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We study the bulk deformation properties of the Skyrme nuclear energy density functionals.
Following simple arguments based on the leptodermous expansion and liquid drop model, we apply
the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To
this end, we validate the commonly used functional parametrizations against the data on excitation
energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei.
After subtracting shell effects, the results of our self-consistent calculations are consistent with
macroscopic arguments and indicate that experimental data on strongly deformed configurations
in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The
resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei
close to the stability valley, whose macroscopic deformability hangs on the balance of surface and
Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry
energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-
rich matter and description of fission rates for r-process nucleosynthesis.

PACS numbers: 21.10.Dr, 21.60.Jz, 21.65.Ef, 24.75.+i

I. INTRODUCTION

Ongoing efforts to develop the nuclear Energy Den-
sity Functional (EDF) of spectroscopic quality are faced
with the challenge to find optimal experimental and the-
oretical constraints that would help us pinning down its
various coupling constants. Traditional parameteriza-
tions of nuclear EDFs such as Skyrme and Gogny of-
ten rely, through the fitting protocol applied, on a com-
bination of carefully selected experimental data as well
as pseudo data characterizing properties of nuclear mat-
ter (see, e.g., discussion in Refs. [1–5]). Considering
the fairly simple forms (and small number of coupling
constants) of commonly used nuclear EDFs, the success
of the nuclear density functional theory (DFT) to de-
scribe a wide range of nuclear properties has been truly
remarkable. However, the robustness of these parame-
terizations when going away from the neighborhood of
the stability valley, where experimental data are abun-
dant, to the neutron-rich region where data are scarce or
non-existent, is questionable. Indeed, large differences in
predictions for very neutron-rich or super-heavy elements
seen for various EDFs [6–8] is highly unsatisfactory. In
fact, recent systematic studies of Skyrme EDFs showed
that some coupling constants cannot be properly con-
strained by existing data, and that the current forms of
EDFs are too limiting [9, 10]. Moreover, early attempts
to employ statistical methods of linear-regression and er-
ror analysis [11] have been revived recently and applied
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to determine the uncertainties of EDF parameters, er-
rors of calculated observables, and to assess the quality
of theoretical extrapolations [4, 10, 12–14]. The major
uncertainty in nuclear EDF lies in the isovector channels
that are poorly constrained by experiment; hence, new
data on unstable nuclei with large neutron excess hav-
ing a large “lever arm” from the valley of stability are
essential [15].

The pool of fit-observables entering the optimization
protocol of EDF, usually contains experimental data
characterizing both bulk (global) and local nuclear prop-
erties, as well as theoretical pseudo-data pertaining to
global nuclear matter properties (NMP). The charac-
terization in terms of “bulk” and “local” is not very
precise and somehow arbitrary; it has its origin in the
macroscopic-microscopic approach, which offers a de-
scription in terms of a macroscopic liquid drop (whose
properties change smoothly as a function of nucleon num-
bers) and shell correction that oscillates rapidly with shell
filling [16–19]. In the context of DFT, the binding energy
of a nucleus of mass A and neutron-excess I = (N−Z)/A
can be split into a smooth function of I and A, and a
fluctuating shell correction term by means of the Struti-
nsky energy theorem [16, 20–23]. This theorem, together
with the shell-correction method, offers a formal frame-
work to link the self-consistent DFT with macroscopic-
microscopic models which often provide useful insights
in terms of the liquid drop (or droplet) model and shell
effects.

Single-particle shell structure can be accessed through,
e.g., experimental separation energies and single-particle
strength. Such fit-observables are often used in the de-
termination of EDF parameterizations [1, 24]. Similarly,
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the volume and symmetry terms of the liquid drop model
(LDM) [25, 26] are related to nuclear matter proper-
ties, which are relatively well determined. This effec-
tively constrains specific combinations of parameters of
the EDF. However, surface terms of the LDM are harder
to pin down. In a recent work [27], the leptodermous
expansion of the nuclear binding energy was revisited,
and the LDM parameters of several EDFs were extracted
from DFT calculations for very large nuclei. While the
surface and curvature terms came out to be fairly robust,
it was found that the surface-symmetry coefficient assym

of the LDM could vary by a factor 3 across the set of
parameterizations. This coefficient enters the expression
for the symmetry energy in the spherical LDM:

ELDM
sym

A
=

(

asym +
assym

A1/3

)

I2, (1)

where asym is the (volume) symmetry energy coefficient.
A thorough compilation of symmetry energy coefficients
obtained in different EDFs, assuming various definitions,
can be found in Sec. 4.7 of Ref. [28].

In early Hartree-Fock (HF) and extended-Thomas-
Fermi studies [29–32] using various EDFs, a correlation
between assym and asym was pointed out. Namely, EDFs
having large values of asym have also large |assym|. Since
the surface-symmetry coefficient is negative, these two
terms act in opposite directions in Esym. The correlation
between bulk and surface symmetry energy was further
discussed in Refs. [28, 33–36]; it was concluded that the
presence of the correlation makes an absolute determina-
tion of asym and assym from nuclear masses difficult (see
also discussion in an early Ref. [37]).

The experimental information about assym is fairly lim-
ited. The ratio of the surface-symmetry to symmetry (or
volume-symmetry) coefficients, rS/V = assym/asym, has
been estimated from the electric dipole strength distri-
bution [38], masses [36, 39–41], masses and radii [33, 35],
and excitation energies of isobaric analog states [42]. Re-
cently, an attempt has been made to extract assym [43]
from the separation energies through the displacement
of neutron and proton chemical potentials. They noted
a large A-variation of rS/V . As discussed later, the DFT
values of rS/V obtained in Refs. [27, 28, 44] are fairly
consistent with phenomenological estimates.

Since the absolute value of assym is not well con-
strained by experimental data on ground-state (g.s.) nu-
clear properties, one needs to find some mechanism that
would enhance the surface-symmetry term with respect
to the dominant volume symmetry energy. Since the
surface-symmetry energy increases with both neutron ex-
cess and the nuclear surface area, it is anticipated that
strongly deformed configurations of nuclei with appre-
ciable neutron excess can be of help. Indeed, the nuclear
shape deformation increases the surface area thus ampli-
fying the surface-symmetry energy in a neutron-rich nu-
cleus. Conversely, the precise determination of surface-
symmetry energy is important to describe the deforma-
bility of neutron-rich systems and validate theoretical ex-

trapolations. In this context, one can mention several
phenomena involving neutron excess and deformation:

• Position of the neutron drip line. Deformed nuclei
are expected in several regions near the neutron
drip line [45, 46]. In some cases, deformation energy
can impact their mere existence. For instance, it
has been predicted that there exist particle-bound
even-even nuclei that have at the same time nega-
tive two-neutron separation energies due to shape
coexistence effects [45].

