a Nilsson + BCS calculation. The shell model truncation is carried out by considering the low-lying
multi-qp configurations around the Fermi levels. We then use the angular-momentum projection method to restore
the rotational symmetry violated in the deformed basis. Finally, the two-body Hamiltonian is diagonalized in the
projected basis.

The following set of multi-qp configurations is used for odd-proton nuclei:

|Φk〉 = {a†
π|0〉, a

†
πa†

ν1a
†
ν2|0〉}, (1)

where a†’s are the qp creation operators and k labels each configuration. The states are written in the Nilsson + BCS
representation, with ν’s (π’s) representing the neutron (proton) Nilsson quantum numbers which run over low-lying
orbitals, and |0〉 the qp vacuum state. The 3-qp states are formed by 1-quasiproton plus a pair of quasineutrons. The
inclusion of the 3-qp configurations is important for odd-mass nuclei for a description of the band crossing phenomenon
which is caused by a rotation alignment of a pair of quasineutrons.

The Hamiltonian employed in the calculation is [13]:

Ĥ = Ĥ0 −
χ

2

∑

µ

Q̂+
µ Q̂µ − GM P̂+P̂ − GQ

∑

µ

P̂+
µ P̂µ, (2)
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where H0 is the spherical single particle Hamiltonian which contains a proper spin-orbit force. The second term in
Eq. (2) is the quadrupole-quadrupole (QQ) interaction and χ represents its strength, which is determined by the
self-consistent relation between the input quadrupole deformation ǫ2 and the one resulting from the HFB procedure
[13, 26]. The last two terms are the monopole and quadrupole pairing interactions, respectively. The strengths of the
monopole pairing interactions are given by:

Gν
M =

(

19.60 + 15.7
N − Z

A

)

1

A
, Gπ

M = 19.60
1

A
, (3)

and that for the quadrupole pairing interaction is related to the monopole pairing by

GQ = γGM , (4)

with γ = 0.16. These strengths are the same as those in Ref. [3], which have been tested by other PSM calculations
for this mass region [20, 21]. As noticed by Dufour and Zuker [27], these interactions represent the essence of the
most important correlations in the low-lying nuclear spectrum.

The Hamiltonian (2) is diagonalized in the shell model space spanned by P̂ I
MK |Φk〉, where the P̂ I

MK is the angular
momentum projection operator and |Φk〉 the multi-qp states of Eq. (1). The eigenvalue equation for each spin I is
given by

∑

k′

(HI
kk′ − EIαN I

kk′ )F Iα
k′ = 0, (5)

where α enumerates the states with the same spin. The normalization is chosen such that
∑

kk′

fα
k Nkk′fα′

k′ = δαα′ , (6)

and the Hamiltonian matrix elements HI
kk′ and the norm matrix elements N I

kk′ in (5) are:

HI
kk′ = 〈Φk|ĤP̂ I

KK′ |Φk′〉, N I
kk′ = 〈Φk|P̂

I
KK′ |Φk′〉. (7)

The band energies are obtained when we calculate the expectation values of the Hamiltonian with respect to a
“rotational” band k, which are obtained from each (angular-momentum) projected state in (1). Thus the rotational
energy of a band k is defined as

Ek(I) =
〈Φk|ĤP̂ I

KK |Φk〉

〈Φk|P̂ I
KK |Φk〉

=
HI

kk

N I
kk

, (8)

which are the diagonal elements in Eq. (7) with respect to a projected multi-qp state k. A diagram containing
rotational energies of various bands as a function of spin I is called a band diagram [13]. From band diagrams we can
study the properties such as the crossing of rotational bands, which we will discuss in the following sections.