• Borders of the superheavy region. The super- and
hyperheavy nuclei with Z >126 can exist in states
associated with very exotic topologies of nuclear
density as the competition between Coulomb, sur-
face, symmetry, and shell effects can give rise to for-
mation of voids [47]. The subject of exotic (bubble,
toroidal, band-like) configurations in nuclei with
very large atomic numbers has been addressed by
several studies [48–51]. It is difficult to say at
present whether these exotic topologies can occur
as metastable states [50] and what is their stability
to various shape deformations.

• Fusion and fission of neutron-rich nuclei. Synthesis
of heavy and superheavy neutron-rich nuclei is pro-
foundly affected by nuclear deformability through
the energetics of fusion and fission valleys [52, 53].
Our ability to describe fission of neutron-rich sys-
tems is also important for modeling nuclear reac-
tors. While DFT calculations are currently able
to predict barrier heights of known nuclei with a
typical accuracy of 20%, the resulting uncertain-
ties in fission cross sections are still large [46]. The
ability of modern nuclear EDFs to predict neutron
induced-fission rates for neutron rich nuclei that
cannot be measured is crucial. At this point, the
dependence of rates on fission barriers is apprecia-
ble [54].

• Rotational properties of neutron rich nuclei. Nu-
clear deformation determines the response of the
nucleus to angular momentum. Little is known
about the collective rotation of very neutron-rich
systems [55] and the corresponding interplay be-
tween deformation, isospin, and rotation.

• Astrophysical r-process. Fission of neutron rich nu-
clei impacts the formation of heavy elements at the
final stages of the r-process through the recycling
mechanism [56, 57]. The fission recycling is be-
lieved to be of particular importance during neu-
tron star mergers where free neutrons of high den-
sity are available [54, 57]. Also, neutrino-induced
fission of neutron rich nuclei could affect the r-
process flow in some scenarios [58].

• Structure of neutron stars. Nucleonic phases in the
inner crust of neutron stars are associated with very
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neutron-rich deformed nuclei or strongly deformed
pasta and anti-pasta phases [59, 60].

The primary motivation of this paper is to assess the
role played by the surface-symmetry energy in neutron
rich nuclei. To this end, we study the surface-symmetry
contribution to the LDM energy and demonstrate that it
may be as important as the Coulomb term in driving de-
formation properties of very neutron-rich systems. Using
the self-consistent DFT, we survey excitation energies of
superdeformed (SD) states in the Hg-Pb region and SD
fission isomers in the actinides. By subtracting micro-
scopic shell corrections, we extract the macroscopic part
of the HF deformation energy and demonstrate that the
outcome is consistent with qualitative macroscopic esti-
mates. Our results indicate that experimental data on
strongly deformed configurations in neutron-rich nuclei
are key for optimizing the isospin channel of the nuclear
energy density functional.

Our paper is organized as follows. In Sec. II, based
on the spherical and deformed LDM, we discuss gen-
eral properties of the surface-symmetry term. In par-
ticular, we analyze symmetry-energy parameters of var-
ious Skyrme EDFs, study global correlations between
assym and asym, and show how to disentangle the surface-
symmetry term by studying deformed configurations in
nuclei with nonzero neutron excess. Self-consistent DFT
calculations of fission isomers in the actinides and band-
heads of super-deformed rotational bands in the A ∼ 190
region are presented in Sec. III. The methodology used
to extract the smooth contribution to the total energy is
outlined in Sec. IV. Section V presents our calculations
of the smooth contributions to the deformation energy of
SD states and compares HFB and LDM results. Finally,
the conclusions of our work are given in Sec. VI.

II. LIQUID DROP MODEL FROM THE

SKYRME ENERGY DENSITY FUNCTIONAL

The LDM provides a convenient parametrization of the
bulk part of the binding energy of a spherical even-even
nucleus with Z protons and N neutrons. Expressed in
terms of volume (avol), surface (asurf), curvature (acurv),
symmetry, surface-symmetry, Coulomb, and Coulomb
exchange parameters, it reads:

ELDM
sph = avolA + asurfA

2/3 + acurvA
1/3

+ asymI2A + assymI2A2/3 + a(2)
symI4A

+
3

5

e2

rch
0

Z2

A1/3
−

5

4

(

3

2π

)2/3
3

5

e2

rch
0

Z4/3

A1/3
, (2)

where e is the electric charge and rch
0 the Wigner-Seitz

radius. The justification of (2) can be given in terms of
the leptodermous expansion valid for systems with a well
developed surface [61–63] that sorts the various contribu-
tions to the binding energy of finite nuclei in terms that

have transparent physical meaning. The expansion (2)
can be extended to higher orders [64, 65]. The second-
order symmetry energy term ∝ I4 is not always included
in the macroscopic LDM but it naturally present in the
microscopic LDM expression [27].

A. Approaches to Bulk Nuclear Properties

Some LDM parameters are fundamental NMPs and
can be determined microscopically from ab-initio calcula-
tions of the equation of state of nucleonic matter [66–68].
Another, phenomenological strategy is to obtain LDM
constants, or at least some of them, from a direct fit to
selected experimental data from finite nuclei. The origi-
nal work of Myers and Swiatecki followed such a strategy
[69]: by modeling local fluctuations in particle numbers
due to shell effects, one can extract smooth LDM trends
from experimental nuclear masses. Subsequent refine-
ments involved the upgrade from a simple drop to a more
accurate droplet model [26], which allowed to pin down
additional terms in the leptodermous expansion. Further
refinements can be found in, e.g., Refs. [39, 64, 70–72].

Just as in the microscopic approach, whose outcome
depends on both the input (i.e., nucleon-nucleon in-
teractions) and the theoretical method used to solve
the many-body problem, the results of phenomenolog-
ical procedure depend on the choice of fit-observables
and prescription used to compute shell corrections (see
Ref. [73] for a recent concise overview of this topic).
There are significant correlations among the different
LDM terms and some parameters are poorly determined
[36]. In particular, precise extraction of higher-order
isospin-dependent terms requires abundant data for very
neutron-rich and/or heavy nuclei, which are not available
at present.