III. CALCULATIONS AND COMPARISON WITH DATA

To carry out calculations, we use the PSM code published in Ref. [28]. First of all, a deformed basis is constructed
from the standard Nilsson Model, and the κ and µ parameters in the Nilsson potential are taken from Ref. [29]. We
consider three major shells (N= 3, 4 and 5) for both neutrons and protons. The parameters of the basis deformation
(ǫ2 and ǫ4) and γ in Eq. (4) for each nucleus are given in Table I. The deformation parameters are very close but
slightly different from the values given in Ref. [30]. We note that the present calculation is of the shell model type
which uses the deformed potential with suitable input parameters to generate a model basis. Different configurations
(one- and three-quasiparticle states) are built within the chosen basis. Although the quasiparticle vacuum state is
obtained with a fixed deformation, mixing of the multi-quasiparticle configurations can introduce dynamically some
effects, such as those caused by quasiparticle alignments. These additional treatments (the construction of projected
multi-quasiparticle states and the configuration mixing) go beyond the usual mean-filed methods, and therefore our
deformed states are not necessarily the same as other models.

In the present work, the shell model space is truncated in such a way that only states within an energy window
around the Fermi surface are selected. This determines the size of the basis space |Φk〉. The energy windows that we
used in the calculation are 3.5 MeV for 1-qp states and 6.5 MeV for 3-qp states. Finally, the basis states are projected
to good angular momentum states, and the projected basis is used to diagonalize the shell model Hamiltonian. In
this way, we obtain the energy spectra which are compared to the experimental data.



4

TABLE I. Parameters used in the calculation.

125Pr 127Pr 129Pr 131Pr 133Pr

ǫ2 0.300 0.283 0.267 0.234 0.194

ǫ4 0.00 0.00 0.027 0.027 0.027

γ 0.16 0.16 0.20 0.20 0.20

A. Backbending of moment of inertia in yrast bands

The backbending in moment of inertia, observed in the rotational spectra of deformed nuclei, carries important
information on the interplay between the ground band and bands with alignment of a pair of quasiparticles. Thus,
an yrast sequence is formed by states of both bands such that the lower spin states are mainly of the ground band,
and the major component of the higher spin states belongs to the bands with aligned quasiparticles. In Fig. 1, we
compare the PSM results with experimental data for the 125−133Pr isotopes. We plot the dynamical moment of inertia
J (2) as a function of the rotational frequency h̄ω and twice the kinetic moment of inertia J (1) as a function of h̄2ω2.
These quantities are defined as

J (2) =
4

Eγ(I) − Eγ(I − 2)
, 2J (1) =

(2I − 1)

ω
(9)

where the transition energy Eγ = E(I) − E(I − 2) is related to the rotational frequency through

h̄ω =
Eγ

√

(I + 1)(I + 2) − K2 −
√

(I − 1)I − K2
. (10)

As one can see from Fig. 1, the comparison between theory and experiment is overall satisfactory. In the right
column of the figure, the kinetic moments of inertia of the isotopes are reproduced almost perfectly, except for
131Pr where the rise of J (1) in theory is shifted to a higher rotational frequency. The dynamical moment of inertia
J (2) is a very sensitive quantity as it describes the variation of J (1). For this quantity, the results obtained for
125,127Pr reproduce the observed backbending effects (see Figs. 1a and 1c) as seen from the experimental data [7, 8].
Nevertheless, the change of J (2) for 125Pr is predicted to occur at h̄ω ≈ 0.5 MeV while experimentally it occurs at
h̄ω ≈ 0.4 MeV, which still can be considered as a good agreement with experiment. In the case of 127Pr the change
of J (2) with rotational frequency coincides with the experimental data, with the observed value at h̄ω ≈ 0.4 MeV.
However, deviations of the theoretical J (2) from the data are seen at the highest spin states. For 129Pr, the PSM
reproduces very well the experimental data (see Fig. 1e). The change of J (2) with rotational frequency is predicted
correctly at h̄ω ≈ 0.4 MeV.

The experimental data for 131,133Pr are taken from Refs. [8, 31]. For these two isotopes we used the original Nilsson
κ and µ parameters taken from Ref. [32]. For 131Pr the PSM predicts that the change of rotational frequency occurs
at h̄ω ≈ 0.5 MeV, while it is observed around h̄ω ≈ 0.4 MeV (see Fig. 1g). For 133Pr the PSM predicts a change in
the rotational frequency around h̄ω ≈ 0.44 MeV, while it is observed at h̄ω ≈ 0.43 MeV, which is very good (see Fig.
1i).