B. Spherical Liquid Drop Based on Density

Functional Theory

An advantage of the macroscopic approach to bulk nu-
clear properties is that it can also be applied in the con-
text of the nuclear DFT. While some LDM constants
pertaining to infinite or semi-infinite NMP can be ex-
tracted from EDF parameterizations [1, 28, 74], surface
and curvature terms are best determined by using the
semi-classical approach [75, 76] or by removing the contri-
bution from shell effects from self-consistent DFT results
[23]. There are relatively few examples of latter studies in
the literature, and most were confined to spherical sym-
metry. In Ref. [77], the parameters avol, asym, asurf, assym

and rch
0 were estimated from spherical HFB calculations

using the finite-range Gogny force D1S [78]. In [79], a
similar work was carried out for the NL3 parametriza-
tion of the Relativistic Mean Field (RMF) [80].

This program was carried out more systematically in
Ref. [27] for Skyrme EDFs and several parameterizations
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of RMF Lagrangians using the HF method. The main
difference with [77, 79] is that the convergence of the lep-
todermous expansion was tested using an extended sam-
ple of very large spherical nuclei. The Coulomb terms
were ignored to be able to approach nuclei of arbitrary
sizes and to avoid radial instabilities (Coulomb frustra-
tion) characteristic of systems with many protons. The
shell corrections were extracted from the HF results ac-
cording to Green’s function method and the generalized
Strutinsky smoothing procedure of Refs. [81–83]. Table I
displays the values of the symmetry, surface-symmetry
and surface coefficients for various realizations of the nu-
clear EDF. These values are fairly close to those obtained
in Ref. [28]. We also note that in the case of NL3, there
are relatively large differences between the values in Ta-
ble I and those reported in Ref. [79]: these can be at-
tributed to different ways of extracting the shell correc-
tion, and fitting the LD formula (sample size, treatment
of the Coulomb term).

TABLE I: Surface, symmetry, and surface-symmetry LDM co-
efficients (in MeV) of various EDFs extracted from leptoder-
mous expansion in Ref. [27]. The Skyrme EDF parametriza-
tions are: SkM* [84], SkP [85], BSk1 [86], BSk6 [87], SLy4-
SLy6 [88], SkI3-SkI4 [89], SkO [90]. The RMF Lagrangians
are: NL1 [91], NL-Z [92] and NL-Z2 [93]. For comparison, the

results of LDM fits are given: LDM(1) [39] and LDM(2)-LSD
[72].

EDF asurf asym assym EDF asurf asym assym

SkM* 17.6 30.04 -52 NL1 18.8 43.48 -110
SkP 18.2 30.01 -45 NL3 18.6 37.40 -86
BSk1 17.5 27.81 -36 NL-Z 17.8 41.74 -125
BSk6 17.3 28.00 -33 NL-Z2 17.4 39.03 -90
SLy4 18.4 32.01 -54

SLy6 17.7 31.96 -51 LDM(1) 21.1 30.56 -48.6

SkI3 18.0 34.84 -75 LDM(2) 19.4 29.28 -38.4
SkI4 17.7 29.51 -34 LSD 17.0 28.82 -38.9
SkO 17.3 31.98 -58

As noted in Ref. [27], the leading surface and sym-
metry terms appear relatively similar within each family
of EDFs, with a clear difference for asym between non-
relativistic and relativistic approaches. Obviously, even
small variations in asurf and asym seen in Table I can have
an appreciable impact on the binding energy, as these
coefficients are multiplied by large A- and I2-dependent
factors [27]. For the surface-symmetry coefficient, how-
ever, there are much larger discrepancies. For Skyrme
EDFs, for instance, there is a factor of two between the
largest and smallest value. This demonstrates that assym

is very poorly constrained in the current EDF parame-
terizations (see also discussion in [28]).

In addition, as discussed in the previous section, there
appears a clear (anti-)correlation between the (positive)
value of the symmetry coefficient and the (negative) value
of the surface-symmetry coefficient [28–36]. Figure 1,
displays the pairs (assym, asym) for the Skyrme EDFs of
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FIG. 1: (color-online) Correlation between the symmetry and
surface-symmetry coefficients extracted from Skyrme EDFs
from Table I (dots) and Skyrme EDFs of Ref. [28] (circles).
The phenomenological LDM values of Table I are also indi-
cated (stars) as well as the hydrodynamical [38] and mass
[43, 44] estimates: rS/V = −2 and −1.6, respectively (dashed
lines). The linear fit to the values of Ref. [28] is shown by a
dotted line.

Table I and the EDFs of Ref. [28]. The ratio rS/V ex-
tracted from experimental masses is rS/V ≈ −1.7 [36].
When looking into details, however, it exhibits a large
A-variation [43]; rS/V ranges between −1 (for A ≥ 12)
and −1.7 (for A ≥ 50). As discussed in [44], the data
on the electric dipole polarizability yields rS/V ≈ −1.65.
The DFT values shown in Fig. 1 are not inconsistent with
these phenomenological estimates. While a correlation
between asym and assym is clear, a very large spread of
values is indicative of the inability of current data on g.s.
nuclear properties to adequately constrain assym. It is in-
teresting to note that the LDM values of Table I and phe-
nomenological estimates cluster around asym = 30MeV
and assym = −45MeV.

To get more insights into the consequences of this ob-
servation, we plot in Fig. 2 the symmetry and surface-
symmetry contributions to the binding energy per nu-
cleon ELDM/A for the microscopic LDM derived from
Skyrme EDFs listed in Table I along the LDM val-
ley of stability. The latter one is defined by minimiz-
ing the LDM energy in the (Z, N) plane. The symme-
try energy slightly increases with mass number (upper
panel), owing to the fact that the valley of stability bends
down for increasing Z, so that the energy per nucleon
Esym = asymI2 increases. Contrariwise, the surface-
symmetry energy slightly decreases with A because of
the A−1/3 dependence.

Interestingly, the total symmetry energy (i.e., the
sum of volume and surface contributions) exhibits much
smaller spread between various EDFs: from about 0.4/A
MeV for both Esym/A and Essym/A to about 0.1/A MeV
for the sum. This is a consequence of the aforementioned
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FIG. 2: (color-online) Contributions to the microscopic LDM
energy per nucleon along the LDM valley of stability: vol-
ume symmetry term asymI2 (top), surface-symmetry term

assymI2A−1/3 (middle), and the total symmetry energy (bot-
tom), for the microscopic LDM derived from Skyrme EDFs
of Table I.

correlation between volume and surface symmetry ener-
gies that implies that large discrepancies between indi-
vidual contributions to the bulk energy tend to cancel
out at the level of the total binding energy. We note that
nuclear binding energies are indeed prime fit-observables
constraining parameters of most EDFs.