Comparing all the experimental dynamical moments of inertia J (2), we see clearly that J (2) increases with decreas-
ing N at low frequencies (see Fig. 2a). This general behavior is correctly reproduced by the theoretical calculations
of the PSM (see Fig. 2b). This is also consistent with the results reported by Smith et al. [8] for the 127,129,131Pr
isotopes. This characteristic is understood to relate with the increase in the associated deformation of all the πh11/2

bands while decreasing N . In fact, the PSM calculations employed varying deformation parameters from ǫ2= 0.194
in the heavier 133Pr isotope to ǫ2= 0.300 in the lighter 125Pr isotope.

B. Band diagram analysis

The variation and backbending in moments of inertia as shown above correspond to rotation alignment of quasipar-
ticles in particular orbitals. For odd-mass nuclei, it is phenomenologically associated with crossings between bands
with 1- and 3-qp configurations. In our present case, 1-qp configurations are those from the deformed proton h11/2

orbit, while 3-qp ones consist of these proton 1-qp plus a pair of h11/2 neutrons. Thus before we analyze the structure
of the bands, it is useful to look at the deformed single particle levels.
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FIG. 1. Comparison between theory and experiment. a), c), e), g), i): Dynamical moment of inertia J (2) (h̄2MeV−1), and

b), d), f), h), j): Twice the kinetic moment of inertia J (1) (h̄2MeV−1).

In Fig. 3 the single particle levels for protons and neutrons are shown which contribute to the 3-qp bands corre-
sponding to the region of the backbendings. The Nilsson states have the following spherical components: N = 5, l
= h, j = 11/2 and m = 7/2, 3/2, 1/2, 5/2, 9/2, which can be represented as [5 h11/2 7/2], [5 h11/2 3/2], [5 h11/2

1/2], [5 h11/2 5/2], and [5 h11/2 9/2], respectively. For the case of the proton single particle levels there are mainly
three levels that contribute in the backbending region, which are [5 h11/2 5/2]π, [5 h11/2 3/2]π, and [5 h11/2 1/2]π.
These levels are closer when the number of neutrons is increased, reflecting a weaker splitting of the single particle
levels with a smaller deformation. For 125,127Pr there are two neutron single particle levels [5 h11/2 7/2]ν and [5 h11/2

5/2]ν, which contribute in the backbending region. In the case of 129Pr there are three neutron single particle levels
[5 h11/2 9/2]ν, [5 h11/2 1/2]ν and [5 h11/2 7/2]ν, which are important. For 131,133Pr we have only two neutron single
particle levels [5 h11/2 9/2]ν and [5 h11/2 7/2]ν which are relevant to the discussion.

The band diagrams help us to understand the backbending effects which are present in the odd-Pr nuclei. In Fig. 4
and Fig. 5, the band diagrams for the 125,127,129,131,133Pr isotopes are shown, where we have marked each band with
the corresponding qp configuration. In the calculation, our configuration space is built by many more qp states, but
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online). a) Experimental data, and b) The PSM calculation.
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FIG. 3. Deformed single-particle energy levels for protons and neutrons near the Fermi level represented by the closed circle.

we only show in each diagram the most important ones.
In these diagrams for the 125,127,129,131Pr, we can see that the low spin states in the yrast bands are represented

by a quasiproton K = 3/2 state from πh11/2. This configuration suggests that the low spin states are based on the
decoupled h11/2 protons, and in this way the first proton alignment is blocked. These results are in agreement with

the experimental assignment. In the case of 133Pr, the low spin states are represented by a quasiproton K = 1/2 state
from πh11/2, which is different from the results reported in Refs. [4–7].

For the case of 125Pr the bandcrossing in the yrast band occurs approximately at I = 47/2−. The band which
generates this crossing is a 3-qp state consisting of h11/2[1/2] quasiproton plus a pair of quasineutrons h11/2[5/2,-7/2].

The PSM predicts another band crossing at I = 63/2−, which is caused by a 3-qp state of h11/2[1/2] quasiproton plus

a pair of quasineutrons h11/2[-3/2,5/2] (see Fig. 4a). In 127Pr, the crossing is predicted at I = 43/2− by a 3-qp band
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FIG. 4. Band diagrams for 125−129Pr.

also. This band has a configuration of a quasiproton state h11/2[1/2] plus a pair of quasineutrons h11/2[5/2,-7/2] (see

Fig. 4b). For 129Pr, we can see that the crossing occurs at I = 39/2−. The crossing band is identified as a 3-qp band
which has a configuration of a quasiproton state h11/2[1/2] plus a pair of quasineutrons h11/2[5/2,-7/2]. A third band

crossing is predicted at I = 59/2−. This band is generated by a quasiproton state h11/2[-3/2] plus a pair state of
quasineutrons h11/2[5/2,-7/2] (see Fig. 4c).

In the last two isotopes 131,133Pr, it is possible to see three configurations in each yrast band (see Figs. 5a and 5b).
In 131Pr the crossing occurs at I = 39/2− which is generated by 3-qp band that has a configuration of a quasiproton
h11/2[1/2] plus a pair state of quasineutrons h11/2[5/2,-7/2]. In this case the high spin states are generated by a

quasiproton h11/2[-3/2] plus a pair state of quasineutrons h11/2[5/2,-7/2]. For the 133Pr isotope, the crossing occurs

at I = 15/2−. This crossing is represented by a 1-qp band with a configuration of a quasiproton h11/2[-3/2]. It is also

possible to observe another crossing in high spin states (I = 39/2− to 51/2−), which is generated by a quasiproton
h11/2[-3/2] plus a pair state of quasineutrons h11/2[5/2,-7/2]. In this way we can observe how the PSM describes very
well all yrast bands with more than one configuration in each Pr isotope.

Finally, in Fig. 6, we compare the alignment diagrams of the yrast bands obtained by the PSM with the experi-
mental data. It is possible to observe an amount of spin alignment in each Pr isotope. This behavior is reproduced
successfully by the PSM where it explains these effects in terms of the crossing between the ground band and the
3-qp band as we have seen before. However, in the nuclei with more neutrons (131,133Pr), the high spin states are not
reproduced satisfactorily perhaps due to the presence of γ deformation in these nuclei.

We admit that the present calculation, while well reproducing the variation in the interaction strength at the band
crossings, does not give all the observed variations of the crossing frequencies when neutron number changes (see
Fig. 2). We note that precise positions (i.e spins or rotational frequencies) where quasiparticle alignments occur are
very sensitive to several calculation conditions. In the first place, correct single particle states are important for the
behavior of the aligned quasiparticle states. We note that our deformed Nilsson single particle states are obtained by
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FIG. 5. Band diagrams for 131−133Pr.

using the original Nilsson parameters [32] without any adjustment that may best suit the present nuclei. More careful
choices in the input deformation parameters may also improve the agreement. We do not do such a fine tuning as far
as the essential physics has been understood.

IV. CONCLUSION

The spectroscopic calculations obtained with the PSM for 125,127,129,131,133Pr nuclei have allowed us to study
the observed yrast bands in these odd-proton nuclei. Our calculations reveal that the dynamical moment of inertia
increases its value at low frequency when N is decreased. This characteristic is related to the increase in the associated
deformation in these yrast bands for the lighter isotopes.

The PSM reproduces very well the backbending phenomenon. This model proposes that this phenomenon occurs
by the alignment of a 3-qp state which is formed by a quasiproton state plus a pair of a quasineutron state. These
states are in the h11/2 subshell. In conclusion, the PSM proved to be an excellent model to reproduce highly sensitive
experimental data in the odd-Pr isotopes.

ACKNOWLEDGMENTS

We acknowledge financial help from DGAPA, PAEP (102301), CONACyT (México), PAPIIT (IN121809-2) and
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