C. Deformation Energy of Nuclear Liquid Drop

The relative LDM contributions of the volume-
symmetry and surface-symmetry energies can be disen-
tangled if shape deformation is present. Indeed, the de-
formation energy of the deformed LDM can be written
as [17, 39, 94]:

ELDM
def = ELDM − ELDM

sph =

(bs − 1)asurfA
2/3 + (bcurv − 1)acurvA

1/3+

(bs − 1)assymI2A2/3 + (bc − 1)
3

5

e2

r0

Z2

A1/3
, (3)

where the geometrical factors bs, bcurv and bc depend on
the shape of the deformed drop (by definition, they are
equal to unity at the spherical shape). Since the nu-
clear volume is conserved in the LDM, the surface and
curvature b-factors increase with deformation. On the
other hand, bc becomes less than one as the Coulomb
energy of the deformed drop is lower than that of the
spherical drop. While the volume-symmetry energy is
shape-independent, the surface-symmetry term has the
same dependence on the nuclear shape and A as the sur-
face term. Consequently these two contributions to the
symmetry energy behave differently in deformed nuclear
drops.

As an example, we plot in Fig. 3 the individual con-
tributions to ELDM

def for the two A = 100 drops at a

fixed quadrupole deformation β̃2 = 0.6. (All remain-
ing deformations are set to zero.) Specifically, shown
are contributions from the surface, curvature, Coulomb,
and surface-symmetry terms corresponding to different
Skyrme EDFs. The Coulomb radius r0 was assumed to
be the same as the Wigner-Seitz radius defining the sat-
uration density.

Since for 100Sn the isospin excess is zero, the defor-
mation energy contribution coming from the surface-
symmetry term vanishes. The variations of the total
LDM energy between different EDF parametrizations are
relatively small and primarily related to slightly different
values of asurf. The picture changes dramatically when
going to 100Zn, a very neutron rich nucleus with isospin
I = 0.4. The variations between predictions of different
EDFs have a much larger amplitude and are caused al-
most exclusively by the surface-symmetry term. This in-
dicates that the theoretical differences in the LDM defor-
mation energy of heavy neutron-rich nuclei are almost en-
tirely driven by the poorly determined surface-symmetry
term. As it is clear from Fig. 3, an experimental access
to this term can be provided by extracting shell energy
from the measured masses of very deformed configura-
tions in neutron-rich nuclei. Another interesting obser-
vation drawn from the deformed LDM exercise is that,
contrary to the usual scenario in which the macroscopic
deformability is solely driven by the competition between
surface and Coulomb terms, the macroscopic deformation
energy of very neutron rich nuclei involves a three-way
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FIG. 3: (color online) Individual contributions to the total
deformation energy per nucleon of the microscopic LDM for
nine Skyrme EDFs for two A = 100 isobars: 100Sn (I = 0,
top) and 100Zn (I = 0.4, bottom). The assumed quadrupole

deformation is β̃2 = 0.6.

competition between the repulsive surface term and at-
tractive Coulomb and surface-symmetry terms.

III. SKYRME HFB CALCULATIONS AT

LARGE DEFORMATIONS

The binding energy of a deformed nuclear configura-
tion can be decomposed into a macroscopic part and
shell correction. In order to determine whether the
macroscopic features related to the surface-symmetry en-
ergy, identified in Sec. II C, show up in self-consistent
DFT calculations for actual nuclei, we have performed
Hartree-Fock-Bogoliubov (HFB) calculations for a num-
ber of states at large deformation with available experi-
mental information.

A. Survey of Superdeformed Bandheads and

Fission Isomers

We selected two regions of the nuclear chart: in the
actinides, there is a number of isotopes where the excita-

tion energy of the fission isomer is relatively well-known
[95]. In the neutron-deficient Hg and Pb isotopes, the
linking transition between the SD and g.s. bands have
been identified for several nuclei, so that the energy of
the 0+ band-head could be extracted [96–101]. All SD
band-head data used in this work are listed in Table. II.

TABLE II: Experimental energies of 0+ band-heads of SD
states in A=190 mass region and in the actinides.

Nucleus ESD(0+) (MeV) Reference
192Hg 5.3 (9) [98]
194Hg 6.017 [97]
192Pb 4.011 [96]
194Pb 4.643 [99]
196Pb 5.630(5) [101]
236U 2.750 [95]
238U 2.557 [95]
240Pu 2.800 [95]
242Cm 1.900 [95]

HFB calculations were performed with the DFT solvers
HFBTHO [102] and HFODD [103–107]. To benchmark
binding energies of superdeformed configurations, we em-
ployed several Skyrme EDFs in the particle-hole channel.
Pairing correlations were modeled by an mixed-pairing
interaction with a dependence on the isoscalar density
[108, 109]. All calculations were performed with a cut-off
energy of Ecut = 60 MeV to truncate the quasi-particle
space. For each parametrization of the Skyrme interac-
tion, the pairing strength was fitted to the average neu-
tron pairing gap in 120Sn according to the procedure de-
scribed in Ref. [108]. In both solvers, the quasi-particle
solutions to the HFB problem are expanded on the de-
formed Harmonic Oscillator (HO) basis. Since we are
probing very elongated systems, we performed the cal-
culations using a stretched basis with a large number of
deformed HO shells, Nmax = 20. All calculations were
performed assuming axial, reflection symmetric shapes.
The constrained minimization was performed using the
augmented Lagrangian method [110] and the procedure
of Refs. [111, 112].

As an illustration of typical deformation landscapes
in the two regions, Fig. 4 shows the calculated poten-
tial energy curves for 194Pb and 236U as functions of
the quadrupole deformation β extracted from the mass
quadrupole moment 〈Q̂20〉 and the total rms radius:

β ≡

√

π

5

〈Q̂20〉

〈r2〉
. (4)

While the actinide nuclei of interest are always predicted
to have prolate-deformed ground states with β2 ≈ 0.3,
neutron-deficient Hg and Pb isotopes show a more com-
plex g.s. pattern involving coexisting oblate and spheri-
cal structures [113].
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and 236U (bottom) versus quadrupole deformation β calcu-
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ial symmetry is assumed.

The predicted excitation energy of the SD minimum
relative to the g.s., E∗

th = ESD − Eg.s., between the
HFB SD minimum and g.s. minimum can be com-
pared with the experimental value E∗

exp. The residuals
∆E = E∗

th − E∗

exp are plotted in Fig. 5 for 22 different
Skyrme EDFs. It is rather striking to notice that, for a
given nucleus, the differences between various EDFs can
be as high as 4 MeV, which is often greater than the
excitation energy itself. These large fluctuations some-
times occur within a family of Skyrme EDFs, e.g., SLy[x],
and has been explained in some cases by the different
recipes to treat the center of mass [114]. By contrast, the
Brussels-Montreal parametrizations Bsk[x] and Msk[x]
are more consistent with one another. An appreciable
EDF-dependence for SD states had already been pointed
out in previous Refs. [115, 116]. Similarly, the sensitivity
of fission barriers on EDF parametrizations was studied
in Refs. [117–119]. In the context of this work, it is espe-
cially interesting to point out that the surface-symmetry
term has been claimed [118] to have a significant influ-
ence on self-consistent fission barriers.

The large spread in calculated values of E∗ comes as
little surprise: very few EDFs have been optimized by
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FIG. 5: (color-online) Residuals ∆E = E∗

th − E∗

exp (top) and
rms deviations from experiment (bottom) for various Skyrme
EDFs. Additional references for the Skyrme forces: SLy5-
SLy7 [88], SkMP [120], SkX-SkXC [121], SIII [122], MSk1-
MSk6 [123], BSk2 [87], SkO’ [90]. The average rms deviation
for the set of EDFs considered (marked by a dashed line in the
lower panel) is 1.26 MeV for the nine data points of Table II
and 1.34 MeV for the fission isomers nuclei.

considering data probing large deformations. The im-
portance of considering strongly deformed shapes when
fitting the coupling constants of EDFs was discussed in
Refs. [32, 84, 124] but this program has been carried out
only in a handful of cases. The SkM* functional [84] has
been fitted by considering the experimental fission bar-
rier in 240Pu. The D1S Gogny interaction [78, 125] was
also optimized for fission properties. In the Bsk14 EDF
of the HFB-14 mass model [126], data on fission barriers
were utilized to optimize the EDF parameters by adding
a phenomenological collective correction accounting for
the zero-point rotational-vibrational motion. In this ar-
ticle, we do not employ zero-point corrections as we are
primarily interested in the deformation properties of the
functionals themselves. We refer, e.g., to [127] for a more
thorough discussion of dynamical correlations and their
impact on deformation properties of nuclei. We note in
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passing that such correlations are supposed to impact
standard DFT predictions of g.s. energies of Hg and Pb
nuclei due to coexistence effects [128, 129].

B. Estimation of Theoretical Errors

Since the values of ∆E in Fig. 5 are subject to nu-
merical and experimental uncertainties, it is important
to estimate their respective errors before assessing the
model dependence of results. In order to validate E∗

th,
we studied the convergence of our HFB results with re-
spect to the size of HO space used. Figure 6 shows the
HFB+SkM* energy of the g.s. and SD state of 240Pu cal-
culated with the HFBTHO solver as a function of Nmax,
The HFBTHO numbers are compared to the benchmark
results obtained with the precise coordinate-space DFT
solver HFBAX [130].

With the large HO basis used here (Nmax=20), the
theoretical error on the energy of either the g.s. or the
SD state is around 600 keV. Since the HFB theory is
variational, the error on the excitation energy is in fact
much smaller (see the bottom panel of Fig. 5), and comes
principally from the different convergence rates of HFB
states with β2 ≈ 0.3 and β2 ≈ 0.6. Those differences are
due to the combination of effects coming from the basis
deformation and the choice of oscillator frequency ~ω.
At Nmax ≥ 16, the dependence on ~ω is rather weak;
hence, the only remaining source of fluctuations is the
basis deformation. For the residuals, we estimate the
latter empirically to be at most 500 keV for 16 shells,
and less than 100 keV for Nmax ≥ 16 shells.

The convergence pattern of HFB calculations seen in
Fig. 6 is to a large extent exponential. A similar be-
havior has also been observed in ab-initio calculations
of Refs. [131–133]. However, in all these many-body ap-
proaches, the size of the actual model space grows combi-
natorially with the number of active particles and single-
particle states taken, which is not the case for DFT.
In a recent work, the exponential convergence of wave-
functions expanded in a HO basis has in fact been related
to its weak differentiability properties [134]. It has been
argued therein that this may be a generic property of
systems with exponentially decaying wave-functions.

For all the nuclei considered in Fig. 6 and Table II,
experimental g.s. masses are known to an excellent pre-
cision of approximately 2 keV [135]. In the A ∼ 190
region, the uncertainty of the SD band-head comes from
the extrapolation of the rotational band down to spin 0+.
This procedure is slightly model-dependent, but its error
is estimated to be only ∼5 keV [96–101]. In the actinides,
the determination of the excitation energy of the fission
isomer is slightly less precise: it is about 5-10 keV for
236,238U and about 200 keV for 240Pu and 242Cm [95].

Considering the above, the theoretical fluctuations of
∼several MeV in ∆E seen in Fig. 5 are well above numer-
ical uncertainties in E∗

th and experimental uncertainties
in E∗

exp. Consequently, these deviations are rooted in ac-

3.3

3.5

3.7

-1804

-1802

-1800

-1803

-1801

E
*
 (

M
e
V

)
T
o
ta

l 
e
n
e
rg

y
  

(M
e
V

)

HFBAX

HFBAX

HFBAX

Number of HO shells

240Pu

FIG. 6: (color-online) Convergence of the HO basis expan-
sion for the HFB+SkM* binding energy of fission isomer and
ground state (top panel) and excitation energy of fission iso-
mer (bottom panel) in 240Pu as a function of the HO basis
size. Results are compared with the benchmark numbers ob-
tained with the precise coordinate-space solver HFBAX [130].

tual EDF parametrizations. In the next section, we shall
investigate the relation between the fluctuations in ∆E
and the underlying LDM description.

IV. BULK DEFORMATION ENERGY OF THE

SKYRME ENERGY DENSITY FUNCTIONAL

In order to extract the smooth LDM energy from HFB
results, the fluctuating contributions to the energy (i.e.,
shell-correction and pairing terms) must be removed. Af-
ter describing the details of the extraction technique em-
ployed, we show how the leptodermous expansion of the
smoothed HFB energy works.

A. Pairing and Shell Corrections

To extract shell and pairing corrections from the total
HFB energy is not an easy task as the building blocks of
HFB are quasi-particles, rather than the single-particle
states that enter the Strutinsky energy theorem [22].
Moreover, while the contribution of pairing correlations
to the total energy must be eliminated, the induced shape
polarization must be kept, as it is relevant for making the
direct comparison with experiment.

To extract the effect of HFB pairing, we carried out HF
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calculations at the equilibrium deformations of HFB g.s.
and SD configurations. This was achieved by constrain-
ing the expectation values of the HF multipole moments
at those corresponding to HFB solutions. In practice, it
sufficed to consider Q̂20, Q̂40, Q̂60, and Q̂80 moments,
higher-order terms being negligible. The advantages of
this procedure are twofold. Firstly, it enables us to re-
move all direct pairing effects. Secondly, it provides a set
of single-particle HF states that can be used to compute
the shell correction δEshell.

Shell corrections were calculated according to the pro-
cedure outlined in Refs. [82, 83]. It combines the stan-
dard shell-correction smoothing method (our original im-
plementation is based on Ref. [17]) with the Green’s func-
tion oscillator expansion method technique that is aimed
at removing the spurious contribution to δEshell stem-
ming from the non-resonant continuum of positive en-
ergy states. Following Ref. [81], we employed the follow-
ing smoothing parameters: smoothing widths γn = 1.66
for neutrons and γp = 1.54 for protons (in units of

~ω0 = 41/A1/3) and the curvature correction p = 10.
This choice guarantees that the generalized plateau con-
dition is satisfied [82].
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FIG. 7: (color-online) Proton smoothed single-particle density
g̃(e) in the g.s. and SD configuration of 240Pu calculated with
the SkM* EDF and Nmax = 16 HO shells.

As an illustration, Fig. 7 shows the smooth single-
particle density g̃(e) for protons in the g.s. and fission
isomer of 240Pu obtained with SkM* EDF. The general-
ized plateau condition requires that this function must
be linear across several oscillator shells, and this is in-
deed well fulfilled. Figure 8 displays the convergence of
the shell correction contribution to the deformation en-
ergy, δESD

shell − δEgs
shell, as a function of Nmax. While the

convergence is not perfect, the uncertainty remains fairly
small, around 200 keV.

We should emphasize that there exist alternative ways
to extract shell correction, see e.g., Refs. [73, 136]. How-

E
E

240Pu

FIG. 8: (color-online) Convergence of the shell correction con-
tribution to the deformation energy, δESD

shell−δE
gs
shell, for 240Pu

as a function of Nmax. Calculations were performed with with
the SkM* EDF.

ever, since we use LDM parameters extracted in Ref. [27]
by employing the Green’s function prescription [82], it is
important to follow the same procedure in order for our
analysis to remain consistent.

B. Determination of Microscopic LDM

Deformations

To compare the LDM deformation energy with the
HFB bulk energy, one needs to properly define the shape
of the (sharp) surface of the drop. For the axial, re-
flection symmetric shapes considered in this work, the
drop surface is typically parametrized in terms of de-
formations β̃l defining the multipole expansion of the
drop radius. The problem consists therefore in map-
ping a set {β̃l}l=2,4,··· ,NQ

to a set of multipole moments

〈Q̂λ〉
HF = 〈rλYλ0〉 coming from HF calculations.

The LDM deformation parameters β̃l can be deter-
mined from the system of non-linear equations [137]

〈Q̂λ(β̃l)〉 = 〈Q̂λ〉
HF λ = 0, 2, 4, . . . , NQ. (5)

However, in such an approach involving standard (vol-
ume) multipole moments, the role of higher-order mul-
tipoles becomes artificially exaggerated. It was there-
fore argued (see Refs. [138, 139] and references quoted
therein) that a mapping between the two sets of shape
deformations can be best achieved by using the surface
multipole moments defined as Q̂λ ≡ r2Yλ0, which have
a much softer radial dependence than volume moments.
Deformation parameters β̃l can therefore be extracted by
requiring that the set of equations for dimensionless sur-
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face moments [138, 139]

〈Q̂λ(β̃l)〉

〈r2(β̃l)〉
=

〈Q̂λ〉
HF

〈r2〉HF
(6)

be satisfied, with l, λ = 2, . . . , NQ. In practice only the
four lowest terms with l = 2, 4, 6, 8 are important at SD
shapes. This choice provides the best mapping between
self-consistent multipole moments and deformations of
the sharp surface.

C. Coulomb Polarization

In Ref. [27], the microscopic LDM parameters were
extracted from a set of spherical HF calculations with-
out the Coulomb term. However, such a methodology
is clearly not applicable in realistic calculations. First,
the Coulomb term crucially affects nuclear deformabil-
ity. Second, while its contribution to the total energy
can easily be subtracted, the Coulomb potential induces
a long-range polarization of the mean-field, which af-
fects the equilibrium deformations, single-particle states,
etc. Most importantly, this Coulomb polarization is
deformation-dependent. As a result, the contribution of
the Coulomb term to the excitation energy, E∗

Cou, can
vary by be up to several MeV for the interactions that
we consider in this study.

To take this effect into account at the LDM level, we
first extract the spherical charge radius Rch

0 = rch
0 A1/3

from the self-consistent spherical HF calculations for each
nucleus (Z, N) and then use this value of rch

0 in Eq. (3).
Since the charge radius thus obtained does not come
from a systematic fit but is obtained locally, it intro-
duces shell fluctuations into LDM. However, since spher-
ical self-consistent radii behave smoothly as a function
of shell filling [140] the corresponding shell effect is very
small indeed.

Our actual determination of the LDM charge radius
goes as follows. From the spherical rms proton HF radius
〈R2

p〉, we extract the rms charge radius 〈R2
ch〉 according

to the standard formula:

〈R2
ch〉 = 〈R2

p〉 + 〈r2
p〉 +

N

Z
〈r2

n〉, (7)

where 〈r2
p〉 = 0.764 fm2 and 〈r2

n〉 = −0.116 fm2 are the
squared rms proton and neutron charge radius, respec-
tively. The geometrical charge radius Rch

0 is then ob-
tained from the rms charge radius in the usual way:

Rch
0 =

5

3

√

〈R2
ch〉. (8)

We note that the condition (R2
ch)LD = 〈R2

ch〉
HF together

with Eq. (6) implies that the charge surface of the mi-
croscopic liquid drop is close to that of HF.
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FIG. 9: (color-online) Extraction of the LDM deformation
energy from constrained HF+SLy4 calculations for 236U at
several values of quadrupole deformation β. Shown are: the
total shell correction δEshell (squares), smooth HFB defor-

mation energy ẼHF
def (β) (dots), and the corresponding LDM

deformation energy ELDM
def (β) (triangles). The inset shows

the equivalent LDM deformations β̃l with l=4,6, and 8.

D. Example: Extraction of the Smooth

Deformation energy for 236U

To illustrate the extraction procedure of smooth defor-
mation energy from HF results, and to assess the quality
of the leptodermous expansion, we carry out constrained
HF+SLy4 calculations for 236U shown in Fig. 9. The
constraint on the quadrupole moment was determined
so that the deformation β of Eq.(4) takes the values
β = −0.20,−0.15, . . . , +0.80. Since the HF potential
energy curve consists of several sharply-crossing config-
urations as evidenced by rapidly varying LDM deforma-
tions shown in the inset of Fig. 9, we made no attempt
to interpolate between the mesh points in β. The shell
correction was extracted at each β according to the pro-
cedure discussed in Sec. IVA. The smooth energy at de-
formation β is given by: ẼHF(β) = EHF(β)− δEshell(β),
which defines the smooth component of the HF deforma-
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tion energy ẼHF
def (β) = ẼHF(β) − ẼHF(β = 0). At each

β, the LDM deformation parameters β̃l are computed
according to Sec. IVB. Finally, the deformed LDM en-
ergy ELDM

def (β) is obtained using Eq. (3) with the LDM
constants corresponding to the SLy4 interaction taken
from Table I and the charge radius defined according to
Sec. IVC. As expected, the smooth deformation energy
is growing as a function of deformation; the local varia-
tions are due to configuration changes in HF calculations
and corresponding changes in higher-order shape defor-
mations.

Even though the agreement between ELDM
def and ẼHF

def
is not perfect, it is gratifying to see that the LDM energy
nicely follows the smooth energy extracted from HFB.
The deviation has multiple sources such as the error on
the regression analysis carried in [27], uncertainties of the
shell-correction procedure, neglect of the second-order ef-
fects in density fluctuations [22], LDM assumption of the
sharp surface, limitations of the leptodermous expansion
used, etc. Considering all this, the quality of the lep-
todermous expansion of the deformation energy in de-
formed nuclei is very reasonable.

V. SURFACE-SYMMETRY ENERGY AND

DEFORMED NEUTRON-RICH NUCLEI IN DFT

We are now ready to determine the smooth part of
the deformation energy from HFB results and compare
it with the microscopic LDM using the methodology de-
scribed in Sec. IV. In Fig. 3 we demonstrated that the
uncertainties in the determination of assym impact the
deformation properties of neutron-rich nuclear drops. It
is therefore interesting to see whether in the studies of
well deformed states in realistic nuclei these uncertain-
ties would show up.
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FIG. 10: (color-online) Smooth excitation energy Ẽ∗ of fission
isomers in 236,238U, 240Pu, and 242Cu calculated in HFB and
LDM for seven EDFs. See text for details.

Figure 10 shows the smooth excitation energy Ẽ∗ of fis-
sion isomers calculated in HFB and LDM for seven EDFs.
For each nucleus, we first carried out HFB calculations
to determine the g.s. and SD configurations. The con-
strained HF calculations are then performed based on the
multipole moments of the HFB solution. Shell energies
are subtracted from g.s. and SD HF energies, and this
defines the smooth part of the excitation energy Ẽ∗

HFB in
HFB, i.e., the smooth deformation energy of the excited
state relative to the ground-state. Using the surface mo-
ments obtained in the g.s. and SD minima of HFB, we
extract the equivalent LDM deformation parameters β̃l

and the LDM excitation energy.
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FIG. 11: (color-online) Same as in Fig. 10 except for SD band-
heads in 192,194Hg and 192,194Pb.

As in Sec. III, clear differences between various EDF
parameterizations can be seen. Overall, these variations
can be as large as 4 MeV at the LDM level. As dis-
cussed earlier in Sec. IVD, there is a ∼2MeV shift of
the LDM curves with respect to the HFB results. How-
ever, it is rewarding to see that the shift is systematic
and the EDF-variations seen in HFB are properly cap-
tured by the equivalent LDM. The results for the SD
bandheads are displayed in Fig. 11. In these lighter nu-
clei, the agreement between HFB and equivalent LDM is
better on the average, but local fluctuations can be ap-
preciable (see SkO or SkI3 results for Pb isotopes) and
might be related to a complex pattern of g.s. equilibrium
deformations in these nuclei.

The results shown in Figs. 10 and 11, combined with
the overall picture of the residuals in Fig. 5, demonstrate
that large differences between Skyrme EDFs exist when
it comes to deformation properties of nuclei. While these
differences certainly depend on variations of EDF param-
eters controlling the shell structure, such as, e.g. the ef-
fective mass or spin-orbit splitting, our analysis indicates
that there are also fundamental discrepancies at the level
of the bulk energy. One may therefore question whether
EDF optimization protocols based exclusively on a small
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amount of data in nuclear matter and spherical nuclei are
able to capture the deformability of EDF.
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FIG. 12: (color-online) Surface and surface-symmetry contri-
butions to the LDM excitation energy of fission isomers in the
actinides compared to the smooth HFB excitation energy for
the same Skyrme EDFs as in Figs. 10 and 11. All curves are
shown relative to SkM* results.

As discussed in Sec. II and in particular in Figs. 1
and 2, assym varies very significantly from one EDF to
another. Consequently, surface and symmetry properties
of EDFs are intertwined in a non-trivial way when it
comes to deformability. Guided by the results of Figs. 10
and 11, we may wonder whether the large variations in
assym are indeed reflected in the results of self-consistent
calculations.

Figure 12 shows the surface and surface symmetry con-
tributions to the LDM excitation energy of SD states in
the actinides for the same Skyrme EDFs as in Figs. 10
and 11. The equilibrium deformations that are used in
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FIG. 13: Relative contributions of the Coulomb, surface-
symmetry, curvature and surface terms to the equivalent LDM
excitation energy of SD states in a sequence of U isotopes.
Calculations are based on SkM* and BSk6.
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FIG. 14: Quadrupole deformations β in SkM* for ground
states and fission isomers for the same U isotopes as in Fig.
13 (top) and the corresponding excitation energies (bottom).

the LDM for both the ground-state and SD state are ob-
tained in HFB. The LDM results are compared to the
smooth HFB energy Ẽ∗

HFB. To facilitate interpretation,
all curves are normalized to SkM* values. In this way, we
can better compare relative variations obtained in vari-
ous EDFs. It is interesting to see that the inter-EDF
fluctuations of Ẽ∗

HFB are rather well correlated with the
surface-symmetry energy. In other words, the contribu-
tion from the Coulomb and curvature terms (not plotted
in Fig. 12 for better legibility) cancel out the surface
term to a large extent. This result is significant because
it seems to confirm the simple analysis of Sec. II in a re-
alistic case: in nuclei having large neutron excess I (here
of the order of I ≈ 0.2), differences in deformation energy
between various EDF parameterizations reflect the differ-
ences of the surface-symmetry coefficient. By contrast, a
similar analysis of individual macroscopic contributions
in the Hg-Pb region does not allow to pin down a single
LDM term as a primary deformation driver.

To further illustrate the importance of the surface-
symmetry term, we calculated the LDM excitation en-
ergy of the fission isomer for a sequence of U isotopes.
Here, employed the SkM* and BSk6 parametrizations.
The SkM* EDF is known to perform rather well for fis-
sion barriers [141, 142]. Its surface-symmetry coefficient
is also close to the average among Skyrme forces and val-
ues from phenomenological estimates, so it can be viewed
as fairly representative of the Skyrme functionals. The



13

BSk6 parameterization gives a reasonable rms deviation
for excitation energies of SD states, see Fig. 5. The iso-
topes considered include some very neutron-rich species
important in the context of r-process fission recycling.
It is worth noting that HFB potential energy landscapes
change considerably within this isotopic sequence. For
example, N=184 is a neutron magic number for SkM*
[81]; hence, g.s. configurations around 276U are spherical
rather than prolate, see Fig. 14. The equivalent LDM
equilibrium deformations, therefore, reflect these struc-
tural changes in a non-trivial way.

For each isotope, we computed the relative contribu-
tion of the surface, surface-symmetry, curvature, and
Coulomb term to the total LDM excitation energy: these
are the only terms that depend on deformation. Fig-
ure 13 shows the percentage of the LDM excitation en-
ergy from these contributions. As the neutron excess
grows, one can notice the gradual relative decrease of the
Coulomb contribution - which depends only on the num-
ber of protons and proton density, and therefore remains
relatively constant in value. This decrease is compen-
sated by an increase of the surface-symmetry contribu-
tion. For the most neutron-rich nuclei considered here,
the total contribution from Essym is as large as 19% for
SkM*. For the two parametrizations selected here, the
role of the surface-symmetry term increases by a factor
3 from 236U to the fission recycling region.

VI. CONCLUSIONS

This work contains a comprehensive study of defor-
mation properties of nuclear energy density function-
als based on the leptodermous expansion of the smooth
nuclear energy. Since symmetry and surface-symmetry
terms in the expansion are strongly correlated, a way to
resolve them is to consider data on deformed neutron-
rich nuclei, in which the surface-symmetry term is am-
plified. Based on intuitive LDM arguments, we argue
that deformation properties of neutron-rich nuclear drops
are governed by an interplay of the deformation-driving
Coulomb and surface-symmetry terms, and the surface
energy that acts against shape deformation. To estimate
this interplay, we extracted the smooth deformation part
of the HFB energy by means of the shell correction pro-
cedure.

Self-consistent DFT calculations for excitation ener-
gies of SD states show marked differences in their predic-
tions depending on the parametrization used. For the set
of EDFs considered, the average rms deviation between
predicted energies of SD states and experimental values
is 1.26MeV. Within this set, the MSk1 parametrization
provides the best overall reproduction of the data: the
corresponding rms deviation is 0.53MeV, and this set a
benchmark for future improvements. For the subset of
fission isomer data, the best performer is SkI4: its rms
deviation is 0.48MeV.

We showed that inter-parametrization differences re-

flect to a large extent macroscopic properties of EDFs.
In particular, our calculations indicate that the bulk
deformation properties of actinides are strongly driven
by surface-symmetry effects, while in the proton-rich
A ∼ 190 nuclei there is more competition between the
various macroscopic contributions. This finding should
have an impact on the fissility of heavy, very neutron-
rich nuclei of the kind encountered e.g. in the r-process.
For example, the surface-symmetry contribution to the
bulk part of the excitation energy of fission isomer in
very neutron-rich uranium isotopes can reach ∼20% as
compared with ∼5% for 236U.
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FIG. 15: The upper part of the chart of the nuclides with the
x = 1 limit indicated for SkI3 and SkM* EDFs, the value of
η = 1.7826 used in Ref. [143] (LDM), and no isospin depen-
dence (η = 0). The region of known nuclides is marked by
black squares.

The importance of the surface-symmetry term on fis-
sion can be quantified at the LDM level by the dimen-
sionless fissility parameter:

x =
ECoul(sph)

2Esurf(sph)
≈

Z2

47A (1 − ηI2)
, (9)

where η ≡ −assym/asurf. If x > 1, the nuclear liquid
drop is unstable to fission. In the presence of neutron
excess, the fissility parameter increases, i.e., the tendency
towards fission increases. In Refs. [56, 143], the value
η = 1.7826 was used. By taking LDM parameters from
Table I we see that η is 1.9 for BSk6, 2.9 for SkM*, and
4.16 for SkI3, i.e., this parameter is very uncertain.

Figure 15 shows the LDM fission limit for the SkI3 and
SkM* EDFs, as well as for η = 1.7826, and η = 0 (no
isospin dependence). The minimum value obtained for
Z2/A, i.e., 47 in Eq. (9), is not very precise as it de-
pends on assumptions about the LDM constants [144].
Therefore this diagram should be considered as a quali-
tative guidance. A clear message drawn from Fig. 15 is
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that the surface-symmetry term can significantly impact
LDM fission barriers: the greater the value of η, the lower
the threshold for fission. This result is especially impor-
tant in the context of the fission recycling mechanism in
the r-process and hot fission reactions leading to excited
neutron-rich superheavy nuclei. Since shell effects are to
a large extent washed out at high temperatures [16, 145],
the fission of hot compound nuclei is expected to be gov-
erned by the LDM fission barrier (or smooth HFB de-
formation energy). As seen in Fig. 15 the uncertainty
in assym, hence η, makes it difficult to reliably predict
fission rates of the heaviest and superheavy neutron-rich
nuclei. (In this context we note that according to the
recent estimates [146] assym and η are expected to very
weakly depend on temperature.)

The results obtained in this paper suggest that adding
to the list of fit-observables data on strongly deformed
nuclear states (such as excitation energies of SD states
or fission barriers), combined with the usual constraints
on bulk properties and shell structure, should constrain
quite effectively the surface properties of the nuclear
EDF. Such a strategy is currently being pursued within
the UNEDF project [147, 148]. On the experimental side,

new information on deformed properties on neutron-rich
systems is the key.
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A.T. Kruppa, P.-G. Reinhard, and T. Vertse, Nucl.
Phys. A 701, 165 (2002).
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